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Abstract

A generalized plane strain JKR model is established for non-slipping adhesive contact between an elastic transversely
isotropic cylinder and a dissimilar elastic transversely isotropic half plane, in which a pulling force acts on the cylinder with
the pulling direction at an angle inclined to the contact interface. Full-coupled solutions are obtained through the Griffith
energy balance between elastic and surface energies. The analysis shows that, for a special case, i.e., the direction of pulling
normal to the contact interface, the full-coupled solution can be approximated by a non-oscillatory one, in which the crit-
ical pull-off force, pull-off contact half-width and adhesion strength can be expressed explicitly. For the other cases, i.e., the
direction of pulling inclined to the contact interface, tangential tractions have significant effects on the pull-off process, it
should be described by an exact full-coupled solution. The elastic anisotropy leads to an orientation-dependent pull-off
force and adhesion strength. This study could not only supply an exact solution to the generalized JKR model of trans-
versely isotropic materials, but also suggest a reversible adhesion sensor designed by transversely isotropic materials, such
as PZT or fiber-reinforced materials with parallel fibers.
� 2007 Elsevier Ltd. All rights reserved.

Keywords: Adhesion; Adhesive contact; Transversely isotropic material; JKR model
1. Introduction

The mechanics of contact between solid hemispheres has been used extensively in studying the surface
energy of materials during the past decade (for examples, Barquins, 1988; Carpick et al., 1996; Baney and
Hui, 1997; Greenwood, 1997; Johnson and Greenwood, 1997; Barthel, 1998; Greenwood and Johnson,
1998; Kim et al., 1998; Robbe-Valloire and Barquins, 1998; Morrow et al., 2003; Schwarz, 2003). Four main
theories have been developed to describe the history of this contact problem: those of Hertz (1882), Johnson
et al. (1971), Derjaguin et al. (1975), and Maugis (1992). While the Hertz theory (Hertz, 1882) assumes that
adhesion between the spheres cannot be sustained, the JKR, DMT and MD theories do allow for adhesion by
taking into account the surface energies of the bodies. In the JKR (Johnson et al., 1971) model, an equilibrium
contact area is established via Griffith energy balance between elastic energy and surface energy, which results
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in compressive stress in the central region of contact and crack-like singular tensile stress near the edge of con-
tact; the contact area remains finite until a critical pull-off force is reached. In the DMT model (Derjaguin
et al., 1975), molecular forces outside the Hertz contact area are considered, but these forces are assumed
not to change the contact profile of the Hertz solution and the tensile stress is finite in the cohesive zone out-
side the contact area but zero inside it. This paradox was solved by Maugis (1992), who developed a unified
model linking the JKR and DMT models by extending the Dugdale model (Dugdale, 1960) of a plastic crack
to the case of adhesive contact between two elastic spheres.

Most of the existing models on contact mechanics are related to isotropic materials and the tangential trac-
tions in the contact region are neglected or regarded as frictional one to uncouple the normal and tangential
stresses (Johnson, 1985). For a nanometer-sized contact, most of the phenomena will be different from those
predicted by JKR theory which is not the only description of bodies in adhesive contact but is rather the
limiting case of a continuous regime of contact mechanics. For example, Carpick et al. (1996) did nanome-
ter-sized contact experiment and found that the tip-sample adhesion and the measured frictional forces
unexpectedly decreased by more than one order of magnitude when scanning the tip in contact with the mica
sample. They attribute the friction and adhesion decreases to changes of the interface, either structure
or chemical, as opposed to changes in bulk structure or properties. Although several features unique to the
nanoscale were observed in the experiment study of adhesion and friction for nano-asperities (Enachescu
et al., 1999; Carpick et al., 2004), they found that the friction is proportional to the true contact area, the
interfacial shear strength and the work of adhesion can be determined in the framework of fracture mechanics.
The near-ideal shear strength observed in the experiment can be explained using dislocation models (Hurtado
and Kim, 1999). For macroscopic contact, Kendall (1975) investigated the effects of shrinkage stress on a
\brittle interfacial failure of a bonded laminate. Savkoor and Briggs (1977) showed that an applied tangential
force can reduce the area of contact between elastic solids.

With the developing of bio-mechanics and bionics, contact mechanics has been used to understand bio-
logical adhesion mechanism (Arzt et al., 2003; Geim et al., 2003; Persson, 2003; Glassmaker et al., 2004;
Gao and Yao, 2004; Hui et al., 2004; Chu et al., 2005; Gao et al., 2005). In some cases, perfect bonding
should be considered because the effects of tangential traction on the pull-off process cannot be neglected
(Chen and Gao, 2006a,b,c, 2007). Recent studies on elastic bodies in non-slipping adhesive contact with a
laterally stretched substrate (Chen and Gao, 2006a,b) indicate that the substrate strain can have significant
effect on the contact area. The pull-off process of two elastic spheres in non-slipping adhesive contact
under a pair of pulling forces and a mismatch strain will be influenced by the mismatch strain significantly
(Chen and Gao, 2006c). Furthermore, isotropy is not enough sometimes to describe the material charac-
ters (Gao et al., 2005; Yao and Gao, 2006; Chen and Gao, 2007), such as the attachment pad of grass-
hopper and cicada (Slifer, 1950; Roth and Willis, 1952; Arnold, 1974), the tissue of gecko’s feet (Autumn
et al., 2000).

As an extension of the adhesive contact model for isotropic materials (Chen and Wang, 2006), in the pres-
ent paper, a generalized adhesive contact model between two dissimilar transversely isotropic solids is inves-
tigated. The contact region is also assumed to be perfect bonding, then, an external loading is added obliquely
on the cylinder. Exact solutions to the generalized JKR model for transversely isotropic materials will be given
and analyzed. The results suggest that an orientation-dependent adhesion sensor could be designed by trans-
versely isotropic materials, such as PZT-4 and fiber-reinforced composites, where all fibers are in parallel. Fur-
thermore, explicit solutions can be deduced from the generalized model for some special and useful cases, such
as adhesive contact between a rigid cylinder and a transversely isotropic half plane or between an isotropic
solid and a transversely isotropic substrate, only if the direction of pulling force is normal to the contact
interface.

2. Elastic constants and Barnett–Lothe tensors for transversely isotropic material

A special class of orthotropic materials are those that have the same properties in one plane (e.g., the x � z

plane) and different properties in the direction normal to this plane (e.g., the y-axis). Such materials are called
transversely isotropic, and they are described by five independent elastic constants, instead of nine for fully
orthotropic.
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Examples of transversely isotropic materials include some piezoelectric materials (e.g., PZT-4, barium tita-
nate) and fiber-reinforced composites where all fibers are in parallel.

By convention, the five elastic constants in transverse isotropic constitutive equations are the Young’s mod-
ulus and Poisson ratio in the x � z symmetry plane, E1 and m1, the Young’s modulus and Poisson ratio in the
y-direction, E2 and m2, and the shear modulus in the y-direction G12.

For orthotropic materials, Dongye and Ting (1989) and Hwu (1993) have shown the explicit expressions for
the Barnett–Lothe tensors S and L, which are real matrices composed of the elasticity constants. For plane
strain transversely isotropic materials, the corresponding Barnett–Lothe tensors S and L can be reduced as
Fig. 1.
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S and L tensors are often used to express the influence of material properties. In the present paper, they will be
used as coefficients in the following Green equations (7).

3. Adhesive contact model for two dissimilar transversely isotropic solids

In this paper, a plane strain model as shown in Fig. 1 is investigated, in which an elastic cylinder is in adhe-
sive contact with an elastic half plane. Both solids are transversely isotropic materials. The upper material
Fφ

2y

x2a

R
1y

The adhesive contact model between an elastic transversely isotropic cylinder of radius R and an elastic transversely isotropic half
ith contact width 2a. Two kinds of coordinate systems (x,y1) and (x,y2) are fixed on the cylinder and the half plane, respectively,
e origins at the center of the contact interface.
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denotes as material ‘‘1’’ and the lower one is material ‘‘2’’. R is the radius of the upper cylinder and 2a is the
contact width. After adhesive contact, an external loading F in x � y plane acts on the cylinder with an angle /
inclined to the normal of the contact interface as shown in Fig. 1.

Two Cartesian reference coordinate systems (x,y1) and (x,y2) lie at the center of the contact region with y1

and y2 pointing into the upper cylinder and the lower half-space, respectively. The contact region is assumed to
be perfect bonding, so that the edges of the contact region resemble two opposing interfacial cracks under
plane strain deformation.

As in almost all contact mechanics theories (Johnson, 1985), the contact width is assumed to be small com-
pared to the radius of the cylinder such that the deformation of the cylinder can be approximated by that of an
elastic half-space. The pulling force is assumed to be properly added such that no net bending moment on the
contact region is produced.

Under the above assumptions, the continuity condition of displacements across the contact interface can be
expressed as
�ux1 � �ux2 ¼ 0

�uy1 þ �uy2 ¼ d� x2

2R

	
jxj 6 a; ð5Þ
where �uxj ð�uyjÞ denotes the displacement in the x (yi, i = 1,2) direction of each material j (j = 1,2) along the
interface, d is a constant and R the radius of the cylinder (Johnson, 1985).

The displacement gradients with respect to x yields
@�ux1

@x �
@�ux2

@x ¼ 0;
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@x ¼ � x
R :

(
ð6Þ
Using the Green’s functions of an elastic transversely isotropic half-space subjected to surface tractions
(Ting, 1996) yields
D11
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where P(x) and Q(x) denote the normal and tangential tractions along the contact interface of the cylinder,
respectively. The coefficients are expressed as
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W 21 ¼ �W 12; ð10Þ
()j denotes the term of jth (j = 1,2) material.

Eq. (7) can be rewritten in a matrix form as
1
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The calculations are quite lengthy but the methodology of solving such integral Eq. (11) is standard, which
can be found in Chen and Gao (2006a), so that we skip the details and only give a brief introduction as
follows.
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Introducing the following transformation
F kðzÞ ¼
1
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where z = x + iy and here i ¼
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p

, Eq. (11) can be decoupled into two inhomogeneous Hilbert equations.
Following the standard procedure (Carrier et al., 1983; Chen and Gao, 2006a) to solve Hilbert equation,
we can obtain the interfacial tractions Q(x) and P(x),
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where
IðxÞ ¼ ðaþ xÞ��rða� xÞ�r

2piR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D11D22

p
ð1� g2Þ

Z a

�a

tðaþ tÞ�rða� tÞr

t� x
dt: ð15Þ
The stress singularity is
r ¼ 1
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and
g ¼ jW 21ðD11D22Þ�1=2j ð17Þ
denotes a bimaterial constant, which is analogous to Dundurs’ parameters b for isotropic materials.
Using the following equilibrium conditions
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Substituting Eqs. (19) and (20) into Eqs. (14), the interfacial tractions can be rewritten as
QðxÞ ¼ 2Re IðxÞf g þ xg
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According to Wu (1990), Hwu (1993) and Ting (1996), the stress intensity factors for an interface crack can be
given by
K ¼ lim
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Substituting Eqs. (23), (24) into (22) yields
KII

�KI

	 �
¼ lim

x!a

ffiffiffiffiffiffi
2p
p Re HðxÞf g

ffiffiffiffiffi
D22

D11

q
Im HðxÞf g

�
ffiffiffiffiffi
D11

D22

q
Im HðxÞf g Re HðxÞf g

2
64

3
75 QðxÞ

P ðxÞ

	 �
; ð25Þ
where
HðxÞ ¼ ða� xÞ
1
2þiel�ie: ð26Þ
Using Eq. (21), the stress intensity factors can be explicitly expressed as
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Substituting the stress intensity factors in Eqs. (27) and (28) into the energy release rate
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; ð29Þ
then, using the Griffith energy balance criterion at the contact edges
G ¼ Dc; ð30Þ
where Dc is the work of adhesion, leads to the following governing equation
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which describes the contact size a as a function of the pulling force F and the pulling angle /.
For a special case, i.e., / = 0, which corresponds to the direction of the pulling force normal to the contact

interface, the relation between the contact size a and the pulling force F can be simplified as
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4. Analysis and discussion

4.1. The effects of mismatch parameter g

From Eq. (31), one can find that the relation between the pulling force F and the contact width 2a is affected
by the elastic mismatch parameter g, which leads to an oscillatory singularity and a very complex expression.
Motivated by recent studies (Chen and Gao, 2006a,b,c; Chen and Gao, 2007; Chen and Wang, 2006), where
the Dundurs’ parameter b has a minor effect on the pull-off process when the pulling force is normal to the
contact interface.

It can be shown in the present model that the normalized pulling force F/Dc depends on the normalized
contact half-width a/R via four parameters, D11/D22, DcD22/R, g and /. For the case with a fixed pulling angle
/ 5 0, numerical calculation find that g has a significant effect on the pull-off process and the difference
between the non-oscillatory (g = 0) and oscillatory solutions (g 5 0) increases with an increasing value of g.

For a special case, / = 0, i.e., the pulling force normal to the contact interface, the relation between the
pulling force and the contact half-width is expressed by Eq. (32), where we find that the normalized pulling
force F/Dc depends on the normalized contact half-width a/R via three parameters, DcD22/R, g and /, except
for the non-dimensional parameter D11/D22. For a fixed value of DcD22/R, the difference between the
non-oscillatory and oscillatory solutions with different values of g is very small when g 6 0.25. Especially,
the critical pull-off force and pull-off contact half-width are hardly influenced by a wide range of g, so that
the non-oscillatory solution can be a very good approximation to the oscillatory cases. Fig. 2 is shown as
an example.

Furthermore, one can easily infer from the conclusions of Fig. 2 that the non-oscillatory solution is also
adaptive to the model of a rigid or an elastic isotropic cylinder in contact with an isotropic or a transversely
isotropic substrate only if the direction of pulling is normal to the contact interface. This inference is consistent
well with the former studies about adhesive contacts (Chen and Gao, 2006a,b,c; Chen and Gao, 2007; Chen
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and Wang, 2006), which has also been used in the classical contact problems (for examples, Hertz, 1882; John-
son, 1985).

An interesting issue is to study the critical pull-off force, pull-off contact width as well as the adhesion
strength, which can be obtained from numerical calculation if / 5 0. Examples are shown in Figs. 3–5. In
each figure, we take g = 0.1, four different values of D11/D22 and two values of DcD22/R. The results for iso-
tropic case, i.e., D11/D22 = 1.0, are also shown in the figures. Fig. 3 shows the normalized critical pull-off force
F p=F p

0 as a function of the pulling angle /, where the subscript ‘‘0’’ denotes / = 0 and the superscript ‘‘p’’
denotes pull-off. From Fig. 3, one can see that the normalized critical pull-off force does not depend on the
non-dimensional parameter DcD22/R but depends strongly on the non-dimensional value of D11/D22 and pull-
ing angle /. As the value of D11/D22 increases, the normalized pull-off force varies stronger and stronger with
the direction of pulling. The normalized pull-off force attains the maximum value always at / = 0 when the
elastic anisotropy becomes stronger. Especially, for the case of D11/D22 P 1000, the maximum pull-off force
is almost an order of magnitude larger than the minimum one.
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Fig. 3. Plots of the normalized pull-off force F p=F p
0 as a function of different pulling angle / for g = 0.1, DcD22/R = 0.1, 0.01 and different

values of D11/D22, in which F p
0 denotes the pull-off force with / = 0.
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0 as a function of different pulling angles / for g = 0.1, DcD22/R = 0.1, 0.01

and different values of D11/D22, in which ap
0 denotes the pull-off contact half-width with / = 0.
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Fig. 4 shows the normalized pull-off contact width as a function of pulling angle / with the same param-
eters used in Fig. 3. From Fig. 4, one can see that the normalized pull-off contact width also does not depend
on the non-dimensional parameter DcD22/R but senses the value of D11/D22 strongly. The maximum pull-off
contact width always emerges at / = p/2. An interesting phenomenon can be found from Figs. 3 and 4. The
pull-off force and pull-off contact half-width for D11/D22 = 1.0 in Figs. 3 and 4, respectively, increase when the
pulling angle / increases, which means that the friction force is proportional to the contact area in the isotro-
pic case and is consistent with the experiment results (Carpick et al., 1996, 2004; Enachescu et al., 1999). How-
ever, in the transversely isotropic case, i.e., D11/D22 5 1.0, the pull-off force decreases while the pull-off
contact half-width increases for a determined value of D11/D22, which should be verified by the corresponding
experiment in future.

The adhesion strength rp is defined as the ratio of the pull-off force to pull-off contact width. Normalized
adhesion strength rp=rp

0 as a function of the pulling angle / is shown in Fig. 5 with the same parameters used
in Figs. 3 and 4. It shows that D11/D22, i.e., the elastic anisotropy, has significant effects on the normalized
adhesion strength rp=rp

0. As the value of D11/D22 increases, the normalized adhesion strength rp=rp
0 varies

strongly with the direction of the pulling force. Furthermore, when the value of D11/D22 is larger than
1000, the maximum adhesion strength, which emerges at / = 0, can be an order of magnitude larger than
the minimum one attained at / = p/2 and the value of adhesion strength decreases quickly when the angle
deviates / = 0.

From above, one can see that a switch between attachment and detachment can thus be accomplished just
by shifting the pulling angle. For practical application, it is helpful for designing synthetic adhesion systems in
engineering using piezoelectric materials (e.g., PZT-4, barium titanate) or fiber-reinforced composites where
all fibers are in parallel.
4.2. The non-oscillatory solution for the case of / = 0

For the case of / = 0, we have found from above that the non-oscillatory solution can be a good approx-
imation to oscillatory one for the bimaterial adhesive contact model. Explicit expressions of the pull-off force,
pull-off contact width and the adhesion strength in the non-oscillatory solution will be given, which is very
convenient to be used for engineering.

The non-oscillatory condition corresponds that
g ¼ 0 ð33Þ
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which yields
e ¼ 0; r ¼ 1

2
: ð34Þ
Substituting the condition of / = 0 and Eqs. (33) and (34) into Eq. (21) yields
QðxÞ ¼ 0 ð35Þ

and
P ðxÞ ¼
a2

2
� x2

RD22

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � x2
p � F

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � x2
p : ð36Þ
Then the stress intensity factor can be obtained
KI ¼
ffiffiffi
p
p

a3=2

2RD22

þ Fffiffiffiffiffiffi
pa
p : ð37Þ
Substituting the stress intensity factor in Eq. (37) into the following Griffith energy balance criterion,
G ¼ D22K2
I

4
¼ Dc ð38Þ
yields the external loading F as a function of the contact half-width a
F ¼ �pa2

2RD22

þ 2

ffiffiffiffiffiffiffiffiffiffiffi
paDc
D22

r
: ð39Þ
Using the following equation
@F
@a
¼ 0 ð40Þ
yields the pull-off contact half-width as
ap
0 ¼

R2D22Dc
p


 �1
3

ð41Þ
and the pull-off force
F p
0 ¼

3

2

pRDc2

D22


 �1
3

; ð42Þ
where the subscript ‘‘0’’ denotes the case of / = 0.
The adhesion strength rp can be obtained from Eqs. (31) and (42) as,
rp
0 ¼

F p
0

2ap
0

¼ 3

4

p2Dc

D2
22R


 �1=3

: ð43Þ
Eqs. (39)–(43) can be a good approximation to the adhesive contact model of two transversely isotropic mate-
rials with the direction of the pulling force normal to the contact interface.

4.3. Special case – isotropic bimaterial case

If the transversely isotropic materials degenerate to isotropic materials, i.e.,
D11 ¼ D22 ¼
2 1� m2

1

� �
E1

þ
2 1� m2

2

� �
E2

¼ 2

E�
; ð44Þ

W 21 ¼ �W 12 ¼
ð1� 2m1Þð1þ m1Þ

E1

� ð1� 2m2Þð1þ m2Þ
E2

; ð45Þ



686 S. Chen et al. / International Journal of Solids and Structures 45 (2008) 676–687
where E1 and m1 denote the Young’s modulus and Poisson ratio of the upper cylinder, E2 and m2 are those of
the lower substrate.

Then, the oscillatory solution will be identical to that in Chen and Gao (2006a) and the non-oscillatory
solution will be the same as the classical two-dimensional JKR theory (Barquins, 1988; Chaudhury et al.,
1996; Chen and Gao, 2006a).

For the cases of adhesive contact between a rigid cylinder and a transversely isotropic material or an iso-
tropic elastic cylinder and a transversely isotropic material, the solutions can be obtained very easily from
above.
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