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Abstract: A Nonlinear Fluid Damping (NFD) in the form of the square-velocity is applied in the response analysis of 
Vortex-Induced Vibrations (VIV). Its nonlinear hydrodynamic effects on the coupled wake and structure oscillators are investigated. 
A comparison between the coupled systems with the linear and nonlinear fluid dampings and experiments shows that the NFD model 
can well describe response characteristics, such as the amplification of body displacement at lock-in and frequency lock-in, both at 
high and low mass ratios. Particularly, the predicted peak amplitude of the body in the Griffin plot is in good agreement with 
experimental data and empirical equation, indicating the significant effect of the NFD on the structure motion. 
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1. Introduction
Vortex-Induced Vibrations (VIV) of structures 

are of practical interest in many engineering situations, 
such as bridges and offshore structures, and important 
in engineering designs as possible large-amplitude 
oscillations may lead to the potential fatigue of the 
structures. Therefore, an accurate prediction of peak 
amplitude of the structure is one of tasks of the study 
on VIV.  

Many studies modelled the fluid/structure 
interaction with a coupled system. The noteworthy 
wake oscillator, in which the flow variable is assumed 
to satisfy the nonlinear van der Pol or Rayleigh 
equation to simulate the self-sustained dynamic 
system, was proposed and developed by Birkhoff and 
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Zarantonello[1] and others in describing the dynamics 
in the near wake. Then the wake/structure interaction 
is solved by coupling the wake oscillator and structure 
motion (regarded as the structure oscillator). During 
the recent decade, many researchers[2,3] adopted such 
coupled systems in two-dimensional crosswise VIV, 
or developed spanwisely distributed oscillators in the 
structure in three-dimensional VIV under complex 
currents. Some major features of the vortex shedding 
in the near wake and VIV were described, compared 
to experiments qualitatively and quantitatively. 
However, in coupled wake and structure oscillators, 
the wake patterns related to the different response 
characters could not be obtained. More complex 
phenomena in VIV, for instance, the added mass, and 
the characteristics at low mass-damping parameters, 
were reviewed by Sarpkaya[4] and Williamson and 
Govardhan[5].  

The vortex-excited oscillation is actually a forced 
one with a self-excited character to some degree 
owing to the lift force amplification through nonlinear 
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interactions, which are not manifested in the coupled 
models of structure and wake oscillators currently 
proposed or used in Ref. [2], such as the fluid 
damping force and the effects of the structure motion 
on the near wake dynamics. There are different 
viewpoints in the fluid force decomposition. 
Especially, the fluid damping should be proportional 
to the square of the oscillating velocity of the structure 
according to its physical nature, while a linear fluid 
damping is commonly applied in previous studies. In 
coupled models, the structure oscillator is usually 
linear with respect to the oscillating amplitude, while 
the wake oscillator is nonlinear due to the self-excited 
nature of vortex shedding (as well as the lift force). 
One of consequences by applying the linear fluid 
damping is the distinct underestimation of the 
response amplitude, particularly at a low mass ratio, 
which will invalidate the prediction of fatigue of the 
structure in practice. For example, the peak 
amplitudes in experiments are in the range of (0.5, 
1.5), greatly higher than the value 0.25 obtained from 
the linear fluid damping, at low Skop-Griffin 
parameters (0.01, 0.1). Therefore, the nonlinear fluid 
damping related with the square-velocity should be 
applied, in the meantime, other possible nonlinear 
interactions may be ignored.  

Besides, there are other studies on VIV through 
numerical simulations[6,7] to build a relationship 
between wake pattern and structure motion at lock-in. 
There are also other methods or techniques developed 
or proposed in order to suppress the vortex 
shedding[8,9], further the VIV[10].  

The main objective of the present study is to 
investigate the elementary dynamic effect of the 
nonlinear fluid damping in a coupled system and the 
underlying physical mechanism. This will help 
understand the dynamic interaction between the near 
wake and structure. The simplest physical model of 
VIV is two-dimensional and one degree-of-freedom 
elastically supported rigid cylinder with a circular 
section. The basic van der Pol equation coupled with 
the structure oscillator with linear and nonlinear fluid 
dampings is discussed in detail (Section 2). Then, 
such dynamic systems with different fluid dampings 
are calculated and compared with experimental data, 
including the prediction of the peak amplitude 
(Section 3). In Section 4, discussions are concentrated 
on the nonlinear fluid damping and corresponding 
problems. Finally, main results are summarized in 
Section 5. 

 
 

2. Physical model of VIV 
2.1 Wake oscillator—van der Pol equation 

Figure 1 shows the schematic diagram of the 
coupling model of structure and wake oscillators in 
two-dimensional vortex-induced vibrations. A one 

degree-of-freedom elastically supported rigid circular 
cylinder of diameter D  is constrained to oscillate 
transversely (in y-direction) in a steady and uniform 
incoming flow with velocity  (in x-direction). As 
the main feature of the near wake dynamics in the 
vortex-induced vibration, the alternating vortex 
shedding is described by the nonlinear self-excited 
van der Pol equation as 

U

 
2 2+ ( 1) + =f fq q q q sF                (1) 

 
which is referred to as the wake oscillator[2] and where 

 denotes the derivative with respect to the 
dimensional time T ,  is the the non-dimensional 
wake variable and 

( )
q
 is damping parameter. The 

vortex-shedding angular frequency is 
= 2 /f StU D where  is the Strouhal number. 

The right-hand side 
St

sF  in Eq.(1) is the vibrated 
structural action on the near wake. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.1  Schematic diagram of the coupling model of structure 

and wake oscillators in two-dimensional vortex-induced 
vibrations 

 
2.2 Structure motion—Linear Fluid Damping (LFD) 

The equation of the two-dimensional motion of 
the body, as a linear oscillator, expressed in the 
dimensional cross-flow displacement Y, can be written 
as 
 

+ + =s sm Y c Y kY Ff                       (2) 
 
which is referred to as the structure oscillator and 
where sm  is the structure mass, sc  is the linear 
structural damping due to the viscous dissipations in 
the support or the internal friction of the material, and 

 is the linear spring constant or stiffness related to 
external effects. The right-hand side 
k

fF  in Eq.(2) is 
the hydrodynamic force on the structure, depending 
on the amplitude of the lift coefficient. Besides, all 
mass, damping and stiffness, as well as those defined 
in the sequel, are defined per unit length. 
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The fluid force on the structure fF  includes the 

potential force (= )potential fF m Y , where fm  is the 

potential fluid-added mass, ,  is 
the ideal added-mass coefficient and 

2= / 4f am C D aC
 is the fluid 

density, and the vortex force , and Facchinetti et 
al.

vortexF
[2] added the LFD force DLinearF  (see Section 2.3) 

as one of the basic fluid effects. Hence, DLinearF  and 
 are defined as vortexF

 
1= =
2DLinear fLinear DF c Y C DU Y , 

 
21=

2vortex LF C DU                        (3) 

 
where the LFD coefficient  is 
defined by means of the drag coefficient on the 
structure 

= / 2fLinear Dc C DU

DC , and LC  is the vortex lift coefficient on 
the structure, which is different from the classical 
definition, which amounts to the total lift coefficient 

. It is necessary to include the fluid damping due 
to the energy dissipation being always proportional to 

, if the vortex lift force  is a decomposed 
component of the total fluid force 

tot
LC

Y vortexF

fF , or if the body 
is forced to oscillate in a still fluid. Such fluid 
damping sometimes is predominant in the decay of the 
system in still air, particularly at a low mass ratio of 
the body  or mass-damping 
parameters (discussed in Section 2.4). 

2(= 4 /( ))sm m D

Therefore, the structure dynamic motion of Eq.(2) 
becomes 
 

+ + = vortexmY cY kY F                      (4) 
 
where the mass  and damping  include both 
effects of the structure and fluid, 

m c

 
2= + =s fm m m D  , = +s fLinearc c c       (5) 

 
and  is the non-dimensional mass 
ratio. Now, the natural angular frequency 

(= ( + ) / 4)am C

(= 2 )s Nf  is defined as = /s k m , and the 
structure reduced damping = /(2 )s sc m  with sc  

as defined in Eq.(5). 
2.3 Modified structure motion—Nonlinear Fluid 

Damping (NFD)
Generally, the fluid force on the static body is 

normalized by . For example, the drag 
force 

2 / 2DU

 
21= ( )

2D DF C Re DU                     (6) 

 
where the drag coefficient DC  is dependent upon the 
Reynolds number, = /Re U D , in which  is the 
kinetic viscosity of fluid. Then, for the moving body 
in the still water with U , the drag force 
becomes nonlinear with respect to the nonlinear 
damping coefficient 

= Y

fNonlinearc  as 
 

=DNonlinear fNonlinearF c Y ,  
 

1= ( )
2fNonlinear D sc C Re D Y                (7) 

 
It can also be seen in the so-called 

“Morison-O’Brien-Johnson-Schaaf” equation. In 
Eq.(7), the main difference is the drag coefficient 
measured at the reference Reynolds number, 

= /sRe Y D  (the local Reynolds number), based on 

the body moving velocity Y  in Eq.(6). 
 
 
 

 
 
 
 
 
 
 
 
 
 
Fig.2  The fluid force on the body with velocity of moving 

transversely in the incoming flow  
Y

U
 

We now only consider the structure with velocity 
 moving transversely in the incoming flow Y U , as 

shown in Fig.2. Then, as the total velocity of the 
oscillated cylinder, the “effective ” incoming flow 
U , inclined with respect to the x-direction with angle 

, would be 
 

2 2 2= + = 1+ tanU U Y U ,  
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= arctan Y
U

                         (8) 

 
And “effective” fluid forces, denoted by “vertical” lift 
coefficient  and “streamwise” drag coefficient LC

DxC  (also inclined with respect to the x  direction 
with ) on the cylinder in the oscillating coordinates 
( ,x y ) are related with fluid forces, denoted by  
and 

tot
LC

DxC , in the normal Cartesian coordinates ( ,x y ) 
as 
 

21= + = ( ) =
2

tot
L L Dx LF F F C Re DU  

 
21( ) cos

2LC Re DU  

 
21( )sin =

2DxC Re DU  

 
1 =
2L DxC U C Y DU   

1 1
2 2L DxC DU U C DU Y   

 
21+ tan                             (9) 

 

LC  and DxC  are obviously correlated with the total 

Reynolds number = /Re U D  and the angle . 
From Eq.(9), the transverse force LF  is made up of 

two components due to the “vertical” lift  and 

“streamwise” drag 
LF

Dx . In a sense, the magnitude of 
drag, depending on the oscillating motion, can be 
taken into account in the form of 

F

21+ tanDxC  if 
the LFD in the second term at the right-hand side of 
Eq.(9) is assumed. 

For simplicity, if ( )Y T U  and  are 
independent of oscillating angle 

LC
[11] in VIV and 

then  or , the force components 

 and 

U U Re Re

LF DxF  in Eq.(9) are reduced to 
 

21( )
2L LF C Re DU ,  

 
 

 
1( )
2Dx DxF C Re DU Y                (10) 

 
Compared to Eq.(9), the lift force  still plays an 
important and dominant role in the induced vibration 
of the body. Meantime, the added drag force 

LF

DxF  is a 
small increment to the excited fluid force due to the 
body oscillation, which is linear with respect to the 
oscillating velocity . Y

Furthermore, in a comparison between Eqs.(7) 
and (10), if they could be treated as the fluid damping, 
we may see two main differences: (1) ( )D sC Re  and 

 are given at the vertical and streamwise 
directions, following different physical mechanisms, 
such as the pressure difference in y-direction and in 
x-direction because of the small contribution of 
viscous components in drag, (2) correspondingly, the 
reference Reynolds numbers in the measurement of 
drag coefficients are 

( )DxC Re

sRe   and , respectively. 

With the above assumption of 

Re

Y U , we have 

. It seems that we will have sRe Re
 

( ) ( )D s DxC Re Y C Re U                  (11) 

 
which may be taken as a hypothesis without any proof 
if the LFD is applied. And in Eq.(11), we will have 
 

( ) 1
( )

D s

Dx

C Re U
C Re Y

                      (12) 

 
Such relationship, if applied in the fixed circular 
cylinder, is reliable because the drag coefficients are 
high ( 1Re , e.g. ( )D sC Re ) at low Reynolds 
numbers ( ) but are getting lower (~1.0, 
e.g. ) at higher Reynolds numbers (10

210
( )DxC Re 2 ~ 

3×105). Besides, it is also noted that the linearity for 
the drag at low velocities, different from that in Eq.(3), 
is adopted as 1

DC Re . 
In this way, the LFD, Eq.(3), is employed only 

under the assumption that Y U . Otherwise, the 
prediction based on the LFD, Eq.(3), may be greater 
by at least one order of magnitude than that based on 
nonlinear one, Eq.(7), which would underestimate the 
oscillating amplitude of the body and further influence 
the dynamic behaviors. This situation may occur when 

, such as for a free cable 
oscillation at high velocity Y , where 

( ) ( ) 1.0D s DxC Re C Re

sRe  and  Re
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are all greater than 100. On the other hand, the 
nonlinear fluid damping also can be joined in the total 
fluid force as an independent fluid effect on the 
structure (see in Section 2.2), if the structure oscillator 
Eq.(4) with the vortex lift force is applied. 
Consequently, it is reasonable to adopt the NFD, 
Eq.(7), in the structure oscillator Eq.(4), in which the 
damping coefficient is = +s fNonlinearc c c . It should be 

also noticed that the reference velocity  in Eq.(6) 
is replaced by the oscillating velocity , rather than 
the relative velocity considering the vertical velocity 
of fluid near the cylinder. As we know now, in the 
vortex dynamics for the cylinder wake, the increase in 
Reynolds numbers is associated with a sequence of 
fundamental shear flow instabilities: wake transition, 
shear layer transition and boundary layer transition. 
And the shear-layer transition regime is 
correspondingly in the range of Reynolds numbers 
(10

U

Y

3, 2×105). Based on this fact, despite the fact that 
the transition of the free shear layer could be 
developed due to the Kelvin-Helmholtz instability or 
else, the boundary or shear layer closely around the 
cylinder can be assumed to be in the laminar state 
without transition. The fluid within such region will 
move with the oscillating cylinder at the same velocity, 
as suggestted by the potential force component 

potentialF . The fluid outside such region, except for the 

shedding vortex resulting in the “vortex force” , 
with a neglectfully small vertically oscillating velocity 
as compared with Y , mainly affects the body’s 
vibration through the fluid damping. Thus 

vortexF

U  could 
be approximately replaced by . Y
2.4 Coupled dynamic system 

Based on the structure and wake oscillators, 
Eqs.(1) and (4), and by introducing the dimensionless 
displacement  and time = /y Y D = ft T , the 
nondimensional coupled system with the NFD Eq.(7) 
becomes 
 

2( )+ 2 + + =
2

D sC Rey y y y y f

s

       (13a) 

 
2+ ( 1) + =q q q q                    (13b) 

 
where  means the derivative with respect to . 
For the convenience of comparison between results 
obtained from the linear and nonlinear fluid dampings, 
the dimensionless structure-fluid coupling system with 
the LFD

( ) t

[2], Eq.(3), is also given as 
 
 
 

 

2( )+ 2 + + =
4

DC Rey y y
St

f

s

         (14a) 

 
2+ ( 1) + =q q q q                    (14b) 

 
In Eqs.(13) or (14), the reduced ratio of angular 

frequency of the structure  is related to the reduced 
flow velocity  by rU
 

1= = =2
s s

f r
StU StU
D

, 
2=r

s

UU
D

  (15) 

 
with respect to the wake variable , since the excited 
fluid force on the right-hand side of Eq.(4) is 
interpreted as the vortex force, Eq.(3), the wake 
oscillator is solved for the vortex lift coefficient 

q

LC , 
which is also varied with time . Hence,  is 
defined as a reduced vortex lift coefficient 

t q

0= 2 /L Lq C C , where the reference lift coefficient 

0LC  is that observed on a fixed body due to vortex 
shedding. Then, the dimensionless coupling force 
term for the structure oscillator is given as 
 

2= =vortex

f

Ff Mq
mD

, 0
2 2=

16
LCM
St

       (16) 

 
in which M  serves as a mass number and scales the 
effect of the vortex motion on the structure. 

The influence sF  of the oscillating structure on 
the wake in Eq.(1) is non-dimensionalized as 

2= /( )s fs F D  in Eq.(13). Three coupling models 
proposed in literature[2,12] are: displacement coupling 

=s Ay , velocity coupling =s Ay  and acceleration 
coupling =s Ay , respectively, where A  is a 
parameter[13,14]. In Facchinetti et al.[2], it is shown that 
the best qualitative and quantitative agreement with 
experimental data is achieved in the acceleration 
model. Then, the acceleration model is employed in 
the present study. 

Moreover, in literature[3], the structural damping 
is usually neglected. Here the damping ratio  of 
fluid damping fc  to structural damping sc  is 

introduced to see why one may ignore sc , = /f sc c . 
In models with LFD and NFD, damping ratios are 
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( ) ( )= = =

8 8
fLinear D D

Linear
s

c C Re C Re U
c St

r   (17a) 

 
( )

= =
4

fNonlinear D s
Nonlinear

s

c C Re y
c

=  

 
( )

4
D sC Re y StUr                (17b) 

 
where the product of  and  is defined as the 
total mass-damping parameter, , as is different 

from the (structural) mass-damping parameter, m . 
From Eq.(17), it is clear that the condition for 
neglecting sc  is a high reduced velocity , or a 
low total mass-damping 

rU
. As will be discussed 

later on, it is necessary to estimate  to 
evaluate the oscillating velocity  varied with time. 
Assume a constant damping coefficient (

Nonlinear

y
)D sC R  

a harmonic solution ( )y
e  and

= sin( )t y t0  with the 
time-averaged amplitude of oscillation  and the 
amplification of angular frequency 

0y
 for simplicity, 

the nonlinear damping ratio  could be simply 

evaluated by the time-averaged velocity 
Nonlinear

y  in one 
period of (= 2 / )yT  as 
 

0
2= = =

4 2
D D D

Nonlinear
y

C y C y C y
T

0    (18) 

 
This shows that the time-averaged effect of fluid 

damping would be greater than that of structure 
damping in VIV with larger amplitude . 
Particularly, at the lock-in with 

0y
= = 1, Eqs.(17a) 

and (18) yield 
 

0 =
8

D
Linear

C
St

                       (19a) 

 

0 =1
0 2=

2
D

Nonlinear

C y
                    (19b) 

 
 

3. Dynamic analysis of the coupled system 
3.1 Parameters and numerical methods 

All basic parameters used in the coupled dynamic 
system, such as , , and so on, are the same as 

used in Ref.[2], , , . As 
mentioned there, the assumption of St  being a 
constant is commonly used in the sub-critical range, 

. 

St aC

= 0.2St = 1aC 0 = 0.3LC

5300 1.5 10Re
Some parameters are determined only in some 

special cases in order to compare numerical results 
with experiments, like , , . However, 
the assumption that the NFD is equal to a constant 
amplified drag coefficient for comparison, 

[2,11]

( )eDC R

0( ) = ( ) = 2.D s DC Re C Re , is adopted in a certain 
range, sRe , . 300Re

Parameters of A  and  are the same as used 
by Facchinetti et al.[2], = 12A  and = 0.3 , because 
their determination is independent of whether a linear 
or nonlinear fluid damping model is adopted, even 
independent of the structure oscillator. 

Two coupling systems are discretized explicitly 
for the LFD and implicitly for the NFD by a standard 
centered finite difference in time with a second order. 
The time step is chosen in order to achieve stability, 

= 0.01t , which is also used in the following parts. 
3.2 Comparison between two dynamic systems 

In this subsection, numerical results obtained 
from the dynamic system with the LFD, Eq.(14), are 
presented, and compared with those with the NFD, 
Eq.(13). The case is calculated at a high mass-ratio 

= 250 ( 42 10M and ) and the 
structure  reduced  damping  

= 317.3m
= 0.0031 .  Chara- 

cteristics of response at lock-in are mainly 
investigated in four aspects: (1) the nondimensional 
frequency ratio f  of the structural oscillation 
frequency, sf , to the natural frequency in fluid 

1(= (2 ) )N sf , = /s Nf f f , (2) the vortex 
shedding frequency of the body in motion, ff , 
non-dimensionalized by the vortex shedding 
frequency of the body at rest 1

0 (= (2 ) )v ff ,  

0/f vf f , (3) the time-averaged amplitude of oscillation 

of the body , (4) the time-averaged amplitude of 
wake variable . 

0y

0

As shown in Fig.3, the main dynamic features of 
the coupled system with the NFD, Eq.(13), are 
qualitatively consistent with those with the LFD, 
Eq.(14). The oscillating frequency of the body is 
synchronized onto the vortex shedding frequency in 
Strouhal law at lock-out, as predicted by the theory of 
the linear vibration, whereas at lock-in the response of 
the body and vortex shedding is characterized by the 
frequency near the natural frequency of the body in 
still fluid and by hysteresis phenomenon at both 
lock-in boundaries, see in Figs.3(a) and 3(b). Outside 
the lock-in region, the response amplitude is very 

q
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small, , indicating that the body is almost at 
rest (here we set ). At lock-in, the 
magnification of oscillating amplitude is also 
determined, as well as the vortex lift force. 

0 1y
3

0 (10 )y O

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.3 Comparison of coupled systems with the NFD to that 
with the LFD in (a) f , (b) 0/f vf f ,  (c)  and (d)  

as a function of : —— increasing ,  – – – decreasing 

. Note that values of left- or right-y-axis in (a) and (b) are 
related to models with the linear or nonlinear fluid dampings, 
respectively, and the data in (a) are selected only when 

 since the body is almost at rest 

0y 0q

rU rU

rU

3
0 (10 )y O

 
The primary difference between these two 

dynamic systems in this case is that the range of 
reduced velocity  at lock-in in the NFD model is 
greater than that in the LFD model, so are the 
amplitudes of body oscillation and vortex lift. The 
mechanisms responsible for such quantitative 
difference are: (1) the subordinate effect of the fluid 

damping, as compared with the structure damping, on 
structural motions 

rU

0 =1
0.09y , and (2) the NFD is 

much weaker than the LFD. This could be estimated 
quantitatively by Eq.(19). In this case at a high mass 
ratio,  and  
(

0 = 0.513Linear 0 0.01Nonlinear

0 =1
0.09y , see Fig.3(c)). Therefore, as stated 

above, the fluid damping, whether in the linear or 
nonlinear model, will affect the coupled system 
obviously in the case of small mass ratio or 
mass-damping parameter (see also the next 
subsection). 
3.3 Comparison between numerical and experimental 

results
First, the prediction of the maximum amplitude 

of the oscillating body in the Griffin plot is used, 
although the related dynamic system is 
two-dimensional. The Griffin plot is generally used in 
establishing the relationship between the maximum 
response amplitude  at lock-in and the 
combined response parameter termed [15]

0maxy

GS , defined 

as 3 2= 2 ( )GS St m . According to the assumption 
that the solution of Eq.(14) is harmonic and the 
high-frequency component in the wake oscillator can 
be ignored[2], the maximum structure displacement 
amplitude  is explicitly related with 0maxy GS  
based on the total mass-damping parameter, 

2 2= 8 ( )GS St , at lock-in = = 1  and 
1=rU St , 

 

0 0

0max
2 4= 1+

+ +

L L

G D G

C C
Ay

S StC S StCD

  (20) 

 
The parameters used in computation are 

classified into two kinds: (1) special cases in 
experiments,  and = 248m = 0.00103 [16], 

 and ,  and = 10.3m 4= 9.7 10 = 8.63m
= 0.00151 ,  and = 1.19m = 0.00502 , and 

 and = 0.52m = 0.0052 [17], (2) series of 

mass-damping parameters, , 0.01, 
0.03, 0.08, 0.1, 0.3, 0.8, 1, 5 with 

( + ) = 0.005am C
= 0.003  falling 

into the range of most experiments, similar to 
Newman and Karniadakis[6] with the different and 
given . As for the latter, by 
suggestion of Williamson and Govardhan

2/( )(= / 4)sm D m
[5], the data 

from diverse experiments appear to give a good 
approximate functional relationship between  

and 
0maxy

( + )am C over a wide range of parameters: 
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2m , . Hence, the plot of 

response amplitude versus ( +
( + ) 0.006am C

)am C  can be 
obtained as(see Fig.4(b)). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.4 The response amplitude  versus (a)  and (b) 0 maxy GS

( + )am C  in the Griffin plot. Common symbols in (a) and (b) 
are: —— Eq.(20), – – – Eq.(21) with best-fit  and 

, – – and , the LFD model, –�– and , the NFD 
model. In (a),  and , experimental data of Skop and 
Balasubramanian

= 0.385B
= 0.12C

[18] in air and water, – – and – – DNS of 
Newman and Karniadakis[6] at 2( ) =sm D 1  and 10 at 

. In (b), experimental data: + Feng=100Re [16],  and  
Khalak and Williamson[19] for lower and upper branches,  
Govardhan and Williamson[17]

 
From Fig.4, the prediction of the response 

amplitude obtained by the coupled system with the 
NFD is closer to experimental data than that obtained 
from DNS at  or by the coupled system 
with the LFD, especially at small mass-damping or 
Skop-Griffin parameters. This difference between the 
LFD and NFD can only explained by the weaker 
contribution of the NFD, than that of the LFD, on the 
structural motion, especially at small mass ratios, 
despite of the fact that the structure damping is weaker 
than the fluid damping. In studies on low 
mass-damping

= 100Re

[19], three branches in peak-amplitude 
are identified as Initial, Upper and Lower branches. 
Figure 4(b) shows that  is more compatible 

with that in Upper branch at the low mass-damping. 
At higher values of 

0maxy

( + )am C or  (such as > 
1.0), all numerical and experimental data nearly 
converge together due to the weak contribution of 
fluid damping. Moreover, a comparison is also made 
with the empirical equation proposed by Sarpkaya

GS

[20] 
as 
 

0max 2
=

+ G

By
C S

                        (21) 

 
where constants  and  are 0.385 and 0.12, 
respectively, obtained through curve fitting

B C
[5]. Figure 

4 shows that the peak amplitudes of the structure 
obtained from the NFD model are also in good 
agreement with Eq.(21) qualitatively and 
quantitatively with the greatest deviation of less than 
20% for low mass-damping, better than those obtained 
from the LFD model, which further confirms the 
significance of the NFD in the structure response. 

Let us now consider dynamic behaviors of the 
coupled system at a very small mass ratio, below the 
critical mass ratio  introduced by 
Govardhan and Williamson

= 0.542critm
[17]. The computational 

parameters are  and = 0.52m = 0.0052 [2,17]. And, 
, 0 = 64.1Linear 0 = 11.1Nonlinear , indicating that the 

fluid damping is stronger than that in the cable case. 
In experiments, the range of lock-in at such low 

mass ratio would be quite different from that observed 
at higher mass ratio. As the structure mass sm  
decreases, so the regime of reduced velocity  with 
large-amplitude response increases. The vibration 
frequency increases almost linearly as  increases, 
without the hysteresis phenomenon, as shown in 
Fig.5(a), in the limits of experimental facilities. And 
large-amplitude vigorous vibrations suddenly appear 
and persist up to an infinite  as the mass ratio is 

reduced to below  (see in Fig.5(b)). In 
this sense the cylinder resonates forever. 

rU

rU

rU

= 0.542critm

The responses simulated by the LFD and NFD 
models show that the cylinder will oscillate forever 
with increasing . In Fig.5(a), both models with the 
LFD and NFD predict that the oscillation frequency is 
synchronized at lock-in and increases infinitely at 
higher r , but with different slopes. The coupled 
system with the LFD is more consistent with 
experimental data than that with the NFD at a low r  
(such as (3, 5)), after which they all deviate from 
experimental data. As the regime of lock-in persists up  

rU

U

U

 
to higher U , the response amplitude in the NFD r
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model increases first along with the experimental data, 
then drops dramatically from nearly 1 down to 0.2, 
inconsistent with the LFD model and experimental 
data qualitatively and quantitatively, as shown in 
Fig.5(b). The mechanism for this is so far unclear, 
which may be due to the contribution of fluid damping 
relative to the linear elastic force 2 y  in Eqs.(13) 
and (14), as can be seen by a simple comparison 
between two coupled systems. For example, at 

 and 20, the fluid damping in Eq.(13a) 
reaches the same magnitude of the elastic force of 
about  and , respectively, while the 
LFD in Eq.(14a) is greater by about one order of 
magnitude than the elastic force. To some extent, this 
means that a light structure is oscillating in a very 
viscous fluid at a high incoming velocity, as illustrated 
by the LFD model at this mass ratio. Of course, the 
response amplitude is quite limited. 

= 10rU

1(10 )O 2(10 )O

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.5  Response characters of (a) f  and (b)  at the 

mass ratio  below the critical value
0y

= 0.52m [17], and 
= 0.0052 . + experimental data from Govardhan and 

Williamson[17], ——model with the LFD,  
(increasing ) and  (decreasing ), model with 

the NFD. 
rU rU

 is the slope of f , and 0.174 is from the 
experimental result[17] 

 
Besides, other features of response can be 

observed in comparison with experimental data. It is 
noted in Fig.5(b) that the maximum amplitude in the 

NFD model appears at about  as 
observed in experiment, rather than at points slightly 
higher than  as indicated by the LFD 
model. And the lack of hysteresis phenomenon is also 
observed with the increasing and decreasing , as 
shown in Fig.5. 

1= 2 = 10rU St

1= =rU St 5

0

rU

We may therefore conclude that for the coupled 
system with the NFD to predict the peak amplitude of 
the structure quantitatively and qualitatively, 
particularly, at very low mass ratio , one still has 
some way to go, as well as that with the LFD, albeit 
some features of VIV can be described. 

m

 
 
4. Discussion 

According to the above simple comparison 
between coupled systems with the NFD and LFD, the 
effects of the NFD on the VIV response are significant 
at same values of parameters, especially at low mass 
ratios. With the assumption of drag coefficient 

, the NFD leads to a greater increase of 
oscillating amplitude and velocity of the structure, 
such as at  (in Section 3.3),  
and 

( ) = 2.D sC Re

= 0.52m 0 = 0.682y

max
= 0.667y  at , whereas  

and 

= 5rU 0 = 0.221y

max
= 0.222y  with the LFD. The fluid damping 

is estimated to be 0.373 by the nonlinear relationship, 
but 0.148 by the linear expression. It can be argued 
that the difference of fluid damping with the linear 
and nonlinear relationships would not be as large as 
stated above. However, the obvious conclusion is that 
the higher amplitude will follow with higher 
oscillating velocity. This can be explained from the 
energy considerations. As the near wake variable  
is directly related to the vortex lift coefficient 

q

LC , the 
energy transfer from the wake to the structure can be 
expressed by dqy t , approximately equal to  if 

with a constant lift force . Then the kinetic energy 

of the structure 

0qy

q
21

2 sm y  would be higher as the wake 

energy input increases with higher . And, the 
assumption of  

0y
1y  applied in Eq.(3) and models 

does not hold true, especially for the LFD model. 
Now let us discuss the assumption of ( )D s  

itself used in the present study. As the drag coefficient 
is varied with different local Reynolds number 

C Re

sRe  
and directly related to the oscillating velocity y , the 
constant assumption in the oscillating process in VIV 
would seem questionable. In marine engineering, the 
approximately estimated  falls into, at least, the 
range of magnitude O , if U , 

Re
5 6(10 10 ) O(1)



 10 

1(10 1)D O  and . The maximum 

velocity 

6(10 )O
3 2

max
~ (10 ~ 10 )Y O U  at high mass ratio, 

where the oscillating velocity would be lower than 
that at a lower mass ratio, so sRe  would be at least 

. For a circular-section cylinder, the drag 
coefficient is nearly constant of 1.0 at the Reynolds 
number greater than 100. So the constant assumption 
of 

3(10 )O Re

DC  is reasonable. 
On the other hand, if the variation of the drag 

coefficient with the time due to ( )Y T  should be 
considered at certain conditions, the following 
relationships[11] in a fixed cylinder can be applied in 
estimating the drag coefficient used in the simulation: 
 

8( ) = ,
(2.002 ln )D s s

s s

C Re Re
Re Re

1   (22a) 

 
10( ) = 1.3 +D s

s

C Re
Re

,       (22b) 4(1,10 )sRe

 
The minimum truncation at  needs to be 

performed with  when 

0sRe

( ) = 0D sC Re ( ) ( )Y T U  

is about , or . To some 
extent, the latter criterion of truncation is difficult to 
realize because 

3(10 )O U 2(10 )sRe O

1
min

~ (10 )sRe O  if keeping  

constant at the range . 

St
2 5~ (10 ~ 10 )Re O

Furthermore, from the definitions of the LFD and 
NFD, Eqs.(10) and (7), and their different physical 
mechanisms, it seems that there exist two kinds of 
fluid drag force. The linear one is stemmed from the 
streamwise drag independent of the oscillating 
transverse lift, with the pressure difference in 
x-direction disturbed along y-direction by the 
oscillation as the main contribution, while the 
nonlinear one is stemmed from the transverse drag 
dependent on the oscillating total lift, also with the 
pressure difference in y-axis as the main contribution, 
but with a little modification to the transverse lift 
resulting from the oscillating motion in the real fluid. 
When the streamwise incoming flow and the 
transverse oscillating velocity of the structure are 
independent, the nonlinear fluid damping is 
reasonable. However, if the compound velocity (see in 
Fig.2 and Eq.(9)) is considered, there still exists an 
unknown relationship between the “effective” fluid 
forces and the oscillating angle. Especially for a free 
cable with high oscillating velocity, the assumption 
( Y U ) does not hold true and consequently Eq.(9) 
is unsuitable in practical simulations. Therefore, the 

fluid force on the body for the LFD and NFD models 
are decomposed and rewritten in crosswise VIV as 
 

2 2
_

1 1= =
2 2

tot
f LFD L LF C DU C DU  

 
21( )

2 4D aC Re DU Y C D Y      (23) 

 
2 2

_
1 1= =
2 2

tot
f NFD L LF C DU C DU  

 
21( )

2 4D aC Re D Y Y C D Ys     (24) 

 
It is shown that NFD is effective for prediction of 

peak amplitude of the structure, which can also be 
obtained by varying wake parameters A  and  to 
fit experimental data, as suggested by Facchinetti et 
al.[2]. For example, if  or = 120A = 0.03 , 

0 =1
= 0.126y  or 0.122 at = 250  (in Section 3.2), 

respectively, while at  (in Section 3.3), = 0.52m
0 =

= 0.628
l

y  or 0.592, respectively, by the coupled 
system with the LFD, also indicated by Eq.(20). The 
physical explanations are: (1) increasing A  means 
increasing the structural force on the near wake, 
resulting in a greater amplification of vortex lift force, 
such as if ,  at = 120A = 0.853LC = 250  and 

 at , (2) decreasing the van der 
Pol parameter 

= 1.39LC = 0.52m
means decreasing the fluid viscous 

dissipation. Correspondingly, /A would be high [2]. 
But if the total lift magnification factor in the 
acceleration coupling model is used, /A should be 
small in order to fit experimental data[2]. Consequently, 
the obvious conflicting consideration is whether /A  
should be greater or smaller. From our point of view, 
parameters A  and are not universal constants. 
Another approach to reduce the discrepancy between 
the numerical prediction and experimental data is to 
take the intrinsic three-dimensional factors into 
account in the simulation of VIV, as proposed by 
Newman and Karniadakis[6]. 

 
 

5. Conclusions 
Due to the limitation of the LFD with the 

assumption of a low oscillating motion of the body, 
the NFD is proposed and applied based on the 
physical definition. The dynamic system is described 
by the wake oscillator, the van der Pol equation, with 
the acceleration model coupled with the structure 
oscillator. The hydrodynamic effect of the NFD on the 
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two-dimensional VIV is investigated and compared 
with that of the LFD in response characteristics at 
very high and low mass ratios. Furthermore, the 
predictions of the response amplitude of the structure 
are made for a series of parameters adopted in 
previous experiments. The detailed investigation into 
two dynamic systems with these parameters will be 
carried out in future, in order to find out advantages 
and disadvantages in describing the complex 
phenomena in VIV. The conclusions of the present 
study are as follows: 

(1) The NFD in the form of square-velocity 
relationship can be applied in the structure-wake 
oscillators as an independent fluid effect for the vortex 
lift and potential added-fluid force. 

(2) At a high mass ratio, the dynamic system 
with the NFD is similar to that with the LFD 
qualitatively, only different in a wider lock-in regime, 
a wider hysteresis loop, a greater amplification of 
response amplitude and vortex lift force, due to the 
weak influence of the fluid damping on the structure 
oscillation. 

(3) At a very low mass ratio below the critical 
value, the model with the NFD can succesfully 
simulate some dynamic features in VIV quantitatively 
and qualitatively, as that with the LFD in most cases. 

(4) The NFD model can predict the response 
amplitude in VIV very well, compared well with 
experimental data and empirical equation, better than 
the model with the LFD with the same values of 
parameters. 
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