
Monte Carlo simulation of thermal fluctuations below the onset of Rayleigh-Bénard convection

Jun Zhang and Jing Fan*
Laboratory of High Temperature Gas Dynamics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China

�Received 11 January 2009; published 4 May 2009�

The density fluctuations below the onset of convection in the Rayleigh-Bénard problem are studied with the
direct simulation Monte Carlo method. The particle simulation results clearly show the connection between the
static correlation functions of fluctuations below the critical Rayleigh number and the flow patterns above the
onset of convection for small Knudsen number flows �Kn=0.01 and Kn=0.005�. Furthermore, the physical
nature for no convection in the Rayleigh-Bénard problem under large Knudsen number conditions �Kn
�0.028� is explained based on the dynamics of fluctuations.
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I. INTRODUCTION

Spontaneous small fluctuations always occur in a system
at a finite temperature due to molecular thermal motions.
Their studies are usually based on the fluctuating hydrody-
namics, first proposed in 1957 by Landau and Lifshitz �1�. It
is assumed that the fluctuations can be described by the hy-
drodynamic equations supplemented with random noise
terms, which are determined by the fluctuation-dissipation
theorem. The theory of fluctuations for fluids in thermody-
namic equilibrium is well established �2,3�. For instance, the
fluctuation correlations in thermodynamic equilibrium are
spatially short ranged, except for states near a critical point.

On the other hand, nonequilibrium fluids, associated with
long-range fluctuation correlations, can exhibit a large vari-
ety of complex fluctuation phenomena such as thermal con-
vection or turbulence. Thus a study on fluctuations may be
the first step in understanding the microscopic mechanisms
of macroscopic behavior of fluids. During the past three de-
cades, the fluctuating hydrodynamics has been extended and
applied to nonequilibrium fluids based on an assumption that
the noise correlations satisfy local thermal equilibrium �4�.
As an example, one may consider a fluid confined between
two horizontal parallel plates maintained at two different
temperatures, which is the well-known Rayleigh-Bénard
�R-B� problem. Many studies �4–7� focused on the stationary
nonequilibrium states before the convective instability hap-
pened, and the coupling between hydrodynamic modes
through the nonequilibrium fluxes or gradients was shown to
be responsible for the long-range nature of the fluctuations.

Among experimental studies, Sengers and co-workers �8�
verified the theoretical analysis of the nonequilibrium contri-
bution to the dynamic structure factor of a liquid. The re-
search group of Ahlers �9� determined the intensity of ther-
mal fluctuations below the onset of R-B convection by
shadowgraph technique, and their results were in agreement
with the predictions based on fluctuating hydrodynamics.

Since the spontaneous fluctuations are caused by the ther-
mal motions of molecules, a more direct and physically rea-
sonable approach is the particle simulation, such as the direct
simulation Monte Carlo �DSMC� method �10,11�. The strat-

egy of DSMC is to track a large number of representative
molecules that move within the computational domain, inter-
act with boundaries, and collide with each other on a proba-
bilistic basis. The DSMC method was first successfully ap-
plied to many high-speed problems in context of aerospace
engineering, and was then extended to investigate the mecha-
nism of various fundamental flow phenomena at the molecu-
lar level, including the R-B transition from thermal conduc-
tion to convection �12–14�. Furthermore, it has been applied
to study long-range fluctuation correlations in nonequilib-
rium gases by Mansour et al. �15� and the dynamics of the
fluctuations in thermodynamic equilibrium from continuum
to collisionless regimes by Bruno et al. �16�. Consequently,
the DSMC method is a promising tool to investigate the
characteristics of thermal fluctuations, especially, the long-
range fluctuations responsible for the self-organization of the
complex flows.

In this paper we will employ the DSMC method to study
the fluctuations in the R-B problem. As is known, it is the
first time that the particle simulation method is used to verify
the connection between the fluctuation correlations below the
onset of the thermal instability and the flow patterns above
the onset of convection. Meanwhile, we want to find out the
physical nature why convection cannot happen in the R-B
problem with Kn�0.028.

II. SIMULATION CONDITIONS AND ANALYSIS METHOD

The relevant nondimensional parameter in the R-B prob-
lem is the Rayleigh number �17�,

Ra =
�g�Td3

��
, �1�

where �, �, and � are the coefficients of volume expansion,
kinetic viscosity, and thermal diffusivity, respectively, g is
the acceleration of gravity, �T=Tl−Tu is the temperature dif-
ference between the lower and upper plates, and d is the
height of the fluid layer. For gas flows discussed here, a
substitution of the kinetic transport coefficients for a hard-
sphere gas into Eq. �1� yields �13,14�*Corresponding author; jfan@imech.ac.cn
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Ra =
2048

75�
�

1 − r

�1 + r�2Kn2Fr
�2�

It is obvious from Eq. �2� that Ra depends on the temperature
ratio r=Tu /Tl, the Knudsen number Kn=	 /d, and the Froude
number Fr=cm

2 /gd, where 	 is the molecular mean-free path
and cm=�2kTl /m is the most probable thermal speed. In the
hydrodynamic limit �Kn→0�, thermal convection sets in
when Ra exceeds the critical value at Rac�1708 �17�. For
finite Knudsen number gas flows, the critical Rayleigh num-
bers are somewhat different because of “no-Boussinesq” ef-
fects �13,14�.

In our study we focus on the two-dimensional R-B prob-
lem below the onset of thermal convection for a fixed tem-
perature ratio r=0.1. The required Rayleigh number is deter-
mined by adjusting the Froude number Fr, more concretely,
by changing the strength of gravity �13,14�. As a usual prac-
tice in the DSMC method, the computational domain is di-
vided into sampling cells within which the macroscopic
quantities are obtained by sampling the molecular informa-
tion, and each sampling cell contains some subcells within
which collision pairs are selected �10�. The hard-sphere �HS�
model is used to describe interactions between gaseous mol-
ecules. The calculating time step is smaller than the mean
collision time of molecules. Diffusive reflections are as-
sumed at the upper and lower walls, that is, molecules col-
liding with these walls rebound with an equilibrium Max-
wellian distribution at the temperature of the corresponding
wall, while periodic boundary conditions are assumed in the
horizontal direction. The sampling is taken at the final steady
state after an initial transient period. The steady or mean
values are obtained by time average in a long enough time
duration in sampling cells, while the unsteady or instanta-
neous values are the average in one calculating time step in
sampling cells, then the fluctuations are defined as the differ-
ence between the instantaneous and the average values.

In particular, one is usually interested in the power spec-
trum of density fluctuations of the wave vector q, i.e., the
dynamic structure factor �2,3� defined as

S�q,
� =
1

2�
�

−�

�

dt exp�− i
t�����q,0���q,t�	 , �3�

where ��q , t� is the space Fourier transform of the density
fluctuations and the brackets � 	 denote an ensemble average.
Correspondingly, the static characteristics of fluctuation cor-
relations can be described by using the equal-time correla-
tion function, i.e., C�r�= ���0���r�	, which is the inverse
Fourier transform for the static power spectrum S�q�.

In our simulation the density fluctuations are sampled at
discrete space-time points. With the boundary conditions be-
ing assumed periodic in the horizontal direction, it is easy to
determine the static power spectrum of the density fluctua-
tions along the horizontal direction by the Fourier transform
on discrete space points at equal time steps, and then the
static correlation function can be obtained by the inverse
Fourier transform for the static power spectrum. If a double
Fourier transform is applied to the density fluctuations on
different space and time points, we can obtain the dynamic
structure factor.

Since in the DSMC method, each simulated molecule rep-
resents a large number of real molecules and the density
fluctuations are proportional to the gas density, the intensity
of the simulated fluctuations is proportional to the intensity
of the real fluctuations. In order to reduce the statistical scat-
ter inherent in a particle simulation method to an acceptable
level, long time averaging is performed in each single simu-
lation run.

III. RESULTS AND DISCUSSION

A. Kn=0.01

The simulation results obtained by the DSMC method
show that the critical Rayleigh number Rac based on Eq. �2�
for r=0.1 is about 1773 �13,14�. First we consider the fluc-
tuations below Rac with Kn=0.01, and the aspect ratio �
=L /d=2. The computational domain is divided into 64
�32 sampling cells, with each containing 4�4 subcells. We
focus our attention on the characteristic of the density fluc-
tuations at the 64 spatial points located at midheight of the
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FIG. 1. �a� The static power spectrum and �b� the correlation function of density fluctuations in the horizontal direction for Kn=0.01.
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simulation domain. In order to reduce the statistical scatter,
we use 10 000 samples in long enough time duration to ob-
tain the average. Figure 1 shows the normalized static power
spectrum S�kx� /S�0� and the real-space correlation function
C�x� /C�0� for various Rayleigh numbers, where kx=

qxL

2� is
the discrete wave number in the horizontal direction and x
represents the distance between the two space points along
the horizontal direction. It is shown that the static power
spectrum decreases monotonically with the wave number kx
for each Rayleigh number. The corresponding correlation
function first decreases with the distance x and then increases
until half of the length in the horizontal direction is reached,
and it is symmetric about x=1. The fluctuation correlation is
no longer short ranged like that in thermal equilibrium state,
but similar to that of a pair of counter-rotating vortices in a
thermal convection �Fig. 2�. The result is in agreement with
Wu and Alher’s experiment �9�, which shows that the inten-
sity of fluctuations below the onset of the convection is the
maximum at the critical wave number. Figure 1 also shows
that the intensity of fluctuation correlations increases as Ra
approaches to Rac, as is consistent with the dissipation struc-
ture theory founded by Prigogine �18�, which indicates that
the fluctuation is a trigger mechanism for the phase transi-
tion. When the Rayleigh number approaches to its critical
value, the random small fluctuations will be strengthened to
generate “giant fluctuations” due to coherence effects, then
the system changes from an unstable state to a stable and
orderly state.

B. Kn=0.005

If the aspect ratio is fixed as 2.0 and the boundary condi-
tions in the horizontal direction are periodic, there will be
only one pair of counter-rotating vortices above the onset of
Rayleigh-Bénard convection for Kn=0.01. When Kn gets
smaller, the flow patterns with more vortices may appear
�13�. One may ask whether the fluctuations below the onset
of convection share all of the physical features of the deter-
ministic patterns that would appear above the threshold. Here
we consider the R-B problem below Rac for Kn=0.005, and

the computational domain is divided into 128�64 sampling
cells, with each sampling cell also containing 4�4 subcells.
It is known that in DSMC method, the molecular movements
and intermolecular collisions are uncoupled over short time
intervals. Molecular motions are modeled deterministically,
whereas intermolecular collisions are handled on a probabi-
listic basis �10,11�. If the random numbers are different, the
collision pairs are selected and the postcollision velocities
will be different. Therefore, by selecting different random
number sequences in different simulation runs, diverse fea-
tures induced by molecular random thermal motions may be
emerged. Figure 3 shows the static power spectrum and the
correlation function for Ra=1600. Two cases are considered
in almost the same condition except for the random number
sequences in the simulation, with the power of kx=1 being
the maximum in the first case, where the same correlation as
of a pair of vortices is obtained, and with the power of kx
=2 being larger than that of kx=1 in the second case, where
the correlation as of more vortices is obtained. It is obvious
that fluctuations away from the onset of convection fore-
shadow to some extent all of the possible convective appear-
ance. The earlier theoretical studies based on fluctuating hy-
drodynamics �19� also show that the nonequilibrium
fluctuations close to the R-B instability have an important
influence on the pattern-selection process when convection
appears, and different characteristics of fluctuations would
lead to different convective patterns.

C. Kn=0.05

By using both DSMC and a finite-difference method
based on the continuum equations of compressible viscous
heat conducting gas with state-dependent transport coeffi-
cients, Stefanov et al. �13� obtained the R-B instability zone
with respect to two independent parameters Kn and Fr. The
zone of the convection regime was verified by a linear sta-
bility analysis of the corresponding continuum equations by
Manela and Frankel �20�. Their results indicate the existence
of a critical Knudsen number of about 0.028, that is, the
thermal convection will not happen when Kn�0.028 even
with high Ra numbers. The physical nature can be explained
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FIG. 2. �a� The velocity vector distributions and �b� the correlation function of density fluctuations in the horizontal direction for Ra
=3190 and Kn=0.01.
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by the characteristics of fluctuations. Let us consider the R-B
problem with Kn=0.05 and the aspect ratio �=2. The com-
putational domain is divided into 64�32 sampling cells,
with each sampling cell containing 2�2 subcells. Figure 4
gives the correlation function of density fluctuations in the
horizontal direction for Kn=0.05. In order to facilitate a
comparison, the correlation function for Ra=1550, Kn
=0.01, and equilibrium state is reproduced from Fig. 1�b�. It
obviously shows that there are no long-range fluctuation cor-
relations in the horizontal direction both with Ra=1550 and
Ra=2900 for Kn=0.05, as is similar to an equilibrium state
but is different from the case of Kn=0.01. Since the long-
range fluctuations are the necessary condition for thermal
instability, there will be no convection no matter how large
the Rayleigh number is for Kn=0.05.

To gain physical insight into the reason why there are no
long-range fluctuations in the horizontal direction for Kn
=0.05, one can look at the dynamics of the density fluctua-
tions. For simplicity and facilitating statistical calculations,
we let ky =1 and kx=0, i.e., we study the longest-range den-
sity fluctuations in the vertical direction, and with space av-
erage over the horizontal direction.

Figure 5 shows the normalized dynamic structure factor
S�ky =1,
�� /S�ky =1,0�, where 
�= 
d

qyCsNt
, Cs is the sound

speed, and Nt is the total time duration. There is a Rayleigh
line in the center for Kn=0.05, which corresponds to the
thermal diffusivity mode due to temperature fluctuations.
Such fluctuations do not propagate and only give rise to pure
diffusion. There are Brillouin lines at about 
�= �1, which
correspond to the sound modes due to pressure fluctuations
coupled with the fluctuating velocity field. The Brillouin
doublet is asymmmetrical due to the two associated sound
modes propagating through regions of different tempera-
tures. Besides the Rayleigh line and the Brillouin doublet, we
can also observe other peaks located at about 
�= �

1
2 . An

obvious explanation for these peaks is the existence of stand-
ing waves across the system �21�. The density fluctuations
may be converted to sound waves, which are reflected by the
rigid walls due to the finite size of the system, giving rise to
stationary waves. This kind of finite-size effect was also ob-
served in molecular-dynamics computations �22,23�. For
Kn=0.05, the intensity of the Brillouin doublet is much
smaller than that of the Rayleigh line and the effect of finite-
size, meaning that the fluctuations are mainly diffusive and
do not propagate. For instance, if there are density or tem-
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FIG. 3. �a� The static power spectrum and �b� the correlation function of density fluctuations in the horizontal direction for Kn=0.005.
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perature fluctuations somewhere in the field, the fluid ele-
ment will move due to buoyancy and may bring about ve-
locity fluctuations. However, for Kn=0.05 there are only
about 20 molecular free paths in the vertical direction, so that
particles move almost ballistically between the top and the
bottom plates with very little interactions. Therefore, the
density or temperature fluctuations in the field are mainly
diffusive and hardly result in velocity fluctuations in the ver-
tical direction. This fact reduces the coupling between tem-
perature fluctuations and velocity fluctuations parallel to the
temperature gradient, which is responsible for the long-range
nature of the fluctuations in the horizontal direction, as
shown by fluctuating hydrodynamics �4–7�.

For Kn=0.01, the intensity of the Brillouin doublet, cen-
tered around 
�= �1, is also smaller than that of the Ray-
leigh line, but greater than that of the effect of finite-size
located at about 
�= �

1
2 , 3

2 , which means that the effect of
the propagating modes of fluctuations plays an important
role. Consequently, the density or temperature fluctuations
somewhere in the field will cause the velocity fluctuations in
the vertical direction. This coupling between the temperature
fluctuations and velocity fluctuations brings about long-range
fluctuations in the horizontal direction for Kn=0.01. When
Ra approaches to the critical value, the long-range fluctua-
tions will trigger the thermal instability.

IV. CONCLUSIONS

In this paper we investigate the fluctuations in the R-B
problem below the onset of convection with the DSMC

method. For small Knudsen numbers, the connection be-
tween the fluctuation correlations below the onset of thermal
instability and the convective patterns above the threshold is
verified. Because the thermal fluctuations are spontaneous
due to molecular thermal motions, we can obtain all possible
patterns according to the fluctuation correlations although the
appearance of the exact pattern is a random event. In fact we
can obtain a desired convective pattern by adding external
disturbances to strengthen the desired form of fluctuation
correlations and suppress other undesired correlations. For
instance, by adding a periodic distribution of temperature on
the lower plate we can obtain the desired phase and wave-
length of the convective rolls. For a large Knudsen number,
the fluctuation correlations in the horizontal direction are
negligible, thus, the thermal conductive state is always
stable. A qualitative explanation is also given based on the
dynamics of fluctuations in this paper. Our present observa-
tions suggest that the characteristics of the fluctuations below
the onset of thermal instability can be used to decide whether
there will be convection and to determine the possible flow
patterns when convection appears. The next major step will
be the study of the fluctuations in complex flows such as the
thermal convection or turbulence, which will help us under-
stand the underlying microscopic mechanisms for behaviors
of macroscopic fluids.
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