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Recently, Chen and Gao [Chen, S., Gao, H., 2007. Bio-inspired mechanics of reversible adhesion: orienta-
tion-dependent adhesion strength for non-slipping adhesive contact with transversely isotropic elastic
materials. J. Mech. Phys. solids 55, 1001–1015] studied the problem of a rigid cylinder in non-slipping
adhesive contact with a transversely isotropic solid subjected to an inclined pulling force. An implicit
assumption made in their study was that the contact region remains symmetric with respect to the cen-
ter of the cylinder. This assumption is, however, not self-consistent because the resulting energy release
rates at two contact edges, which are supposed to be identical, actually differ from each other. Here we
revisit the original problem of Chen and Gao and derive the correct solution by removing this problematic
assumption. The corrected solution provides a proper insight into the concept of orientation-dependent
adhesion strength in anisotropic elastic solids.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

It has been revealed that the extraordinary ability of geckos
to climb on vertical walls and ceilings essentially stems from
the van der Waals force (Autumn et al., 2000). To take advantage
of the extremely weak intermolecular forces, geckos have devel-
oped hundreds of thousands of tiny fibers on their feet. Each
fiber, referred to as seta, is split further into hundreds of thinner
branches called spatulae. Such hierarchical fibrillar structures
have apparently allowed gecko to achieve robust adhesion with
solid surfaces irrespective of surface roughness (Arzt et al.,
2003; Gao and Yao, 2004). More interestingly, the adhesion force
of a single seta was found to be strongly dependent on the pull-
ing direction. Strongest adhesion was measured at a pulling an-
gle of around 30� with respect to the surface (Autumn et al.,
2000). Such directional adhesion force can be partly attributed
to the asymmetrical geometry of a single seta (Gao et al.,
2005). On the other hand, the direction-dependent adhesion
strength also turns out to be a generic phenomenon associated
with anisotropic elastic solids, as shown by Yao and Gao
(2006) for a cracked interface between an anisotropic material
and a rigid substrate. Chen and Gao (2007) made the first at-
tempt to develop a real contact model for this phenomenon by
considering a rigid cylinder in contact with a transversely isotro-
pic elastic solid subjected to an inclined pulling force. As
ll rights reserved.

: +1 401 863 9052.
.

expected, the adhesion force was found to be dependent on
the pulling angle. However, an implicit assumption made in
the study of Chen and Gao (2007) was that the contact region
remains symmetric with respect to the center of the cylinder.
It was not realized until recently that this assumption was not
self-consistent because the resulting energy release rates at the
two contact edges differed from each other. The purpose of this
paper is to revisit the original problem of Chen and Gao (2007)
and to derive the correct solution without an assumption on the
symmetry of the contact region.

2. Barnett–Lothe tensors

Before proceeding to discuss adhesive contact associated with
transversely isotropic materials, we briefly introduce the Barnett–
Lothe tensors (e.g., Ting, 1996), which will be frequently used in
the discussions later. For simplicity, here we just list the expres-
sions of the Barnett–Lothe tensors for a transversely isotropic solid
(plane strain). Readers are referred to Ting (1996), Dongye and Ting
(1989) and Hwu (1993) for more details.

For a transversely isotropic solid, the elastic property can be
fully described by five independent constants, which usually con-
sists of the Young’s modulus and Poisson ratio in the isotropic
plane (E1 and m1), as well as the Young’s modulus, Poisson ratio
and shear modulus associated with the out-of-plane direction
(E2, m2 and G12). The Barnett–Lothe tensors S0 and L0 for a trans-
versely isotropic material can be expressed in terms of these five
elastic constants as (Hwu, 1993).
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Clearly, one can see that

L22

L11
¼ a2

a1

ffiffiffiffiffi
E2

E1

s
: ð3Þ

In general, a1 and a2 are constants close to unity. Therefore, Eq. (3)
implies that L22/L11 represents the degree of elastic anisotropy of
the material. For isotropic materials, we have L22/L11 = 1; neverthe-
less, L22/L11 = 1 does not necessarily leads to isotropy. In this paper,
we name solids with L22/L11 = 1 as ‘‘quasi-isotropic” materials.

It should be emphasized that the matrix expressions of the
Barnett–Lothe tensors for anisotropic materials depend on the
coordinate system they refer to. The above expressions hold for a
set of Cartesian coordinates with the 2-axis parallel to the symmet-
ric axis of the transversely isotropic material. Proper transforma-
Fig. 1. A rigid cylinder of radius R in non-slipping contact with a transversely isotropic ela
of the surface. Cartesian coordinate systems (x0,y0) and (x,y) refer to the material coordin
cylinder at an angle / with respect to the y-axis.
tion has to be made in order to get the expressions in a different
coordinate system.

3. Theoretical model

Consider a rigid cylinder of radius R in non-slipping adhesive
contact with a transversely isotropic half-space, as shown in
Fig. 1. The contact sizes on both sides of the apex are denoted by
a and b, respectively. Generally, a is not necessarily equal to b. This
is the major difference of the present model from the previous
work by Chen and Gao (2007). The symmetric axis of the trans-
versely isotropic material is inclined at angle h with respect to
the normal of the surface. A pulling force F is applied on the rigid
cylinder at an angle / from the y-axis. For simplicity, we assume
that F is applied in such a way that no net bending moment is pro-
duced. As a consequence, the rigid cylinder just experiences trans-
lation. Note that the actual location of the applied force is not fixed
and may depend on the magnitude and direction of the force. If the
force is applied at a fixed point, one would need to solve also the
related problem of a bending moment applied on the sphere. In
that case, the solution can in principle be obtained from a superpo-
sition of the present problem and that associated with a bending
moment.

Following the convention of contact mechanics, we take the
parabola x2/2R as an approximation of the surface profile of the cyl-
inder within the contact region (Johnson, 1985). The continuity of
displacements across the contact interface leads to

�u ¼
�ux

�uy

� �
¼

dx

dy � x2

2R

" #
; ð�b < x < aÞ
stic half-space with its symmetry axis inclined at angle h with respect to the normal
ates and fixed coordinates, respectively. An external pulling force F is applied on the
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where �ux, �uy stand for the surface displacements of the elastic mate-
rial, and dx, dy are translations of the rigid cylinder.

It should be pointed out that the above boundary condition is
based on an assumption that, within the contact region, the dis-
placement �ux at a point is negligible before contact is established.
Rigorously, for a point within the contact area (�b < x < a), the dis-
placement �ux should consist of two parts. One part corresponds to
the deformation before that point enters into contact and another
is the subsequent displacement after the contact is established. Be-
cause the points within the contact area do not come into contact
with the rigid cylinder at the same time, �ux is strictly not uniform
throughout the contact area. A full account of this effect, however,
would severely complicate the analysis (Gladwell, 1980). In this
paper, we neglect the pre-contact part of �ux. A more sophisticated
model to fully resolve this issue is left to future work.

The derivative of the surface displacements �u with respect to x
is given by

C ¼ o�u
ox
¼

0
� x

R

" #
:

Denoting the tractions acting on the surface of the anisotropic
material within the contact region by

fðxÞ ¼ QðxÞ PðxÞ½ �T;

the Green’s function of an anisotropic elastic half-space (Fan and
Keer, 1994; Ting, 1996) correlates the tractions f(x) and the dis-
placement gradient along the surface through

1
p

Z a

�b

L�1

s� x
fðsÞdsþ SL�1fðxÞ ¼ C; ð4Þ

where S, L are the Barnett–Lothe matrices with respect to the fixed
coordinates x–y (Fig. 1). Eq. (1) gives the Barnett–Lothe matrices in
the material coordinates x0–y0, based on which S and L can be cal-
culated through following transformations

S ¼ XS0X
T; L ¼ XL0X

T;

where

X ¼
cos h � sin h

sin h cos h

� �
is the transformation matrix from coordinate system (x0,y0) to (x,y).
Multiplying L on both sides of Eq. (4) gives rise to

1
p

Z a

�b

I
s� x

fðsÞdsþ BfðxÞ ¼ G; ð5Þ

where

I ¼
1 0
0 1

� �
; B ¼ LSL�1 ¼ s21

L11

1=D�12 �1=D�11

1=D�22 �1=D�21

� �
; G ¼ LC;

with

D�11 ¼
1

L11 cos2 hþ L22 sin2 h
;

D�22 ¼
1

L11 sin2 hþ L22 cos2 h
;

D�12 ¼ D�21 ¼
1

ðL11 � L22Þ cos h sin h
:

Following the approach by Chen and Gao (2006), Eq. (5) can be
solved. The final solution to the interfacial tractions is given by

QðxÞ
PðxÞ

� �
¼

2RefTþ1 � T�1 g
�2D�11Imf�d1ðTþ1 � T�1 Þg

" #
; ð6Þ
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and
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2
þ ie; �r ¼ 1

2
� ie; e ¼ 1
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ffiffiffiffiffiffiffi
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;
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L11

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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In Eqs. (7) and (8), the constant j1 remains to be determined. This
can be done by using boundary conditionsZ a

�b
QðxÞdx ¼ F sin /;

Z a

�b
PðxÞdx ¼ �F cos /; ð9Þ

which gives (see Appendix A)

j1 ¼ �
FðD�12 cos /þ D�11 sin /Þ

4pD�11D�12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=D�11D�22 � 1=D�212

q þ i
F sin /

4p
:

Substituting j1 back into Eqs. (7) and (8) yields

Tþ1 � T�1 ¼ 2 coshðpeÞ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbþ xÞða� xÞ

p bþ x
a� x

� �ie

� � d1i
4R
ðaþ bÞ2

8
ð1þ 4e2Þ � x x� a� b

2

� �" #(
þ F
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where

gð/Þ ¼ sin /þ iðD�12 cos /þ D�11 sin /Þ

D�11D�12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=D�11D�22 � 1=D�212

q :

Eqs. (6) and (10) give the tractions within the contact region. The
stress intensity factors can be immediately calculated as follows.

Consider the right contact edge at x = a. The stress intensity fac-
tors is given by (Wu, 1990; Hwu, 1993; Ting, 1996)

KR ¼
KR

II

�KR
I

( )
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� 	
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�
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Substituting the tractions into Eq. (11), we have
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Thus the corresponding energy release rate is given by (Wu, 1990;
Hwu, 1993)

GR ¼ 1
4
ðKRÞTEKR; ð14Þ

where the matrix E is (Appendix B)

E ¼ 1

cosh2ðpeÞ
L�1: ð15Þ

Upon the substitution of Eqs. 12, 13, 15 into (14), the energy release
rate for the right contact edge is given by
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where IR
1 stands for the complex conjugate of IR

1.
Likewise, the stress intensity factors and energy release rate at

the left contact edge (x = �b) can be obtained as
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At equilibrium, the energy release rates at both sides should be
equal to the surface energy wad (Johnson, 1985), implying
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Eqs. (20) and (21) actually correlate the normalized adhesion force
F/wad and the normalized contact width (a + b)/R in an implicit
manner. Given L22/L11, R=ðD�11wadÞ, g, h and /, the evolution of F/
wad with (a + b)/R can be numerically calculated.

4. Numerical solution

Taking L22/L11 = 100, R=ðD�11wadÞ ¼ 100, g = 0.2, h = 30�, the vari-
ation of the contact width with the contact force is shown in Fig. 2
where different pulling angles are considered, including / = 0�, 30�,
60�, 90�. Clearly, the evolution of contact width with the applied
load depends on the pulling angle. The pull-off force, or the force
required to pull the cylinder away from the anisotropic solid,
exhibits strong direction-dependence. Among the four pulling an-
gles under consideration, the pull-off force for / = 30� stands out
for its substantially higher magnitude. In addition, one can notice
that all curves, instead of extending to infinitely, terminate at a
certain compressive load. At first glance, this observation may
seem unphysical because of the intuition that any contact size
can be achieved as long as the two solids are compressed hard
enough. In reality, such limitation on the achievable contact width
results from the non-slipping assumption we have adopted. To
illustrate this point, we can just simply consider the isotropic case
with material properties ER=2ð1� m2Þwad ¼ 100; m ¼ 0:375, where
E is the Young’s modulus, m is the Poisson’s ratio and wad is the sur-
face energy. For non-slipping contact, the above model can be used
directly by taking L22/L11 = 1, h = 0�, g = 0.2, R=ðD�11wadÞ ¼ 100.
Assuming that the load is applied in the vertical direction (i.e.
/ = 0�), the variation of contact width as a function of the contact
force is shown in Fig. 3, along with the corresponding solution
for frictionless contact (Chaudhury et al., 1996). It can be seen that
the two models agree very well in the tensile regime (F > 0).



Fig. 2. Variation of the normalized contact width (a + b)/R as a function of the
normalized pulling force F/wad for different pulling angles / = 0�, 30�, 60�, 90�. Here
h = 30�, g = 0.2, L22/L11 = 100, R=ðD�11wadÞ ¼ 100.

Fig. 3. Comparison of the contact width as a function of the pulling force in the case
of non-slipping contact with an isotropic solid and the corresponding result in the
case of frictionless contact. The material is assumed isotropic with

ER
2ð1�m2 Þwad

¼ 100; m ¼ 0:375 and the pulling angle is taken as / = 0�.

Fig. 4. Variation of the symmetry ratio a/b as a function of the contact width for the
stable solutions shown in Fig. 2. This ratio was assumed to be 1 in the study of Chen
and Gao (2007).
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However, in the compressive regime (F < 0), they give distinct pre-
dictions of the contact width. While the frictionless model predicts
that the contact width will increase monotonically with increasing
compressive force, the non-slipping contact model shows a looped
force-contact width relationship. According to the derivative of the
energy release rate with respect to the contact width, we find that
the equilibrium states defined by the lower branch of this loop are
unstable. For this reason, we did not show the unstable branches of
the curves in Fig. 2. These results show that stable non-slipping
contact can be achieved only at limited compressive load. As the
compressive load is increased beyond a critical value, the non-slip-
ping condition can not be ensured and slipping at the contact edges
would occur, resulting in a new contact configuration similar to the
‘‘stick-slip” process. Further discussions in this aspect are beyond
the scope of the current model.

The ratio of a/b for the stable solutions in Fig. 2 is shown in
Fig. 4. It can be seen that a/b varies within a narrow range of
0.99–1.12 when the load is applied along the symmetry axis of
the transversely isotropic material (i.e., / = h = 30�), suggesting
that the contact region can be roughly treated as symmetric with
respect to the contact apex (x = 0). In contrast, if the pulling angle
deviates from the symmetry axis, the contact region could become
significantly asymmetric depending on the magnitude of the load.
These observations show that the contact zone symmetry assumed
in the previous work of Chen and Gao (2007) is approximately va-
lid only when pulled along the symmetry axis of the transversely
isotropic solid.
In order to understand the effect of anisotropy on non-slipping
adhesion, we have considered additional cases with different de-
grees of anisotropy such as L22/L11 = 1, 10, 100, 1000. Given
g = 0.2, R=ðD�11wadÞ ¼ 100, Fig. 5 shows variation of the normalized
pull-off force (F/F0)pull-off as a function of the pulling angle / for
materials with various tilting angles h and degrees of anisotropy.
Here (F0)pull-off stands for the pull-off force at / = 0�. It can be seen
that for the ‘‘quasi-isotropic” cases (L22/L11 = 1), the pull-off force
does not strongly depend on the pulling angle. With the increase
of L22/L11, the pull-off force becomes more and more direction-
dependent. While the maximum pull-off force occurs at the stiffest
direction / = h, the minimum takes place in the most compliant
direction / = h � p/2 (0 6 h 6 p /2). The difference between the
maximum and minimum depends on the anisotropy of the mate-
rial. The higher the anisotropy, the more significant the difference.

Fig. 6 shows the normalized critical contact width [(a + b)/
(a + b)0]pull-off as a function of the pulling angle /, where
[(a + b)0]pull-off denotes the critical contact width for / = 0�. Except
for the case of h = 90� (Fig. 6d), the contact width exhibits a mini-
mum value near the stiffest direction / = h. If we define the adhe-
sion strength as

r ¼ Fpull-off

ðaþ bÞpull-off
;

where Fpull-off and (a + b)pull-off are the adhesion force and contact
width at pull-off, the variation of the normalized adhesion strength
with the pulling angle is shown in Fig. 7. One can see that the adhe-
sion strength is almost direction-independent in all ‘‘quasi-isotro-
pic” cases, whereas it exhibits strong directional dependence in
the anisotropic cases. Similarly, the maximum adhesion strength
is always achieved at / = h, while the minimum takes place around
/ = h � p/2.

5. Discussion and summary

In this paper, we revisited the non-slipping adhesive contact
problem of Chen and Gao (2007) between a rigid cylinder and an
anisotropic (transversely isotropic) medium subjected to an in-
clined pulling force. An implicit assumption in Chen and Gao
(2007) is that the contact region remains symmetric with respect
to the center of the cylinder. Here we have removed this assump-
tion and derived the correct solution to the non-slipping contact
problem defined by Chen and Gao (2007). In the compressive re-
gime (F < 0), our solution shows that the non-slipping contact
may not be possible if the load level is too high. Under this circum-
stance, slipping between the two surfaces may occur. In the tensile
regime (F > 0), it is found that the pull-off force between the cylin-



Fig. 5. The normalized pull-off force (F/F0)pull-off as a function of the pulling angle / for g = 0.2, R=ðD�11wadÞ ¼ 100, L22/L11 = 1,10,100,1000 with tilting angle h equal to (a) 0�, (b)
30�, (c) 60�, (d) 90�, respectively.
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der and substrate depends on the direction of pulling. Adhesion is
strongest in the stiff direction and weakest in the compliant direc-
tion. Similar phenomenon has been previously reported in the
cracked interface model and summarized as a ‘‘stiff-adhere and
soft release” principle (Yao and Gao, 2006). The difference between
strong and weak adhesion depends on the degree of anisotropy of
the medium. The stronger the anisotropy, the greater the differ-
ence. Therefore, materials with strong anisotropy can be designed
to achieve orientation-dependent adhesion in reversible adhesion
devices (Yao and Gao, 2006). Qualitatively similar conclusions
were drawn by Chen and Gao (2007), despite the additional con-
straint of symmetric contact region.

Recently, experimental studies on directional adhesion have
been conducted. For example, Yao et al. (2008) measured the adhe-
sion force between a spherical probe and a film-terminated tilted
fiber sample made of PDMS. As expected, the measured adhesion
force exhibits directional dependence. But no peak detachment
force has been observed in the longitudinal direction of the fibers
as predicted by the theoretical model. The cause of this discrep-
ancy between theory and experiment is still under investigation
and might in part be attributed to the dependence of critical energy
release rate on the mode mixity of stress at the contact edges. In
our theoretical model, we have assumed that the critical energy re-
lease rate remains a constant, equal to the surface energy wad. In
reality, it may depend on the mode mixty of stress at the contact
edges (Jensen et al., 1990). Another possibility might be the finite
thickness of the experimental sample, in contrast to the half-space
assumption in the theoretical model. Moreover, our theoretical
analysis was carried out within the framework of small-deforma-
tion elasticity, in which the orientation of anisotropy axis remains
fixed during loading. In the experiments, the compliant PDMS fi-
bers tend to experience large deformation, resulting in large rota-
tion of the anisotropy axis. More sophisticated models are needed
to capture the details of the experiments.
Appendix A

Details of how constant j1 is determined by the boundary con-
ditions of Eq. (9) are as follows.

From Eqs. (7) and (8), we have

Tþ1 � T�1 ¼
xd1g

2Rð1� g2Þ � ið1þ e�2peÞðbþ xÞ��rða� xÞ�r

� d1

4pRð1� gÞ

Z a

�b

tðbþ tÞ�rða� tÞr

t � x
dt þ j1epe

" #
ðA1Þ

Let us first focus our attention on the integral on the right-hand side
of Eq. (1).

Z a

�b

tðbþ tÞ�rða� tÞr

t�x
dt¼

Z a

�b
ðbþ tÞ�rða� tÞrdtþx

Z a

�b

ðbþ tÞ�rða� tÞr

t�x
dt

¼ðaþbÞ2

8
ð1þ4e2ÞpsechðpeÞ

þx
ðaþbÞ

2

Z 1

�1

ð1þ tÞ�rð1� tÞr

t� 2x
aþb� a�b

aþb


 � dt ðA2Þ

Defining x0 ¼ 2x
aþb� a�b

aþb, Eq. (A2) can be rewritten as



Fig. 6. The normalized contact width [(a + b)/(a + b)0]pull-off as a function of the pulling angle / for g = 0.2, R=ðD�11wadÞ ¼ 100, L22/L11 = 1,10,100,1000 with tilting angle h equal
to (a) 0�, (b) 30�, (c) 60�, (d) 90�, respectively.
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Z a

�b

tðbþ tÞ�rða� tÞr

t � x
dt ¼ ðaþ bÞ2

8
ð1þ 4e2Þp sec hðpeÞ

þ ðaþ bÞx
2

Z 1

�1

ð1þ tÞ�rð1� tÞr

t � x0
dt; ðA3Þ

In Eq. (A3), the integrand is singular at t = x0. The Cauchy principal
value of this integral can be calculated as follows.

Define a complex function

eF ðzÞ ¼ 1
2pi

Z 1

�1

ð1þ tÞ�rð1� tÞr

t � z
dt: ðA4Þ

Given complex variable z(z R [�1,1]), substitution of variable leads
to

eF ðzÞ ¼ 1
2pi

Z 1

�1

ð1þ tÞ�rð1� tÞr

t � z
dt

¼ 1
2pi

Z p

0

sin2 h
cos h� z

1� cos h
1þ cos h

� �ie

dh

¼ � 1
2pi

p sec hðpeÞ½�2ieþ z� ie�peð1� zÞrð1þ zÞ�r �: ðA5Þ

For a real variable x0 2 [�1,1],

eFþðx0Þ ¼ � 1
2pi

p sec hðpeÞ½�2ieþ x0 � ie�peð1� x0Þrð1þ x0Þ�r�; ðA6Þ

eF�ðx0Þ ¼ � 1
2pi

p sec hðpeÞ½�2ieþ x0 þ iepeð1� x0Þrð1þ x0Þ�r �; ðA7Þ

where eFþðx0Þ ¼ lim
y!0þ

eFðx0 þ yiÞ and eF�ðx0Þ ¼ lim
y!0�

eFðx0 þ yiÞ. On the

other hand, according to the Plemelj formulae (Carrier et al.,
1983), we have
eFþðx0Þ � eF�ðx0Þ ¼ ð1� x0Þrð1þ x0Þ�r ; ðA8Þ

eFþðx0Þ þ eF�ðx0Þ ¼ 1
pi
ðP:V:Þ

Z 1

�1

ð1þ tÞ�rð1� tÞr

t � x0
dt ðA9Þ

Substituting Eqs. (A6) and (A7) into (A9) leads to

ðP:V:Þ
Z 1

�1

ð1þ tÞ�rð1� tÞr

t � x0
dt ¼ ð2ie� x0Þp sec hðpeÞ

� pið1� x0Þrð1þ x0Þ�r tanhðpeÞ:
ðA10Þ

Inserting Eq. (A10) into Eq. (A3) yields

Z a

�b

tðbþ tÞ�rða� tÞr

t � x
dt ¼ p sec hðpeÞ ðaþ bÞ2

8
ð1þ 4e2Þ

"

þiðaþ bÞex� xðx� a� b
2
Þ
�

� aþ b
2

xpið1� x0Þrð1þ x0Þ�r tanhðpeÞ

ðA11Þ

Combining Eqs. (A11) and (A1) gives rise to

Tþ1 � T�1 ¼ 2icoshðpeÞðbþ xÞ��rða� xÞ�r � d1

4R
ðaþ bÞ2

8
ð1þ 4e2Þ

"(

þiðaþ bÞex� x2 þ a� b
2

x

#
� j1

)
ðA12Þ

where the relations 1þg
1�g ¼ e2pe, e2pri = �e�2pe and e�pri = �iepe have

been used. Therefore,



Fig. 7. The normalized adhesion strength r/r0 as a function of the pulling angle / for g = 0.2, R=ðD�11wadÞ ¼ 100, L22/L11 = 1,10,100,1000 with tilting angle h equal to (a) 0�, (b)
30�, (c) 60�, (d) 90�, respectively.
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Z a

�b
ðTþ1 � T�1 Þdx ¼ 2icoshðpeÞ � ðaþ bÞ2d1

32R
ð1þ 4e2Þ þ j1

" #
Ia

(

� d1

4R
iðaþ bÞeþ a� b

2

� �
Ib þ

d1

4R
Ic

	
; ðA13Þ

with

Ia¼
Z a

�b
ðbþxÞ��rða�xÞ�rdx¼psechðpeÞ; ðA14Þ

Ib¼
Z a

�b
xðbþxÞ��rða�xÞ�rdx¼psechðpeÞ½iðaþbÞeþa�b

2
�; ðA15Þ

Ic ¼
Z a

�b
x2ðbþxÞ��rða�xÞ�rdx

¼psechðpeÞ ðaþbÞ2

8
ð1�4e2Þþða2�b2Þieþ a�b

2

� �2
" #

ðA16Þ

Inserting Eqs. A14, A15, and A16 into Eq. (A13), we haveZ a

�b
ðTþ1 � T�1 Þdx ¼ �2ipj1: ðA17Þ

Substituting Eq. (6) into the boundary conditions of Eq. (9) and then
taking advantage of Eq. (A17) yield the real and imaginary parts of
j1 as

Refj1g ¼ �
FðD�12 cos /þ D�11 sin /Þ

4pD�11D�12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=D�11D�22 � 1=D�212

q ; Imfj1g ¼
F sin /

4p
;

ðA18Þ
which gives

j1 ¼ �
FðD�12 cos /þ D�11 sin /Þ

4pD�11D�12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=D�11D�22 � 1=D�212

q þ i
F sin /

4p
: ðA19Þ
Appendix B

Following its definition (Wu, 1990; Hwu, 1993), E can be ex-
pressed in terms of Barnett–Lothe tensors as

E ¼ L�1 þ ðSL�1ÞLðSL�1Þ ¼ ð1þ s12s21ÞL�1: ðB1Þ

Eqs. (2)–(4) implies

s12

L11
¼ � s21

L22
: ðB2Þ

Eq. (B1) therefore can be rewritten as

E ¼ 1� L22

L11
s2

21

� �
L�1 ¼ ð1� g2ÞL�1: ðB3Þ

Considering e ¼ 1
2p ln 1þg

1�g, Eq. (B3) can be simplified further to be

E ¼ 1

cosh2ðpeÞ
L�1: ðB4Þ
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