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Tuning the geometrical parameters of
biomimetic fibrillar structures to

enhance adhesion

Shaohua Chen1,* and Ai Kah Soh2

1LNM, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080, China
2Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China

Fibrillar structures are common features on the feet of many animals, such as geckos, spiders
and flies. Theoretical analyses often use periodical array to simulate the assembly, and each
fibril is assumed to be of equal load sharing (ELS). On the other hand, studies on a single
fibril show that the adhesive interface is flaw insensitive when the size of the fibril is not larger
than a critical one. In this paper, the Dugdale–Barenblatt model has been used to study the
conditions of ELS and how to enhance adhesion by tuning the geometrical parameters in
fibrillar structures. Different configurations in an array of fibres are considered, such as line
array, square and hexagonal patterns. It is found that in order to satisfy flaw-insensitivity
and ELS conditions, the number of fibrils and the pull-off force of the fibrillar interface depend
significantly on the fibre separation, the interface interacting energy, the effective range of
cohesive interaction and the radius of fibrils. Proper tuning of the geometrical parameters will
enhance the pull-off force of the fibrillar structures. This study may suggest possible methods
to design strong adhesion devices for engineering applications.

Keywords: adhesion; fibrillar interface; contact mechanics; pull-off force
1. INTRODUCTION

The attachment systems in jumping spiders and geckos
are believed to rely entirely on van der Waals forces
between the finely structured feet and substrates
(Autumn et al. 2000, 2002; Russell 2002; Kesel et al.
2003). Of particular significance are the many fibrils on
the feet of these animals. Fibrillar structure is an
important feature of these adhesion systems.

Owing to the reliance on van der Waals forces, the
ability of geckos to adhere to substrates is primarily
controlled by mechanics rather than surface chemistry.
Hence, the geometry and material properties of the
structure must play a pivotal role in enhancing the
adhesion (Gorb & Scherge 2000; Niederegger et al.
2002; Geim et al. 2003; Gao et al. 2005; Huber et al.
2005; Spolenak et al. 2005; Yao & Gao 2006; Chen &
Gao 2007). Various mechanical models have been
developed to model specific hairy attachment systems
(e.g. Hui et al. 2002; Persson 2003; Glassmaker et al.
2004; Hui et al. 2004) within the framework of adhesive
contact mechanics (e.g. Johnson et al. 1971; Derjaguin
et al. 1975; Roberts & Thomas 1975; Muller et al. 1980;
Greenwood & Johnson 1981; Barquins 1988; Maugis
1992; Carpick et al. 1996; Chaudhury et al. 1996; Baney&
Hui 1997; Johnson & Greenwood 1997; Barthel 1998;
Greenwood & Johnson 1998; Kim et al. 1998;
Robbe-Valloire & Barquins 1998; Morrow et al. 2003;
orrespondence (chenshaohua72@hotmail.com).
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Schwarz 2003; Chen &Wang 2006). In particular, the
Johnson–Kendall–Roberts ( JKR) model (Johnson
et al. 1971) of contact mechanics has been used to
show that splitting of a single contact into multiple
smaller contacts always results in enhanced adhesion
strength (Autumn et al. 2002; Arzt et al. 2003), and
developed to explain the other adhesion problems in
biology (Chen & Gao 2006a–c). One of the puzzling
predictions of the JKR-type model is that the spatula
structure of geckos can be split ad infinitum to support
arbitrarily large body weights. This is clearly imposs-
ible as the adhesion strength cannot exceed the
theoretical strength of van der Waals interaction
(Gao et al. 2005; Tang et al. 2005). In order to explain
why the characteristic size of the fibrillar ultrastruc-
ture of bioattachment systems falls in a narrow range
between a few hundred nanometres and a few micro-
metres and the optimal conditions under which the
theoretical pull-off force can be achieved, Gao & Yao
(2004) found that the robust design of shape-insensitive
optimal adhesion becomes possible only when the
diameter of the fibre is reduced to length scales of the
order of 100 nm and the optimal adhesion could be
achieved by a combination of size reduction and shape
optimization. The smaller the size, the less important
the shape. In order to simulate the fibrillar structure,
Glassmaker et al. (2004) and Hui et al. (2004) studied the
concept of equal load sharing (ELS) for a perfect
interface containing many fibrils and presented results
on how a fibrillar structure enhances adhesion.
J. R. Soc. Interface (2008) 5, 373–382
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In real life, most surfaces are actually rough, and
surface roughness has been considered in many contact
literatures. Meine et al. (2004) did experiments to find a
correlation between the contact area and adhesion of
rough surfaces, and the roughness was simulated by a
structure. A simple method of using the JKR model to
determine the interfacial adhesion between two ideal
rough surfaces was demonstrated by Hodges et al.
(2004) for individual asperity–asperity and asperity–
flat contacts. ELS was also adopted by Hodges et al.
(2004). An analytical model based on the JKR theory
of adhesion was used by Hui et al. (2001) to study
the contact mechanics and adhesion of a periodically
rough surface.

In order to be convenient in studying the adhesion
force or adhesion strength, most people have assumed
that the fibrillar structure or the asperity of a rough
surface is periodical and the force is homogeneously
distributed on all the asperities or fibres, i.e.

P ZNF ; ð1:1Þ
where P is the pull-off force; N is the number of the
asperities or fibres; and F is the pull-off force for single
asperity or fibril contact.

Whether the pull-off force on each asperity or fibre
attains the same value homogeneously and simul-
taneously (flaw insensitivity) was not investigated in
the mentioned literatures. Are there any restrictions on
the geometrical parameters to attain flaw insensitivity
and satisfy ELS in fibrillar structures? The concept of
flaw insensitivity has been adopted to understand the
mechanics of biological systems (Gao et al. 2003;
Persson 2003; Gao & Yao 2004; Glassmaker et al.
2004; Hui et al. 2004; Gao & Chen 2005; Gao 2006). In
the state of flaw insensitivity, pre-existing crack-like
flaw does not propagate or participate in the failure
process so that the biological material failure occurs by
uniform rupture at the limiting strength of the
material. Examples are as follows.

The spatula in a gecko’s attachment system was
modelled by Gao et al. (2005) as an elastic cylinder with
a flat tip in adhesive contact with a rigid substrate. The
radius of the cylinder is R and the actual contact radius
is aZaR, where 0!a%1. The rim of aR!r!R
represents flaws or regions of poor adhesion. Gao et al.
(2005) used the Griffith criterion and obtained the
critical size of the radius of the cylinder as

Rcr Z b2
DgE �

s2th
; ð1:2Þ

at which the traction within the contact area uniformly
reaches the theoretical strength sth and the pull-off
force becomes PZsthpa

2. In the above equation,
bZ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=paF2

1

p
, where F1ðaÞ is a function varying in a

narrow range between 0.4 and 0.5 for 0%a%0:8;
E �ZE=ð1Kn2Þ, where E and n are the Young modulus
and the Poisson ratio of the cylinder, respectively; and
Dg is the van der Waals interaction energy.

If we let aZ1, the critical radius of the cylinder
becomes

Rcr Z
8

p

DgE �

s2th
; ð1:3Þ
J. R. Soc. Interface (2008)
which is identical to the result obtained by Persson
(2003), where a rigid circular disc with radiusR on a flat
substrate with Young’s modulus E and Poisson’s ratio n
has been studied. Persson (2003) assumed that
complete contact occurs at the interface and found
that if R%Rcr, then the bond breaking may occur
uniformly over the contact area and the pull-off stress is
then independent of the size R and reaches the
theoretical interface strength sth.

In this paper, the concept of ELS for a perfect
interface containing many fibrils will be studied. All
fibrils have radius not larger than the critical size of flaw
insensitivity of a single fibre. The plan of this paper is as
follows. We first study the problem of two-dimensional
fibrillar structure, and then three-dimensional one. In
the two-dimensional case, we first discuss the critical
size of the fibril, the pull-off force and the pull-off stress
required to pull off a single fibril under the condition of
flaw insensitivity, and then use a plane-strain fibrillar
interface model to study the restrictions on the number
of fibrils and how to enhance the pull-off force. In the
three-dimensional models, the corresponding aspects
considered in the two-dimensional models will be
investigated for different fibrillar distributing patterns,
such as line array, square and hexagonal lattices.
2. PLANE-STRAIN MODELS

Adhesive contact between elastic objects usually fails
by the propagation of crack-like flaws initiated at poor
contact regions around surface asperities, impurities,
trapped contaminants, etc. Under this circumstance,
the adhesion strength is not optimal because it is only
a small fraction of material theoretical strength. From
the robustness point of view, it would be best to design
a material that allows the contact to fail not by crack
propagation but by uniform detachment at the
theoretical strength of adhesion, which is called
flaw tolerance (Gao et al. 2003, 2005; Gao & Chen
2005) or flaw insensitivity (Glassmaker et al. 2004; Hui
et al. 2004).

Inspired by the concept of flaw insensitivity, in this
paper, we will assume that the fibrils with size not
larger than the critical one are under ELS and the
interface strength between each fibril and the substrate
attains the theoretical strength. Thus, using the
boundary condition that the maximum separation at
the interface should not be larger than the effective
interaction distance of the interface, we can obtain the
relations between the various geometrical parameters,
the pull-off force and the pull-off stress for different
fibrillar configurations.
2.1. Critical size of a single fibril

Figure 1 shows a plane-strain model, in which a rigid
plate with width 2h contacts an elastic substrate with
Young’s modulus E and Poisson’s ratio n. Perfect
adhesion is assumed as that in Persson (2003) and the
contact half-width is h. The Dugdale model will be used
to obtain the critical half-width hcr required by the
condition of flaw insensitivity. When h%hcr, the trac-
tions on the interface will uniformly attain the interface

http://rsif.royalsocietypublishing.org/
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Figure 2. Schematic of an idealized scenario where a large
number of identical rigid plates are in perfect contact with an
elastic substrate. All the plates with half-width h%hcr are
subjected to the same external loading s and the interface
tractions are homogeneous theoretical interface strength sth.

rigid plate

elastic substrate

2h

z

s

x

Figure 1. Plane-strain model for pulling a rigid plate from an
elastic substrate to find a critical size of the plate hcr, under
which the interface tractions will attain homogeneously the
theoretical interface strength sth at pull-off.
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theoretical strength sth. The pulling stress is denoted by
s on the upper boundary, as shown in figure 1.

From the solution of a two-dimensional elastic half-
space pulled by a homogeneous traction s within the
length region 2h, the normal displacement can be
expressed as (Johnson 1985)

uzðxÞZ
Ks

pE � ðhCxÞln hCx

h

� �2

CðhKxÞln hKx

h

� �2� �
CC ;

ð2:1Þ
where C is an arbitrary constant.

The cohesive law in the Dugdale–Barenblatt model
(Dugdale 1960; Barenblatt 1985) can be expressed as

sðdÞZ
sth dðxÞ%d0

0 dðxÞOd0
;

(
ð2:2Þ

where sðdÞZs is the normal traction on the adhesion
interface; d0 is the effective range of cohesive
interaction; and d(x) is the separation between the
two surfaces of the contact interface. The interfacial
energy is

DgZ sthd0: ð2:3Þ
Consider the flaw insensitive concept. At the moment of
pull-off, the maximum opening displacement at the
contact edge should not be larger than the effective
interaction range d0, i.e. dðhÞ%d0. Thus, the normal
traction on the adhesion interface sZsðdÞ uniformly
attains the interfacial theoretical strength sth. The
critical size hcr of the above rigid plate can be
obtained from

dðhcrÞZ d0; ð2:4Þ
where

dðhÞZ uzð0ÞK uzðhÞ: ð2:5Þ
Substituting equation (2.1) into the critical criterion
(2.4) yields

hcr Z
pE �d0
2sth ln 4

E � Z
E

1Kn2
: ð2:6Þ

When h%hcr, the pull-off stress is the theoretical
strength sth and has no relation to the width of the
rigid plate.
J. R. Soc. Interface (2008)
The corresponding pull-off force Fp is

Fp Z 2sthh: ð2:7Þ

2.2. Fibrillar structure

Hui et al. (2004) and Glassmaker et al. (2004) have
studied the concept of ELS for a perfect interface
containing many fibrils, in which they used the area
fraction that fibrils cover and found enhanced adhesion
compared with their non-fibrillar counterparts. Are
there any other limits on the number of fibres to satisfy
the condition of ELS in the regime of flaw insensitivity
except for the characteristic fibril spacing that prevents
fibrils’ self-matting? How can we enhance adhesion by
tuning the geometrical parameters?

A simple plane-strain fibrillar structure in adhesive
contact with a substrate is shown in figure 2. The fibrils
in figure 2 are assumed to be rigid and identical in width
2h%2hcr and ELS in this section, which would be valid,
for example, if the structure in the figure is pulled
uniformly upwards. The distance between neighbour-
ing fibres is L. There are NZ2nC1 fibrils consisting of
the fibrillar interface with the central one numbered ‘0’
in figure 2.

Inspired by Hui et al. (2004), if the fibrils are elastic
with Young’s modulus Ef and length l, the energy per
unit length in the direction of thickness needed to pull
off a single fibril is

2h
s2thl

2Ef

CDg

� �
: ð2:8Þ

The work required to detach a unit area of the interface
is

s2thl

2Ef

CDg

� �
r; ð2:9Þ

where rZð2nC1Þh=ðnLChÞ is the area fraction that
the fibres cover on the interface.

ELS and theoretical strength conditions have been
satisfied above. One should note that another condition
of flaw insensitivity is that the maximum separation of
the interface should not be larger than the effective
interaction range d0, which will lead to restrictions on
the number of fibrils N.

Consider the model in figure 2, in which the fibrils
are rigid. The normal displacement uz(x) at an
arbitrary point (x, 0) consists of the contributions of

http://rsif.royalsocietypublishing.org/
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Figure 3. Schematic of the deformation of an elastic half-plane
under uniformly distributing tractions. The maximum
separation is denoted by d.
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all the distributing tractions on the interface, and each
part can be obtained from equation (2.1) as follows. For
example,

uz0 Z
Ksth

pE � ðhCxÞln hCx

h

� �2

CðhKxÞln hKx

h

� �2� �
CC0;

ð2:10Þ

denotes the displacement at the point (x, 0) contributed
by the zeroth distributing traction, where C0 is a
constant.

uz1 Z
Ksth

pE � ðhCxKLÞln hCxKL

h

� �2�

CðhKxCLÞln hKxCL

h

� �2�
CC1; ð2:11Þ

denotes the displacement at the point (x, 0) contributed
by the first distributing traction.

uzi Z
Ksth

pE � ðhCxKiLÞln hCxKiL

h

� �2�

CðhKxC iLÞln hKxC iL

h

� �2�
CCi; ð2:12Þ

denotes the displacement at the point (x, 0) contributed
by the ith (iZG1;G2;.;Gn) distributing traction.

The total displacement at the point (x, 0) can be
written as

uzðxÞZ uz0Cuz1C/CuznCuzðK1ÞC/CuzðKnÞ

Z
Ksth

pE � ðhCxÞln hCx

h

� �2

CðhKxÞln hKx

h

� �2� �

C
XN
nZ1

Ksth

pE � ðhCxKnLÞln hCxKnL

h

� �2�

CðhKxCnLÞln hKxCnL

h

� �2�

C
XN
nZ1

Ksth

pE � ðhCxCnLÞln hCxCnL

h

� �2�

CðhKxKnLÞln hKxKnL

h

� �2�
CC ;

ð2:13Þ

where CZC0CC1C/CCnCCK1C/CCKn.
Note the model in figure 3. The maximum separation

d can be written as

dðnLChÞZ uzð0ÞK uzðnLChÞ: ð2:14Þ
J. R. Soc. Interface (2008)
Substituting equation (2.13) into (2.14) yields

dðnLChÞ

Z
Xn
iZ1

Ksthh

pE � 1Ki
L

h

� �
ln 1Ki

L

h

� �2

C 1Ci
L

h

� �
ln 1Ci

L

h

� �2� �

C
Xn
iZ1

Ksthh

pE � 1Ci
L

h

� �
ln 1Ci

L

h

� �2

C 1Ki
L

h

� �
ln 1Ki

L

h

� �2� �

C
sthh

pE � 2Cn
L

h

� �
ln 2Cn

L

h

� �2

Kn
L

h
ln n

L

h

� �2� �

C
Xn
iZ1

sthh

pE � 2CðnKiÞL
h

� �
ln 2CðnKiÞL

h

� �2�

CðKnCiÞL
h
ln ðKnCiÞL

h

� �2�

C
Xn
iZ1

sthh

pE � 2CðnCiÞL
h

� �
ln 2CðnCiÞL

h

� �2�

KðnCiÞL
h
ln ðnCiÞL

h

� �2�
: ð2:15Þ

Flaw insensitivity requires

dðnLChÞ%d0: ð2:16Þ

The critical case dðnLChÞZd0 yields the relation
between the non-dimensional parameter L/h and the
critical number NZ2nC1, which is dependent only on
the non-dimensional parameter sthh=E

�d0.
The pull-off stress sp and the pull-off force Fp per

unit length in the direction of thickness are

sp

sth
Zr;

Fp

2hsth
ZN ; rZ

N

nL=hC1
: ð2:17Þ

From the above, one can see that the normalized pull-
off stress and pull-off force are identical to the area
fraction and the number of fibrils, respectively.
3. THREE-DIMENSIONAL MODELS

Three-dimensional models of fibrillar adhesive interface
will be studied in this section. The anti-bunching
condition for fibres of square cross-section in fibrillar
structures has been investigated by Hui et al. (2002)
and Gao et al. (2005). Glassmaker et al. (2004) have
derived the critical length for bunching of cylindrical
fibres. Owing to rigid fibrils considered in this
paper, anti-bunching condition was not investigated
in our model.
3.1. Critical size of a single fibril

A rigid cylindrical fibre with radiusR in contact with an
elastic substrate is shown in figure 4, which was
analysed by Persson (2003) with energy method and
Hui et al. (2004) with Maugis’ (1992) solution. The
contact zone is assumed to be perfect adhesion with
contact radius R. If the bond break is flaw insensitive,
then the pull-off stress should be the theoretical
strength sth; thus the tractions on the interface are
also sth.

The normal displacement at any point of a three-
dimensional elastic half-space subjected to homo-
geneous pulling stress sth in an area with radius R can

http://rsif.royalsocietypublishing.org/
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Figure 4. Pull-off of a rigid fibril from an elastic substrate. The
adhesion is assumed to be perfect to find a critical radius Rcr,
under which the interface traction attains the theoretical
interface strength at pull-off.

L n…210

R

s

x
n3 …210

z

elastic substrate L

Figure 5. Schematic of a large number of identical rigid and
cylindrical fibrils which are in perfect contact with an elastic
substrate. Each fibril has radius R%Rcr, and the interface
tractions between each fibril and substrate are assumed to be
homogeneous theoretical interface strength at pull-off to find
the constraints on the number of fibrils.
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be obtained from Johnson (1985) as

uzðrÞZ
4sthR

pE � P
r

R

� 	
; r!R ð3:1Þ

and

uzðrÞZ
4sthr

pE� P
R

r

� �
K 1K

R2

r2

� �
K

R

r

� �� �
; rOR;

ð3:2Þ
where the functions are

PðR=rÞZ
ððp=2Þ
0

1KðR2=r2Þsin24

 �1=2

d4 ð3:3Þ

and

KðR=rÞZ
ððp=2Þ
0

1KðR2=r2Þsin24

 �K1=2

d4: ð3:4Þ

The maximum separation d can be obtained,

dðRÞZ uzð0ÞK uzðRÞ ð3:5Þ

where

uzð0ÞZ
2sthR

E � uzðRÞZ
4sthR

pE � : ð3:6Þ

Then we have

dðRÞZ 4sthR

pE �
p

2
K1

� 	
: ð3:7Þ

Flaw-insensitivity condition requires

dðRÞ%d0: ð3:8Þ

The critical contact radius can be derived from
dðRÞZd0 as

Rcr Z
pE �Dg

4ðp=2K1Þs2th
; ð3:9Þ

which means that if R%Rcr, then the bond breaking
may occur uniformly over the contact area and the pull-
off stress is then independent of the size R of the
cylinder.

The corresponding pull-off force is given by

Fp ZpsthR
2: ð3:10Þ
J. R. Soc. Interface (2008)
The critical size in equation (3.9) is identical to that in
Hui et al. (2004). Comparing equations (3.9) and (1.3),
one canfind that the critical sizepredictedby theDugdale
criterion is more conservative than that predicted by
the Griffith criterion, which is similar to the flaw-
insensitivity conditions for a thin strip with a central
crack or double-edge cracks in Gao & Chen (2005).
3.2. Fibres distributed in a line array

We consider a fibrillar structure consisting of a line
array of fibres as shown in figure 5, where a large
number of identical fibrils are in perfect contact with an
elastic substrate. We assume that the fibrils are rigid
with radius R%Rcr and the distance between neigh-
bouring fibrils is L. The contact region is assumed to be
a rectangular area with width 2R and length 2ðnLCRÞ.

When a uniformly distributing stress acts to pull the
fibrillar structure as shown in figure 5, we know that
under the ELS and flaw-insensitivity assumptions the
normal traction on the interface is the theoretical
strength sth. The normal displacement at the point
xZ0 can be obtained from Johnson (1985) as

uz0 Z
4sthR

pE � Pð0ÞC2
Xn
iZ1

4sthiL

pE � PðR=iLÞf

Kð1KR2=ðiLÞ2ÞKðR=iLÞ
�
: ð3:11Þ

The normal displacement at the point xZnLCR is

uznZ
4sthR

pE � Pð1ÞC
X2n
iZ1

4sthðiLCRÞ
pE � P½R=ðiLCRÞ�f

K½1KR2=ðiLCRÞ2�K ½R=ðiLCRÞ�
�
:

ð3:12Þ
Thus, the maximum separation of the fibrillar interface
at the contact edge,

dZ uz0K uzn%d0; ð3:13Þ
should not be larger than d0, i.e. d%d0. dZd0 denotes the
critical case. For a given h and L, the constraint relation
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between the number of fibres NZ2nC1 and the non-
dimensional parameter sthR=E

�d0 can be described.
The pull-off force and pull-off stress can then be

written as
Fp

psthR
2
ZN ;

sp

sth
Z r; rZ

p

4

N

ðnL=RC1Þ ; ð3:14Þ

where r is the area fraction of the fibrillar interface in a
line array pattern.
Figure 6. The fibrillar structure with rigid cylindrical fibres
distributed in hexagonal lattice patterns.
3.3. Fibres distributed in a hexagonal pattern

Figure 6 shows a hexagonal distributing pattern for a
fibrillar structure, in which fibres with radius R%Rcr

are assumed to be rigid and the substrate is an elastic
half-space. ELS and flaw insensitivity are assumed in
this model and the contact area is a circular region with
radius nLCR.

The normal displacement at the centre point rZ0
can be written as

uz0Z
4sthR

pE � Pð0Þ

C6
Xn
iZ1

4sthiL

pE � PðR=iLÞK 1KR2=ðiLÞ2
� 


KðR=iLÞ

 �

C6
Xn1K1

n 2Z1

Xn
n1Z2

4sthr1
pE � PðR=r1ÞKð1KR2=r 21ÞKðR=r1Þ


 �
;

ð3:15Þ
where

r1 Z
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The corresponding displacement at rZnLCR is
approximately written as
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where

r2 Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn1LÞ2 Cðn2LÞ2K2n1n2L

2 cos
2p

3

r
: ð3:18Þ

The maximum separation at the contact edge can be
obtained as

dZ uz0K uzn: ð3:19Þ
The critical condition of flaw insensitivity for the
fibrillar interface is

dZ d0: ð3:20Þ
The above equation shows that the relation between the
normalized parameter L/R and the number of fibrils N
depends only on the non-dimensional parameter
sthR=E

�d0. The number of fibres is

N Z 6nC1C6
XnK1

iZ1

i: ð3:21Þ
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The pull-off force Fp and pull-off stress sp in this case
can be expressed as

Fp

psthR
2
ZN ;

sp

sth
Z r; rZN

1

nL=RC1

0
@

1
A2

:

ð3:22Þ

3.4. Fibres distributed in square pattern

Figure 7 shows the square distribution pattern of a
fibrillar interface, in which rigid fibrils are assumed
with distance L between neighbouring fibres. The
contact region between the fibrillar structure and the
substrate is a circular one with radius nLCR.

The normal displacement at xZ0 can be expressed
as (Johnson 1985)
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The corresponding displacement at xZnLCR is
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Figure 7. The fibrillar structure with rigid cylindrical fibres
distributed in square lattice patterns.
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Figure 8. (a) The normalized pull-off force Fp=ð2sthhÞ or the
critical number of rigid plates N as a function of the
normalized space L/h and (b) plots of the normalized pull-
off stress sp=sth via the normalized space L/h to satisfy ELS
and flaw insensitivity for the plane-strain model shown in
figure 2.
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where

r1 Z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn1LÞ2 Cðn2LÞ2

q
; ð3:25Þ

r2 Z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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r3 Z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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and

r4 Z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnLCRKn1LÞ2 Cðn2LÞ2

q
: ð3:28Þ

The maximum normal separation can be obtained as

dZ uz0K uzn; ð3:29Þ

which satisfies the flaw-insensitivity condition

d%d0: ð3:30Þ

dZd0 denotes the critical case from which one can find
the relation between the normalized parameter L/R
and the number of all fibres N depending only on the
non-dimensional parameter sthR=E

�d0. The critical
number of fibrils N that satisfies ELS and flaw-
insensitivity conditions is

N Z 1C4nC4
Xn
n1Z1

int
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2Kn2

1

q
: ð3:31Þ

The pull-off force Fp and pull-off stress sp can be
expressed by N and r, respectively, as

Fp

psthR
2
ZN ;

sp

sth
Z r; rZN

1

nL=RC1

0
@

1
A2

;

ð3:32Þ
where r is the area fraction of fibres in a square lattice
pattern.
4. NUMERICAL ANALYSIS

4.1. Two-dimensional fibrillar interface contact

In the plane-strain model of a rigid plate in contact
with an elastic half-plane, the normalized pull-off force
is equal to the critical number of fibres, which can be
J. R. Soc. Interface (2008)
found in equation (2.17). Figure 8a shows the
normalized pull-off force and the critical number of
plates N as a function of the normalized space L/h to
satisfy ELS and flaw sensitivity conditions for different
values of non-dimensional parameter sthh=E

�d0,
from which one can see that the pull-off force
remains almost a constant for a determined parameter
sthh=E

�d0 when the space L/h increases. It means that
the size of the plane-strain fibrillar structure can be
very large and does not influence the pull-off force
when the ELS and flaw sensitivity are satisfied and the
half-width of each plate h is not larger than the critical
size hcr. On the other hand, for a determined space L/h
of the fibrillar structure, increase in the net pull-off
force can only be realized through decreasing
sthh=E

�d0, i.e. by increasing the effective Young’s
modulus of the substrate E � or the effective interaction
distance d0. In addition, for a fixed space L/h, a larger
critical number N can be expected by means of
increasing the value of d0 and E � or decreasing sth.
According to equation (2.17), one can see that the
normalized effective strength (pull-off stress) sp/sth
and the area fraction r will decrease along with an
increasing space L/h as shown in figure 8b. It should be
of interest to design plane-strain fibrillar structures as
adhesion-controlled devices, whose size or pull-off force
can be regulated according to the requirements.
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4.2. Three-dimensional fibrillar interface
contact

4.2.1. Line array pattern. In the case of adhesive
contact between an elastic substrate and a rigid fibrillar
structure with fibrils distributing in a line array, one
can see that the normalized pull-off force Fp=ðpsthR2Þ is
equal to the critical number N quantitatively in
equation (3.14). Figure 9 shows the normalized pull-
off force Fp=ðpsthR2Þ and the critical number of fibres N
as a function of the normalized space of neighbouring
fibres L/R for several different values of sthR=E

�d0 to
satisfy the conditions of ELS and flaw insensitivity.
From figure 9, one can see that the pull-off force and the
critical number of fibrils are influenced significantly by
the non-dimensional parameters sthR=E

�d0 and L/R.
For a determined L/R, the pull-off force and the critical
number increase when the parameter sthR=E

�d0
decreases. For a smaller value of sthR=E

�d0, the pull-
off force Fp=ðpsthR2Þ and the critical number N will
decrease smoothly with an increasing value of L/R. For
a larger value of sthR=E

�d0, the pull-off force and the
critical number will increase first along with L/R and
then decrease, which means that the pull-off force can
obtain a maximum value at an optimal L/R in the case
with a larger sthR=E

�d0. The pull-off stress will
decrease along with increasing space L/R and the
curve looks like that in figure 8b.
4.2.2. Hexagonal lattice pattern.According to equations
(3.20)–(3.22), the normalized pull-off force and the
critical number N as a function of the normalized space
L/R to satisfy ELS and flaw-insensitivity conditions are
shown in figure 10 with fibrils distributing in a
hexagonal lattice pattern. From figure 10, one can see
that for a determined parameter sthR=E

�d0, the
normalized pull-off force increases first with the
increasing normalized space L/R and then decreases
for larger L/R. There exists a certain value of L/R in
each case, at which the pull-off force and the critical
number N attain maximum. For a fixed space L/R, the
pull-off force andN are always increasing along with the
J. R. Soc. Interface (2008)
decreasing parameter sthR=E
�d0. As for the pull-off

stress, it will decrease along with the increasing space
L/R, which looks like the curve in figure 8b.
4.2.3. Square lattice pattern. Figure 11a,b plots the
curvesof thenormalizedpull-offforce (the criticalnumber
N ) via thenormalized space ofneighbouringfibrilsL/R to
satisfy the ELS and flaw-insensitivity conditions in
adhesive contact of fibrillar interface with fibrils dis-
tributing in a square lattice pattern. Owing to large
difference between the quantities of the normalized pull-
off force for different values of sthR=E

�d0, we plot the
relations in two figures (figure 11a,b) to make the curves
more clear. From the two figures, one can see that the
relation between the normalized pull-off force (the critical
numberN ) and the ratioL/R ismuchmore complex than
that in the former cases for a given sthR=E

�d0. For
smaller non-dimensional value sthR=E

�d0, the
normalized pull-off force will increase first with the
increasing ratio L/R, then decrease quickly after achiev-
ing a maximum value, from which one can see that the
pull-off force is influenced significantly by tuning the
geometrical parameter of fibrillar structures so that it is
convenient to choose the space between neighbouring
fibrils to obtain the required adhesion properties. When
thevalue ofsthR=E

�d0 increases, the relationbetween the
normalized pull-off force and L/R consists of four regimes
along with an increasing L/R: (i) the pull-off force (or the
critical number N ) increases at the initial stage, (ii)
decreases at certain value of L/R, (iii) then increases
again to a second top value, and (iv) after that, decreases
once again. For a fixed ratio L/R, the pull-off force is
always larger for a smaller sthR=E

�d0. From the above,
one can see that the pull-off force can be regulated by
tuning the geometrical parameter of fibrillar structures.
Furthermore, one can find easily that the effective
adhesion strength (pull-off stress) decreases and asymp-
totically approaches zero with the increasing ratio L/R,
and this variation looks very similar to that in figure 8b.
5. DISCUSSION

In this paper, we study only the cases of rigid fibrillar
structures in contact with elastic substrates to satisfy
the ELS and flaw insensitivity, from which the pull-off
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force, the effective adhesion strength and the critical
number of fibrils are influenced significantly by tuning
the geometrical parameters of fibrillar structures. We
can find an optimal space of neighbouring fibrils to
achieve maximum pull-off force. The critical number
of fibres is a criterion to justify whether the equation
PZNF can be used correctly in studying periodical
structures. For a determined space of neighbouring
fibrils and the size of single fibril not larger than the
critical one, if the number of fibrils N � is larger than the
critical number N, ELS assumption cannot be used any
more and the idea of ‘contact splitting’ to increase the
adhesion force becomes unsuitable. On the contrary, if
N �%N , it is reasonable and very convenient to use
ELS to analyse the adhesion characters of fibrillar
structures.

From the analysis in this paper, one can see that if
the number of fibrils satisfies ELS and flaw-insensitivity
conditions, it needs only to tune the geometrical
parameters to enhance adhesion.

As for the case of elastic fibrillar structures in
contact with elastic or rigid substrates, Hui et al. (2004)
has investigated this problem to some extent, in which
they suppose that the pull-off of a fibril can be viewed as
the growth of a pre-existing crack for the case of rigid
fibrils in contact with substrates; however, this does not
apply to an elastic fibril since the exterior of an elastic
fibril is not an external crack. Details can be found in
Hui et al. (2004). Yao & Gao (2006) have investigated
J. R. Soc. Interface (2008)
the hierarchical fibrillar structures and made a
comparison between their results and the observed
hierarchical structure of the gecko. For cases of elastic
fibrils, the elastic strain energy stored in any fibril
should be considered in addition to the energy creating
new surfaces during pull-off. Are there any constraints
on the number of elastic fibrils and what effect will be
produced on the pull-off force and adhesion strength?
This more realistic mechanical mechanism adopted by
bioadhesion systems will be left to future work.

The work reported here was supported by NSFC (10672165)
and KJCX2-YW-M04.
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