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In this paper, we studied the role of vertical component of surface tension of a water droplet on
the deformation of membranes and microcantilevers (MCLs) widely used in lab-on-a-chip and micro-
and nano-electromechanical system (MEMS/NEMS). Firstly, a membrane made of a rubber-like material,
poly(dimethylsiloxane) (PDMS), was considered. The deformation was investigated using the Mooney–
Rivlin (MR) model and the linear elastic constitutive relation, respectively. By comparison between the
numerical solutions with two different models, we found that the simple linear elastic model is accurate
enough to describe such kind of problem, which would be quite convenient for engineering applications.
Furthermore, based on small-deflection beam theory, the effect of a liquid droplet on the deflection of a
MCL was also studied. The free-end deflection of the MCL was investigated by considering different cases
like a cylindrical droplet, a spherical droplet centered on the MCL and a spherical droplet arbitrarily
positioned on the MCL. Numerical simulations demonstrated that the deflection might not be neglected,
and showed good agreement with our theoretical analyses.

© 2008 Elsevier Inc. All rights reserved.
1. Introduction

Since poly(dimethylsiloxane) (PDMS) has many advantages, e.g.,
(1) good biocompatibility; (2) nontoxic and optically transparent;
(3) easily fabricated, it has been widely used in lab-on-a-chip [1–6]
and some microfluidic devices [7–13], etc.

Up to now, researchers have made many experiments about
the mechanical properties of PDMS. Lötters et al. [14] first used
PDMS PS851 from ABCR to measure the shear modulus and further
studied relationship versus frequency and temperature. Armani et
al. [15] utilized PDMS from Dow Corning to measure the Young’s
modulus with different mixing volume ratios of the curing agent
and the polymer. Huang and Anand [16] carried out experiments
on traditional macroscale specimens and thin-film specimens of
PDMS with three varying ratios of monomer and curing agent to
study the nonlinear mechanical behavior of PDMS material. Re-
cently, Schneider and co-workers [17] have studied the mechani-
cal properties of PDMS (weight ratio: 10:1) with different thinner
concentrations (the thinner was added in order to get a lower vis-
cosity) and the elastic modulus for Sylgard 184 without adding
thinner against temperature and strain rate, respectively.

As a matter of fact, PDMS is a kind of rubber-like material with
nearly or purely incompressible property. As a common knowledge,
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one of the most widely used models for such a material is the
Mooney–Rivlin (MR) constitutive model. Mooney [18] and Rivlin
and Saunders [19] developed the first hyperelastic models. Many
other hyperelastic models have since been developed. Hyperelastic
models can be classified as [20]:

(1) Phenomenological descriptions of observed behavior
• Polynomial model: Subject to the regularity assumption that

strain energy function W is continuously differentiable sev-
eral times with respect to three strain invariants I1, I2 and
I3, the strain energy function is assumed to be an poly-
nomial form of (I1 − 3), (I2 − 3) and (I3 − 1). For an in-
compressible material I3 = 1 and W depends on only two
independent deformation invariants [21].

• MR model: The strain energy function of this model is the
first-order polynomial form; more exactly, it is only linear
functions of the invariants I1 and I2. It is the most widely
used hyperelastic constitutive relation due to its simplicity
and convenience for practical use.

• Ogden model: Ogden in 1972 deduced a hyperelastic con-
stitutive model for large deformations of incompressible
rubber-like solids. The strain energy is expressed as a func-
tion of the principal stretches. For particular values of ma-
terial constants, the Ogden model will reduce to either the
Neo-Hookean solid or the MR material.

• Yeoh model: The Yeoh (1993) model depends only on the
first strain invariant I1, it applies to the characterization

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcis
mailto:yzhao@imech.ac.cn
http://dx.doi.org/10.1016/j.jcis.2008.12.054


468 Y.-S. Yu, Y.-P. Zhao / Journal of Colloid and Interface Science 332 (2009) 467–476
of elastic properties of carbon-black filled rubber vulcan-
izates. The Yeoh model is also called the reduced polynomial
model.

(2) Mechanistic models deriving from arguments about underlying
structure of the material
• Arruda–Boyce model: The constitutive model for the large

stretch behavior of rubber elastic materials is presented by
Arruda and Boyce (1993). Also sometimes called the eight-
chain model because it was derived by idealizing a polymer
as eight elastic chains inside a volume element. The strain
stress function is based on an eight chain representation of
the macromolecular structure of the rubber.

• Neo-Hookean model: The model was derived from the sta-
tistical mechanics of a molecular chain network character-
istic of the amorphous structure of rubber-like material by
Treloar in 1943. It is the simplest model of rubber-like elas-
tic response, in which only the term of I1 is considered.
Thus, Neo-Hookean material is a particular kind of MR ma-
terial.

(3) Hybrids of phenomenological and mechanistic models
• Gent model: The strain energy density in the Gent model

(1996) is a simple logarithmic function of the first strain in-
variant I1, and involves two material constants.

For the relevant applications, Feng and Huang [22] and Pam-
plona et al. [23] used the MR model to investigate the large defor-
mations of cylindrical membrane under internal pressure with the
software ABAQUS and made comparison between the experimental
and numerical results for the membrane under traction to iden-
tify the material parameters of the model. Three-dimensional (3D)
solid element analysis and the membrane approximated analysis
employing the hyperelastic model were developed for the simula-
tion of the thermoforming process by Nam et al. [24]. Bellamy et
al. [25] have recently simulated the mechanical behavior of the
polymer up to 50% strain using MR model and found that the
solutions were in excellent agreement with analytical and exper-
imental results. Dong et al. [26] used the MR model to obtain the
critical material parameters of polymethylmethacrylate (PMMA)
with experimental verification, and then derived the major ma-
terial parametric functions at temperatures between 150 ◦C and
190 ◦C.

When there is a water droplet on the surface of PDMS mem-
brane with a rigid substrate, the PDMS material was simply re-
garded as a linear elastic material because the deformation is very
small, and then numerical simulation was carried out for the elas-
tic deformation of the membrane due to the vertical components
of liquid–vapor surface tension [27]. However, linear elastic mate-
rial model is only a first-order approximation for a hyperelastic
material like PDMS. The main objective of the present paper is
to make a guideline for the accuracy range for the linear elastic
model to simulate the elastic deformation of PDMS under the ac-
tion of a water droplet.

Determination of the materials constants in the MR model is a
prerequisite to use this model for the numerical simulation. For-
tunately, there are some literatures on for relevant experiments
[28–30]. In addition, Gent [31] has proposed some other methods
to get the material constants.

Besides, we continued to study the effect of a liquid droplet
on the deformation of a MCL. For macro structures, the deforma-
tion induced by liquid droplets may be neglected simply since the
surface tension and the Laplace pressure are negligible compared
to the rigidity of the solid body; while in MEMS/NEMS, verti-
cal displacement induced by them may be several to hundreds
nanometers and even hundreds micrometers when the materials
are very soft. In such cases, the deformation cannot be neglected
anymore. For example, if there are several microdrops on the MCL
of an atomic force microscopy (AFM), they may decrease the pre-
cision of AFM. Therefore, it appears significant to study the effect
of liquid droplets on MCL.

During the recent years, some researchers have made some rel-
evant investigations on the deflection of MCL due to microdrops,
as shown in Fig. 9. Jensenius et al. integrated resistors on flexible
cantilevers to monitor the cantilever deflection [32]. Bonaccurso
et al. studied microdrops on AFM cantilevers theoretically and ex-
perimentally [33,34]. Some researchers studied the influence of
nanobubbles on the bending of MCLs [35,36]. Recently, Bonaccurso
et al. developed a FEM model for the bending of a cantilever and
measured the bending versus time [37]. Zheng et al. used the en-
ergy method to study the directional movement of liquid droplets
on a microbeam with a varying or gradient stiffness and found that
the droplet will move to the softer end of the beam [38].

In the first part of this paper, we first introduced the proce-
dure to determine the material constants in the MR model. Then
we used the least square method (LSM) to obtain the material con-
stants from experimental data in Ref. [16]. At last, both the linear
elastic and the MR constitutive models were used to numerically
simulate the deformation of PDMS membrane induced by a wa-
ter droplet. And we found the solutions with a linear elastic model
are in excellent agreement with that by using the MR model for
such problem. In the latter part, we theoretically analyzed the ef-
fect of a liquid droplet on the deflection of a MCL and gave some
numerical simulations to demonstrate the deflection might not be
neglected.

2. MR model and determination of material constants

A hyperelastic material is an ideally elastic material for which
the stress–strain relationship derives from a strain energy density
function. The strain energy density function, W , for PDMS is the
function of the three strain invariants I1, I2 and I3, i.e. [20],

W = W (I1, I2, I3), (1)

where I1 = tr C, I2 = [(tr C)2 − tr C2]/2.
Then, corresponding stress can be expressed as

S = ∂W

∂E
= 2

∂W

∂C
, (2)

where S is the second Piola–Kirchhoff stress tensor, E is the Green
strain tensor and C is the right Cauchy–Green deformation tensor.
E and C satisfy the following relationship:

E = 1

2
(C − I), (3)

where I is the second-order unit tensor.
To ensure incompressibility of a hyperelastic material, the con-

straint I3 = 1 must be fulfilled. The strain-energy function, W , can
be written as a polynomial function of (I1 − 3) and (I2 − 3) [18,21]

W =
∞∑

i=0

∞∑
j=0

ci j(I1 − 3)i(I2 − 3) j, (4)

where ci j are empirically determined material parameters.
Because the deformation of PDMS material in the present paper

is very small under the action of a water droplet, two-parameter
MR model is used as follows [18]:

W = c1(I1 − 3) + c2(I2 − 3), (5)

where c1 and c2 are material constants. The model has an applica-
ble strain of about 100% in tension and 30% in compression. Then,
the constitutive equation for hyperelastic incompressible materials
can be expressed as:
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σ = −pI + 2(c1C − c2C−1), (6)

where σ is the Cauchy stress tensor, and p is the hydrostatic pres-
sure.

If the principal directions of deformation are supposed as the
directions of coordinate, then Cauchy strain tensor can be ex-
pressed as:

C =
⎡
⎣λ2

1 0 0
0 λ2

2 0
0 0 λ2

3

⎤
⎦ , (7)

where λi is the principal stretch ratios in ith direction, λi = 1 + εi ,
εi is the principal value of engineer strain in ith direction, so the
invariants of Cij can be expressed as:⎧⎪⎨
⎪⎩

I1 = λ2
1 + λ2

2 + λ2
3,

I2 = λ2
1λ

2
2 + λ2

2λ
2
3 + λ2

3λ
2
1,

I3 = λ2
1λ

2
2λ

2
3.

(8)

For uniaxial tension (i.e., λ1 = λ, λ2 = λ3 = λ−1/2), σ11 = σ ,
σ22 = σ33 = 0, then the constitutive relation (6) becomes

σ = 2(λ2 − λ−1)(c1 + c2λ
−1). (9)

When λ → 1, we can get the initial Young’s modulus as follows
[26]:

lim
λ→1

∂σ11

∂λ
= 6(c1 + c2), (10)

where E is Young’s modulus for infinitesimal deformation, and the
initial shear modulus is

G = E

2(1 + ν)
= 2(c1 + c2), (11)

where ν is the Poisson’s ratio, and ν is 0.5 for PDMS.
From Eq. (9), we know that the plot of σ

2(λ2−λ−1)
versus λ−1 is

a linear line, then we can easily get c1 and c2 from the intercept
and slope [28–30], respectively. However, the plot is not exactly a
linear line. Therefore, we introduce another method—LSM to obtain
these parameters.

If uniaxial tension experimental data were available, then we
can draw the plot of engineering stress Si (subscript i denotes the
sequence number of data points) versus stretch ratio λi , and get
the corresponding theoretical Cauchy stress σ̃i(c j) ( j = 1,2), from
Eq. (9). And the real stresses obtained from experiments are σi =
λi Si , then we use the LSM to determine the material constants c j .
The sum of the squared error is defined by:

R =
n∑

i=1

[
σi − σ̃i(c j)

]2
. (12)

As we know, to minimize the squared error R , we just only let its
variation be zero: δR = 0. This produces two simultaneous equa-
tions:

∂ R

∂c1
= 0,

∂ R

∂c2
= 0. (13)

Then, the material constants can be solved from Eq. (13).
Huang and Anand [16] conducted large-deformation uniaxial

tension experiments on traditional macroscale specimens of PDMS
with varying ratios of monomer: curing agent (5:1, 20:1), and the
experimentally determined macroscale tension engineering stress
versus stretch curves are shown in Fig. 1.

Using LSM, we can get: c1 = 0.7953 MPa, c2 = −0.6318 MPa,
and the initial Young’s modulus is thus E = 0.9810 MPa when
varying ratio is 5:1; and c1 = 0.07406 MPa, c2 = 0.008340 MPa,
and E = 0.4944 MPa for 20:1.
Fig. 1. Engineering stress versus stretch curves for 5:1 and 20:1 PDMS [16].

Fig. 2. Sketch of a PDMS beam loaded by a unit tension.

Fig. 3. Strains in x-direction with different loads and models.

3. Numerical simulation and comparison for PDMS membrane

Because the surface tension and Laplace pressure are very little
compared to the material rigidity, the deformation of PDMS mem-
brane may be relatively small. In order to make sure the accuracy
range of the linear elastic model for the first-order approximation
of the MR model, we first consider a PDMS beam (varying ratio:
5:1) with dimensions 0.1 m × 0.01 m × 0.01 m loaded by a unit
tension p at the endx = 0.1 m, and clamped at the end x = 0, as
shown in Fig. 2. For the ratio of 5:1, using both linear elastic model
and MR model, we can get the strains in x-direction as shown in
Fig. 3 under the actions p = 5 kPa, 10 kPa, 20 kPa and 40 kPa, re-
spectively.
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Fig. 4. Relative errors of strains in x-direction under different loads.

The relative error of strains calculated in different models can
be defined as:

e = εMR − εElastic

εElastic
× 100%. (14)

And we make a plot of the relative error versus x-coordinate as
shown in Fig. 4. From Fig. 4, we can easily find that the relative
errors increase with increasing applied load, and when the max-
imum strain with MR model is approximately 1.8%, the relative
error is about 5%, that is to say, in such circumstance, PDMS can be
regarded as a linear elastic material. However, when the maximum
strain with MR model is about 3.5%, the maximum strain with lin-
ear elastic model is a little more than 4% and the relative error is
larger than 10%, then the MR model should be adopted. Then, we
conclude that when the relative error is no more than 10%, lin-
ear elastic model will be valid for some engineering applications;
otherwise, the MR model must be used.

Now we consider the role of vertical component of surface ten-
sion of water droplet on the deformation of PDMS membrane by
using both linear elastic and MR models. First, PDMS membranes
(polydimethylsiloxane, Sylgard 184, Dow Corning, USA; ratio of the
base to curing agent = 5:1, 20:1) which we used were vacuumed
for an hour to remove the trapped air-bubbles, and then were
cured about 20 hours at 75 ◦C in a class-1000 clean room. Then,
the contact angles were measured with the OCA20 system (with
precision ±0.1◦) from Dataphysics, Germany. A 3 μL water droplet
was placed on the surface of PDMS membrane, in order to get
a reasonable contact angle, we repeated it at different places for
six times, measured the contact angles, and then got the averaged
contact angles θ = 109.4◦ for the ratio 5:1 and θ = 118.0◦ for 20:1
as shown in Fig. 5, respectively. The surface tension of water at
25 ◦C is γlv = 0.072 N/m. Supposed the water droplet is spherical
and the contact region is a circle with radius a, then the volume
of droplet can be expressed as:

V = 1

3
πa3 2 − cos θ(3 − cos2 θ)

sin3 θ
. (15)

Then we can get a = 0.93 mm for 5:1 and a = 0.84 mm for 20:1,
respectively. Then we know that the weight of the droplet can be
neglected since the diameter of the water droplet is much less
than the capillary length of water, 2.7 mm [27].

Suppose the PDMS membrane is 10.0 mm in diameter and
0.5 mm, 1.0 mm and 2.0 mm thick. As the case in Ref. [27], the
membrane will deform due to surface tension and Laplace pres-
sure, as shown in Fig. 6. Using the commercial code ANSYS, both
(a)

(b)

Fig. 5. Contact angle of water droplet on the surface of PDMS membrane: (a) 5:1;
(b) 20:1.

Fig. 6. Sketch of deformation of PDMS membrane induced by a water droplet.

the linear elastic (in this model, Poisson’s ratio of PDMS is 0.5 and
0.499 was used in the numerical simulations) and the MR models
were used to simulate the deformation. The vertical displacements
on the surface of PDMS membrane are shown in Fig. 7.

From Fig. 7, we found that no matter which model was used,
the maximum vertical displacement decreases a little while the
thickness changed from 0.5 mm to 2.0 mm. In addition, since there
is no external force in x-direction and y-direction, the strains in
those directions are rather small. That is, the maximum strain de-
creases with increasing thickness of PDMS membrane. So we com-
pared vertical displacements calculated with these models when
the thickness is 0.5 mm, as shown in Fig. 8, from which, we can
easily find that the solutions with different models fit well except
the place nearest where the surface tension is applied, that is to
say, we can use the linear elastic model rather than more compli-
cated MR model to solve such a question for enough accuracy, for
the maximum strain is εmax < 0.15 μm/0.5 mm = 3.0 × 10−4 �
1.5% for the varying ratio 5:1 and εmax < 0.30 μm/0.5 mm =
6.0 × 10−4 � 1.5% for the varying ratio 20:1. When the thick-
ness of PDMS membrane increases, the maximum of vertical dis-
placement decreases reversely, then the maximum strain will be
smaller, therefore, the linear elastic model is still valid.

4. Deflection of MCLs induced by liquid droplets

In this section, we studied the effect of one or several water
droplets sitting on a MCL on the deflection of the MCL due to the
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(a) (b)

(c) (d)

Fig. 7. Vertical displacements on the surface of PDMS membrane with linear elastic model: (a) 5:1 and linear elastic model; (b) 5:1 and MR model; (c) 20:1 and linear elastic
model; and (d) 20:1 and MR model.
vertical component of the surface tension and the Laplace pressure
in some cases, basing on small-deflection beam theory.

4.1. Cylindrical droplet on MCL

Now we considered one or several water droplets placed on
a MCL as shown in Fig. 10. First, we suppose the droplet is ide-
ally cylindrical [37] and the contact angle is θ . The wetted area is
A = 2wa = 2wr sin θ , where r is the curvature radius of the wa-
ter droplet. On the wetted area acts a Laplace pressure p = γlv/r,
which is compensated by the vertical component of the liquid–
vapor interface tension γlv sin θ acting on the contact line. The
torque induced by the droplets at a given position is expressed
as

M(x) =
⎧⎨
⎩

0, x � −a,

γlv w sin θ a2−x2

2a , −a � x � a,

0, a � x.

(16)

The relationship between the torque and the deflection of the MCL
is

M(x) = E I
d2z

2
, (17)
dx
where I = wd3/12. Since the external torsion is 0 when x � a, the
inclination and deflection at the field are both equal to 0. Integrat-
ing Eq. (17) once and using the boundary condition (dz/dx)(x =
−a) = 0, we can get the rotary angle of the MCL as follows:

dz

dx
= γlv w sin θ

6E Ia
(−x3 + 3a2x + 2a3), −a � x � a. (18)

Integrating Eq. (18) once and using the boundary condition z(x =
−a) = 0, we obtain

z = γlv w sin θ

24E Ia
(−x4 + 6a2x2 + 8a2x + 3a4), −a � x � a. (19)

Then we know at x = a, the inclination and deflection are, respec-
tively,

dz

dx
(x = a) = 8γlva2 sin θ

Ed3
, (20)

and

z(x = a) = 8γlva3 sin θ

Ed3
. (21)

For x � a, since the external forces and bending moments are all
zero, then the inclination is constant and equal to that at x = a,
therefore, the deflection at the free end is
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(a)

(b)

Fig. 8. Vertical displacements with different models: (a) 5:1 and h = 0.5 mm; (b)
20:1 and h = 0.5 mm.

Fig. 9. Sketch of the deformation of a MCL induced by a liquid droplet.

Fig. 10. Cylindrical water droplet placed on a MCL.

z(x = L − l) = 8γlva2 sin θ

Ed3
(L − l). (22)

Then we can easily see that the inclination and deflection at x � a
have nothing with the width w , and both of them are proportional
to γlva2 sin θ/(Ed3). Moreover, the free-end deflection will increase
when the droplet approaches to the fixed end.
Fig. 11. Vertical displacement of a MCL induced by a cylindrical droplet.

The elastic deformation of a MCL induced by a water droplet
was simulated by using FEM. The parameters used are listed as
follows:

γlv = 0.072 N/m, E = 1 MPa, θ = 90◦,

a = r = 100 μm, a = 100 μm, l = 500 μm,

L = 1000 μm, d = 20 μm, w = 50 μm.

According to the above analysis, we know that the deflection at
the free end is

z(x = L − l) = 8γlva2 sin θ

Ed3
(L − l) = 360 μm, (23)

which is quite large for the MCL. The numerical results of the de-
formation of the MCL are shown in Fig. 11, the deflection at the
free end is calculated as 358.02 μm.

4.2. Spherical droplet sitting at the midline of MCL

Now we first consider a spherical droplet and the center of the
contact area is just located at the midline of the upper surface of
the MCL. For this case, since the external forces are symmetrical
to the midline, there are only torques which make the cantilever
bending, the torques are given as follows:

M1 = 2

ϕ∫
0

γlv sin θa(a cosα − a cosϕ)dα

= 2a2γlv sin θ(sinϕ − ϕ cosϕ)

= 2aγlv sin θ

(√
a2 − x2 − x arccos

x

a

)
, (24a)

where ϕ = arccos(x/a), and

M2 = −2p

a∫
a cosϕ

√
a2−ξ2∫
0

(ξ − a cosϕ)dξ dη

= −4γlv sin θ

a

[
−π

4
a2x + 1

3
(a2 − x2)3/2

+ 1

2
x2

√
a2 − x2 + 1

2
a2x

(
π

2
− arccos

x

a

)]
, (24b)

where p = 2γlv/r = 2γlv sin θ/a is the Laplace pressure. The re-
sultant torque of Eq. (24) is
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M = M1 + M2 = 2γlv sin θ

3a
(a2 − x2)3/2. (25)

Then the resultant torque on the MCL is given as

M =
{0, x � −a,

2γlv sin θ
3a (a2 − x2)3/2, −a � x � a,

0, x � a.

(26)

Using the basic MCL deflection equation, we have

d2z

dx2
= M

E I
= 2γlv sin θ

3E Ia
(a2 − x2)3/2, −a � x � a. (27)

Integrating Eq. (27) once, we obtain

dz

dx
= 2γlv sin θ

3E Ia

[
x

4
(a2 − x2)3/2 + 3

8
a2x

√
a2 − x2

+ 3a4

8
arctan

(
x√

a2 − x2

)
+ 3

16
πa4

]
, (28)

then the inclination at x � a is

dz

dx
= πa3γlv sin θ

4E I
= 3πa3γlv sin θ

E wd3
. (29)

Integrating Eq. (29) once and we can get the deflection of the MCL
given by:

z = γlv sin θ

12E Ia

[
3a4

√
a2 − x2 − a2(a2 − x2)3/2

− 2

5
(a2 − x2)5/2 + 3a4x

(
π

2
+ arctan

x√
a2 − x2

)]
. (30)

Then the deflection at x = a is

z(x = a) = πa4γlv sin θ

4E I
= 3πa4γlv sin θ

E wd3
, (31)

and the deflection at the segment a � x � L − l is

z(x) = z(x = a) + (x − a)
dz

dx
(x = a) = 3πa3xγlv sin θ

E wd3
. (32)

Therefore, the deflection at the free end is

z(L − l) = 3πa3γlv sin θ

E wd3
(L − l). (33)

Now we use FEM to simulate this question. The parameters are
listed as below:

E = 1 MPa, γlv = 0.072 N/m, θ = 90◦,

L = 1000 μm, l = 650 μm, a = 40 μm,

w = 100 μm, d = 40 μm.

From above theoretical analysis, we know the inclination at x �
a and the free-end deflection, respectively, are

dz

dx
(x � a) ≈ 0.00679,

and

z(x = L − l) = 3πa3γlv sin θ

E wd3
(L − l) ≈ 2.375 μm.

Fig. 12 presents the numerical results of the vertical displace-
ment of the midline at the upper surface of the MCL induced by
a spherical droplet. In addition, the nephogram of the deflection is
illustrated in Fig. 13. There is a very small ridge at the rim of the
droplet because the vertical component of the liquid–vapor inter-
face tension acts there. And the numerical results of the inclination
and the deflection at the free end are approximately 0.00674 and
2.350 μm, respectively. Therefore, the simulation agrees well with
the theoretic solutions.
Fig. 12. Vertical displacement of a MCL induced by a spherical droplet.

Fig. 13. Nephogram of vertical displacement distribution.

4.3. Spherical droplet sitting at arbitrary position on MCL

Now we consider a more general circumstance that the center
of the droplet is not located at the longitudinal midline of the MCL
illustrated in Fig. 14, in which x-axis is the midline and the center
is located at y-axis. Suppose the distance from the contact center
to the midline is e, then in addition to the torque which makes
the cantilever bending, there is another torque, which will make
the MCL twist, the four components of the torque are:

Mx1 = −
−α∫

−φ

γlv sin θ |e + a sinϕ|a dϕ

= −γ a2 sin θ
[
(α − φ) sinα + cosα − cosφ

]
= −γlva sin θ

[
e

(
arcsin

e

a
− arccos

x

a

)
+

√
a2 − e2 − x

]
, (34a)

Mx2 = 2γlv sin θ

a

√
a2−e2∫
x

0∫
e−

√
a2−x2

|y|dy dx

= γlv sin θ

a

[
(e2 + a2)

(√
a2 − e2 − x

)

− 1

3
(a2 − e2)3/2 + 1

3
x3 − e2

√
a2 − e2

+ ex
√

a2 − x2 − ea2
(

arctan

√
a2 − e2

e
− arcsin

x

a

)]
, (34b)
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(a)

(b)

Fig. 14. Spherical water droplet placed on a MCL.
Mx3 =
φ∫

−α

γlv sin θ(a sinϕ + e)a dϕ

= γlva sin θ

(√
a2 − e2 − x + e arccos

x

a
+ e arcsin

e

a

)
, (34c)

Mx4 = −2γlv sin θ

a

√
a2−e2∫
x

e+
√

a2−x2∫
0

y dy dx

− 2γ sinϕ

a

a∫
√

a2−e2

e+
√

a2−x2∫
e−

√
a2−x2

y dy dx

= −γlv sin θ

a

[
ea2

(
π − arctan

√
a2 − e2

e

)

− e2x − a2x + a2
√

a2 − e2 − e

(
x
√

a2 − x2 + a2 arcsin
x

a

)

+ 1

3
x3 − 1

3
(a2 − e2)3/2

]
, (34d)
where α = arccos(e/a) and ϕ = arccos(x/a).
The resultant twist torque is

Mx = Mx1 + Mx2 + Mx3 + Mx4 = 2eγlv sin θ

a
x
√

a2 − x2, (35)

and the distribution of the twist torque on the MCL is

Mx =
⎧⎨
⎩

0, x � −a,
2eγlv sin θ

a x
√

a2 − x2, −a � x � a,

0, x � a.

(36)

The twist angle in the case of a rectangular cross section is [39]

dφ

dx
= Mx

βwd3G
, (37)

then by integrating Eq. (37), we express the twist angle in a quite
straightforward manner as

φ =
⎧⎨
⎩

0, x � −a,

− 2eγlv sin θ

3aβwd3G
(a2 − x2)3/2, −a � x � a,

0, x � a.

(38)

The values of twist of the numerical factor β are given in Table 1
[39]. The deflection of a point (x, y,0) can be written as
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Table 1
Data for the twist of a shaft of rectangular cross section.

w/d 1.00 1.50 2.00 3.00 4.00 6 10
β 0.141 0.196 0.229 0.263 0.281 0.299 0.313

Fig. 15. Vertical displacement of MCL induced by a spherical droplet whose center
is not sitting at the midline of its upper surface.

z(x, y,0) = zb + zt , (39)

where zb denotes the deflection induced by bending given in Sec-
tion 4.2 and

zt = y sinφ. (40)

The parameters for the numerical simulation are listed below:

E = 1 MPa, ν = 0.3, γlv = 0.072 N/m, θ = 90◦,

L = 1000 μm, l = 650 μm, a = 40 μm,

w = 120 μm, d = 40 μm, e = 10 μm.

From Eqs. (38) and (40), we know the maximum of twist angle
and corresponding deflection are, respectively,

φmin ≈ −0.001 and max(zt) = zt(0,−60,0) ≈ 0.06 μm.

Since y coordinates of points at the midline are zero, the ad-
ditional deformations of these points induced by twisting are all
zero theoretically, that is, the total deflection of the midline at the
upper surface induced by both bending and twisting is the same
as that in Section 4.2. In addition, 3-D numerical results of the
cantilever deflection are given partly as shown in Fig. 15. From
this figure, we can find that the additional deformation of the MCL
induced by twisting is so small that its effect can be neglected.
The nephogram of the MCL displacement in the normal direction
is given in Fig. 16. From this figure, we can find that the maximum
vertical displacement is approximately 1.96 μm.

If there are several microdrops, which are either cylindrical or
spherical, we can easily use the superposition method to calculate
the inclination and deflection of MCL.

5. Summary

The effects of a liquid droplet on the deformation of PDMS
membrane and a MCL were investigated. The deformation of PDMS
membrane, induced by surface tension and Laplace pressure, has
Fig. 16. Nephogram of vertical displacement distribution.

been calculated using FEM with both MR model and linear elastic
model. Since the deformation is very small, the solutions with lin-
ear elastic model are nearly the same to that with MR model. That
is to say, although PDMS is a hyperelastic material, a linear elastic
model is still valid when considering the role of a droplet on the
deformation of PDMS membrane.

Theoretical study on the deformation of a MCL induced by a
liquid droplet shows that: When there is one or several liquid
droplets sitting on a MCL, the cantilever will deflect due to the
vertical component of liquid–vapor interface tension and Laplace
pressure, and it is proportional to γlv sin θ/(Ed3). When the cen-
ter of a droplet is not located at the midline of the upper surface,
there will be a partial twist; however, it has little effect on the de-
flection at the free end. When the liquid droplet is nearer to the
fixed end, the deflection on the free end will be larger and the
maximum of the deflection cannot be neglected.
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