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Direct Numerical Simulation of Three-Dimensional Richtmyer–Meshkov
Instability ∗
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Direct numerical simulation (DNS) is used to study flow characteristics after interaction of a planar shock with

a spherical media interface in each side of which the density is different. This interfacial instability is known as

the Richtmyer–Meshkov (R-M) instability. The compressible Navier–Stoke equations are discretized with group

velocity control (GVC) modified fourth order accurate compact difference scheme. Three-dimensional numerical

simulations are performed for R-M instability installed passing a shock through a spherical interface. Based

on numerical results the characteristics of 3D R-M instability are analysed. The evaluation for distortion of

the interface, the deformation of the incident shock wave and effects of refraction, reflection and diffraction are

presented. The effects of the interfacial instability on produced vorticity and mixing is discussed.

PACS: 47. 20.Ma, 47. 20.−k, 47. 40.−x

The study of Richtmyer–Meshkov (R-M) instabil-
ity is an important subject in many practical prob-
lems, such as inertial confinement fusion (ICF) and
explosion of supernova problems. Thus, recently peo-
ple have devoted much more attention to investigation
of these kinds of problems.[1,2]

In order to correctly capture both the shock and
contact discontinuity produced by the different den-
sity near the interface, a high order accurate scheme
is used to solve the compressible Navier–Stokes (N-S)
equations. The basic idea of the numerical method
is that the fourth-order accurate central compact dif-
ference scheme is used to approximate the viscous
terms in the N-S equations, the fourth-order accurate
compact difference scheme with group velocity control
(GVC)[3] is used to approximate the convective terms,
and the third-order accurate R-K method is used to
approximate the time derivatives. Suppose Fj/∆x is
an approximation of the first derivative ∂f/∂x. The
fourth-order compact scheme with GVC is as follows:
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The superscript ± corresponds to the positive and

negative flux vectors respectively, and the function
SS(P ) is used to control the group velocity.

Fig. 1. Density contours for cylindrical interface: (a) nu-
merical results, (b) experimental results.

In order to check the accuracy of the numeri-
cal method, it is used to solve the 2D compressible
N-S equations for simulating interaction of a planar
shock with cylindrical interface. The density ratio is
ρ1/ρ2 = 0.138 with the density ρ1 inside the cylinder
and ρ2 outside the cylinder. The shock is moving from
the right to the left, and the shock Mach number is
Ms = 1.093. The density contours at different time
are given in Fig. 1(a). For comparison the correspond-
ing experimental results are given in Fig. 1(b). The
time scale in Fig. 1 is defined as the same as Ref. [4].
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From these figures it can be seen that numerical re- sults agree well with the experimental data.

Fig. 2. Density contours on section z = 0 at different times t = 1.13, 5.13, 20.36.

Fig. 3. Constant density surface at different times.

The numerical method presented above is used to
solve the 3D compressible N-S equations for simulat-
ing interaction of a planar shock with a spherical in-
terface. The N-S equations are written in the Carte-
sian coordinate. The radius of the initial interface r0

is taken as the characteristic length, the initial shock
speed us as the characteristic velocity, and the time

scale is defined as r0/us. The domain of the computa-
tion is −Lx < x < Lx, −Ly < y < Ly, −Lz < z < Lz,
where Lx = Lz = 3.0 and Ly = 4.0 with grid sys-
tem 91 × 121 × 91. The boundary conditions with
free incoming parameters are given on the boundary
y = −Ly; non-reflecting boundary conditions are used
on the downstream boundary y = Ly and on the side
boundaries x = ±Lx, z = ±Lz. The shock wave is
going from the heavy gas with density ρ2 outside the
interface to the light gas with density ρ1 inside the
interface. The Mach number is Ms = 1.25 and the
density ratio is ρ1/ρ2 = 0.07. Figure 2 shows the
density contours on section z = 0 at different times
(t = 1.13, 5.13, 20.36). From Fig. 2(a) it can be seen
that as the shock sweeps over the interface the shape
of the interface at the upstream face changes due to
the significant compression by the shock and Kelvin–
Helmholtz instabilities produced due to the shear flow
near the spherical interface which becomes unstable.
We also can see that the first and second transmitted
waves on the left are followed by the interface and the
reflect waves are going to the right. At the same time
due to the shock going from the heavy gas to the light
gas and the shock inside the interface has a higher
propagation speed and the effect of the interfacial in-
stability the incident shock is deformed. This phe-
nomenon can also be seen from the pressure contours
not presented here. From Fig. 2(b) it can be seen that
after interaction due to interface instability the heavy
air jet with conical shear layer is formed, then this
jet impinges on the downstream interface and pierces
it (see Fig. 2(c)). It can be seen clearly from picture
of 3D constant density surface at different times (see
Fig. 3). During the time of the interaction between
the shock and the interface the vorticity is produced
due to non-parallelism of the gradients for pressure
and density. Because the shock is incident from the
right to the left and the light gas is relatively easier to
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accelerate, clockwise vorticity is produced at the top
and anticlockwise vorticity is generated at the bottom
of the interface. Figure 4 shows the vorticity contours
on section z = 0 at difference times (t = 1.13, 5.13,
20.36). Figure 5 shows the constant vorticity surface

and the vorticity contours on the section z=0. From
these pictures it can be seen that with further devel-
opment of the flow field the vortex ring structure is
formed (see Figs. 4(b) and 5(a)).

Fig. 4. Vorticity contours on section z = 0 at difference times t = 1.13, 5.13, 20.36.

Fig. 5. Constant vorticity ν (a) and density (b) surfaces,
and vorticity and density contours on section z = 0.

This vortex ring for the sphere-interface is more

distinct than the case for the cylinder interface. For
the case of interaction between the planar shock and
the cylindrical interface there is the vortex line which
is stable, but the 3D vortex ring is unstable. In the
further development of the interfacial instability the
smaller vortex structures are produced due to break-
ing up of this unstable vortex ring. It is more effective
for mixing of light and heavy gas. From numerical re-
sults we can also see that most of the vorticity in the
flow is concentrated in the vortex ring and along the
conical shear layer at the boundary of the heavy air
jet. The obtained numerical results are similar to the
basic physical phenomenon occurred in the mode test
for collision between the supernova and the ring.[5,6]

It can be believed that the R-M instability problem
of 3D planar shock-spherical interface interaction re-
flects the basic physical characteristics of this kind of
problems.
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