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Abstract--Predictions based on an anisotropic elastic-plastic constitutive model proposed in the 
first part of this paper are compared with the experimental stress and strain data on OHFC copper 
under fi,rst torsion to about 13% and partial unloading, and then tension-torsion to about 10% 
along eight different loading paths. This paper also describes the deformation and stress of the 
thin-walled tubular specimen under finite deformation, the numerical implementation of the 
model, and the detailed procedure for determining the material parameters in the model. Finally, 
the model is extended to a general representation of the multiple directors, and the elastic-visco- 
plastic extension of the constitutive model is considered. © 1998 Published by Elsevier Science Ltd. 
All rights reserved 
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I. INTRODUCTION 

In  the study of  elastic-plastic behavior  o f  polycrystalline metals, one o f  the main  tasks is 
to describe the yield surface and its evolution with plastic deformation.  At  the beginning 
o f  plastic deformation,  the yield surface is found (e.g. Taylor  and Quinney,  1931) to be 
close to the von  Mises criterion in stress space. After some plastic deformation,  the yield 
surface changes in size, posit ion and shape. I f  the plastic deformat ion is small, the change 
in shape is not as large as that  in size and posit ion (e.g. Naghdi  et al., 1958; Phillips and 
Das,  1985), and thus the yield surface can be approximately  expressed by a circle with a 
changed size and center, i.e. by a circle with isotropic and kinematic hardening. The 
evolut ion c f  isotropic and kinematic hardening with plastic deformat ion  has been well 
studied and m a n y  models for it have been widely accepted. For  example, the Prager 
(1949) and Ziegler (1959) linear model,  the Arms t rong  and Frederick (1966) nonlinear  
model  and the Dafalias and Popov  (1976) two-surface model,  have all been widely studied. 

*Dedicated to the memory of Professor James F. Bell. 
tVisiting scholtar; permanent address: Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080, 
People's Republic of China. 
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The difficulty in describing the yield surface lies in the case of intermediate and finite 
plastic deformation. Stout et aL's (1985) and Khan and Wang's (1993) experimental data 
on subsequent yield surfaces show that the shape change is as significant as the position 
change. If the assumption of the circular yield surface is maintained, the description is 
expected to depart from the experimental data (Khan and Parikh, 1986; Khan and Cheng, 
1996a). If the yield surface is not supposed to be circular, other internal variables have to 
be added to the isotropic and kinematic hardening. The difficulty becomes more serious if 
the plastic deformation history is complicated and the yield surface is composed of several 
sections with different curvatures. 

To describe the shape change of the yield surface under finite plastic deformation, Khan 
and Cheng (1996b) proposed a phenomenological model in the first part of this paper. In 
this model, there are many slip systems (material directors) which are randomly dis- 
tributed in a material element. The critical resolved stresses in different directions form the 
yield surface. The relationship among the critical resolved stresses corresponds to the 
interaction of the material directors. If the interaction is approached by a polynomial of 
the angles among the material directors, the size, position and shape of the yield surface 
can be expressed in terms of the zero, first and higher degree, respectively. The evolution 
of the yield surface, including its shape, is accounted for by the change of the coefficients 
which change with plastic deformation. For the sake of convenience, hereafter this model 
will be called "multiple directors model". 

This paper focuses on the correlation between the prediction by using this constitutive 
model and the experimental stress-strain data of OHFC copper under non-proportional 
loading as given by Khan and Wang (1993). The experiments were conducted on thin- 
walled tubular specimens. The experimental data includes the nominal stresses and the 
engineering strains under the following loading paths: first torsion to about 13% and 
partial unloading, and then torsion-tension at angles 0, 15, 30, 45, 60, 75, 90 and 180 ° to 
the unloading shear stress axis. To clarify the relation between the experimentally mea- 
sured stresses and strains and those used in a general constitutive equation, Section II 
gives a description of the stress and deformation states of the thin-walled tubular speci- 
men under finite deformation. The constitutive equation used in the description is speci- 
fied in Section III. In Section IV, the general procedure of determining the parameters in 
the model is discussed and applied to the case of the experiments. Section V provides the 
experimental data and the theoretical prediction of the model. This set of experimental 
data had been compared by Khan and Cheng (1996) with Chaboche's (1986) super-posi- 
tional nonlinear model, the endochronic model (Valanis, 1971; Valanis and Lee, 1982; 
Watanabe and Atluri, 1986 and the two-surface model (Dafalias and Popov, 1976; Dafa- 
lias, 1983). To show the effect of the shape change of the yield surface on the stress-strain 
relation, Section V also gives some comparisons of the predictions of all the four models. 
Finally, the further development of the multiple directors model is discussed in Section 
VI; and some conclusions are given in Section VII. 

II. DEFORMATION AND STRESS OF THIN-WALLED TUBULAR SPECIMEN 

To describe a thin-walled tubular specimen, let (R, ®, Z), (eR, eo, ez) and (r, 0, z), 
(er, e0, e~) be the cylindrical coordinates and the unit directions before and after defor- 
mation. Since the radial deformation of the specimen is generally much smaller than axial 
and angular deformations, the deformation of the specimen could be described as follows: 



An anisotropic elastic-plastic constitutive model for single and polycrystalline metals-- I I  211 

?" ~ otR 

0 = 0 + o)Z (1) 

z = ~ . Z  

where ot and ,k are the radial and axial stretch ratios and w is the angle of twist per unit 
undeformed length• From the description of deformation, deformation gradient F and 
velocity gradient L are found to be (e.g. Khan and Haung, 1995) 

F = ae, ® eR + ueo ® ee + ogotReo ® ez  + Xez ® ez  (2) 

L = F. F-1 = ~__ er ® er  - -  ( o Z e r  ~ eo + (oZeo ® er 
Ol 

+ -or eo ® eo + ~ o  ® e~ + -2 ez ® e~ 

(3) 

where 
= ctR&. 

X (4) 

It is noted that in obtaining eqn (3), the following geometrical relations have been used: 

e, = 0 eo = d~ Z eo (5) 

and 

e o = - O  e , = - f o Z e ,  (6) 

From eqn (3), the strain rate D and the material spin W are obtained. 

D =  ( L + L  r) = ~ - e r ® e ~ + - e o ® e o  
Ol Ol 

+ ~ e0 ® ez + ~ ez ® e0 + -2 e~ ® ez 

(7) 

and 

W = ~ (L - L r) = - & Z e r  ® eo + &Zeo ® er 

~ez ®eo + ~ eo ® e~ - 

(8) 

Let P and M denote the tensile force and torsional moment acting on the specimen, the 
corresponding components of the Cauchy stress in the specimen will be 

P P (9) 
a~z -- 2Jrtr - a 
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M m 
ozo -- 27rtr2 -- °t 2 (lO) 

in which t is the thickness of  the specimen, 

M P 
m - 2 r r t R 2 ,  and p = 2 z r t R  (11) 

are the nominal stress components• 
As for other components of  the Cauchy stress in the specimen, it is known that 

arO ---- C% = 0, and crrr -- 0 since the specimen is a thin tube. But component  croo cannot be 
known before the constitutive relation of  the material is considered. As a result, the 
Cauchy stress in the specimen can be written as 

m m D 
tr = cr00e0 ® eo + -~ eo ® e~ + - -  ® eo +'--  e~ ® Ot 2 ez ol ez Ol z 

(12) 

This stress and the above deformation produce the following material and Jaumann 
rates of  the stress: 

mZ& 
dr = -Zf,.~ooer ® eo ~2-- er ® e~ 

arh - 2md 
- Zfooooeo ® er + dooeo ® eo -F Ot 3 ¢0 ® ez 

mZ& otrh - 2md "ao-v& 
a2 ez ® er q Ol 3 ez ® eo + ~ ez ® ez 

(13) 

and 

6" = 6 - - W .  cr + t r . W  

• q~m (aerh - 2md p 
= + 

(arh - 2rod P~ ~ e  ® eo + (YP - pd " ) 

(14) 

The stress is related to the deformation through the constitutive response of  the mate- 
rial. As usual, the constitutive relation between the Jaumann rate of  Cauchy stress and 
strain rate follows this linear form: 

~" = C : D (15) 

where C is the elastic-plastic modulus. Because the deformation considered here is only 
tension along and torsion around the axial direction of  the tube, the components  of  the 
modulus with index rO and rz will be zero for initially isotropic materials. This makes the 
six component  equations of  eqn (15) reduce to four equations. By substituting eqns (7) 
and (14) into eqn (15), the four equations are found to be 
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A l l ~ + A 1 2 6  = t (16) 
ot 

A21 ~ +  A226 = ~2 (17) 

& A~ '+B~ (18) 

6oo = C~  + De# (19) 

Crggz 
A - (20) 

Crrrr "[- Crroo " 

Crroz 
B -- (21) 

Cr, r~ + Cr,oo 

C = Coozz "[- A Coorr + A Coooo (22) 

m 
D = Coooz + ~ + BCoo~ + BCoooo (23) 

A~ = Czzzz + A(Cz~r~ + C=oo + p) (24) 

m (25) 

A2~= Cozzz+ A(Cozrr+ Co2oo+ 2_~) (26) 

1 ( - - ~ ) + B ( C o z r r + C o z o o + - ~ )  A22 = Cozoz - ~  croo P 2m (27) 

By solving eqns (16) and (17), deformation rates )~ and & are related to loading rates b 
and rh at any stage of  loading or deformation in which deformation and stress, such as 
~., ot and troo, are known. Subsequently, the deformation and stress rates, ~ and 6.oo, are 
found from eqns (18) and (19), and thus the complete state of  deformation and stress rates 
are determined. In tension-torsion tests on the tube, only loadings p and m or deforma- 
tion ~. and o~, are controlled, while the stress troo and the deformation a are not known, all 
of  which is reflected in this procedure for finding dt and 6.oo. With the relation between the 
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stress and deformation rates known, the relation between the total stress and deformation 
is established by integration step by step. 

IlL IMPLEMENTATION OF THE CONSTITUTIVE MODEL 

In the first part of this paper, polycrystals are supposed to be associated with a large 
number of randomly distributed slip systems. For each slip system, say, the ith slip sys- 
tem, let r i , r i, x i and r0 denote the resolved shear stress, isotropic and kinematic hardening 
and the initial shear yield stress, respectively, i.e. 

I r i  -- Xi I<-~ ri  -[- ro (28) 

then the evolution equations of the isotropic and kinematic hardening with plastic defor- 
mation are assumed to be 

and 

N 
yci = ~-'] bx~,J(XoSiJ + x 1 p i  . p j  + X3(pi . pj)3 _ s i g n @ J ) x  i) 

J 

N 
i i = ~__,br [ ~'J I (Ro + R2(P i " pj)2 _ r i) 

J 

(29) 

(30) 

where bx, X1, )(3, br, Ro, R2 and Xo are material parameters, N is the number of activated 
slip systems, ~i is the slip rate and pi is defined by the slip direction m i and the slip plane 
n i such that 

p i  1 i n i n i = ~ ( m  @ + ® m i ) .  (31) 

In other words, if the plastic behavior is described by 

N 

J 
(32) 

then the work hardening h 'j is 

h ij = bx(Xo3ij  + X 1 P  i : PJ  -F X3(P  i : p j ) 3  _ s ign ( f / J )x  i ) 

+ sign (r  i - x i ) b r s i g n  ( y J ) ( R  0 -+- R2(P  i " p j)2 _ r i ) .  
(33) 

Written in the form of eqn (15), this model, an analogue to the plasticity theory of sin- 
gle crystals (e.g. Asaro, 1983), can be found to be 

= Ce _ v-,x---,_.2~,(gij)_,A i ® Aj  (34) C 
i j 
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gO = h O + ~ i . p j ,  (35) 

~ i  p i  . C e - -  O'" Q i  + Q i  = -; f t .  

and C e is the elastic modulus. If Hooke's law is assumed for the elastic behavior, 

C e ~-- 2GI4 + ~ I ® I 

(36) 

(37) 

where G is the shear modulus, v is Poisson's ratio, I and I4 are the unit second and fourth 
order tensors. 

It is noted that the following relations have been applied in deriving the elastic-plastic 
modulus C: 

N 
L : Le  + I., p , LP=Eyimi@ni (38) 

i=l 

and 

m i = L e .  m i ,  l i i  = - n  i • L e (39) 

N 

~,i = E ( g # ) - I A j  : L. (40) 
j= l  

Therefore, the numerical implementation of the model for the deformation of the speci- 
men is straightforward. The deformation rates ~, 6t and ~ are found for a set of loading 
rates ~b and rh from the combination of this model and the general relations of the tubular 
specimen given in the preceeding section. Subsequently, L, ~>i, Lp, L e, m i and fi i are 
determined one after another. When all the variables of the deformation and stress are 
changed to up-to-date values and the computation is repeated, this model predictions 
are obtained. 

IV. D E T E R M I N A T I O N  OF T HE  MATERIAL P A R A M E T E R S  

In addition to two elastic constants, G and v, eight material parameters are included in 
the multiple directors model for the description of anisotropic plastic behavior. Naturally, 
determining these material parameters begins with the understanding of their physical 
interpretation. For instance, the initial yield shear stress r0 could be determined by a uni- 
axial tension test or simple shear test. 

During the plastic deformation of polycrystals, it is known that most of plastic defor- 
mation corresponds to the activation of multiple slip systems. Therefore, it is under- 
standable from eqn (29) that the parameter Xo representing the independent hardening 
has much less contribution in value of the kinematic hardening ~i than XI and X3, if they 
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are of the same order. As a result, the value of X0 is not significant in the model. However, 
the existence of Xo plays a crucial role in providing the nonsingular gU in eqn (34). If 
X0 = 0, g• is approximately 2GP i : PJ from eqns (34)-(37), and thus it becomes singular 
when the number of activated slip systems is more than five. Combining the two aspects, 
we suggest that X0 = 1. 

From eqns (31) and (39), it is found that 

e i  = D e . Q i _ Q i  . De q_ w e  . p i  _ p i  . w e (41) 

where D e and W e are, respectively, elastic strain rate and spin defined by the symmetrical 
and anti-symmetrical parts of L e, and that 

(p i : p j). = 2D e : (Q i . pj  + p i . Q j). (42) 

That is, even though the slip system P" changes with elastic deformation and rotation, the 
angle pi:pj between the ith and jth slip systems depends only on elastic deformation. Since 
elastic deformation is usually much smaller than plastic deformation in polycrystalline 
metals, elastic deformation could be ignored in the study of plastic behavior without sig- 
nificant error. With this consideration, p;:pi could be taken to be constant during any 
deformation history. 

With constant Pi:pj, the sums ofXod 0 + X1P; : PJ + X3(P i • pj)3 and Ro + R2(P i • pj)2 
in eqns (29) and (30) are constants during deformation. From eqn (30), all activated slip 
systems contribute to the isotropic hardening of a slip system; the contribution of each 
activated slip system is proportional to the difference between the constant 
Ro + R 2 ( p i : p j )  2 and the isotropic hardening itself; when the jth slip system is con- 
tinuously activated, the isotropic hardening of the ith slip system will continuously 
increase until it reaches the constant Ro+R2(p i  :pj)2.  Thus, the constant 
Ro + R2(P; • p j)2 is the saturated value of the cross isotropic hardening between the ith 
and jth slip systems, and consequently it is expected that br > 0 and 
R o + R 2 ( p i  :pj)2 >0 .  Further, when pi is the same as PJ, pi : p j  =1, and 
Ro + R2(P i " P J)2 = Ro + 1 R2. The latter represents the self hardening effect; when pi is 
perpendicular to PJ, pi : p j  = 0, and Ro + R2(pi : PJ) 2 =  Ro represents the maximum 
cross hardening effect. Thus, R2 is the maximum difference between self hardening and cross 
hardening, and Ro is the phenomenological isotropic hardening. In light of the experimental 
result that a yield surface has the smallest size in the loading direction, the self hardening is 
expected to be smaller than the cross hardening. That is, R2 < 0 and Ro > -R2. 

The similar analysis can be applied to eqn (29) to obtain the physical interpretation of 
its parameters. With the continuously activatedjth slip system, the kinematic hardening of 
the ith slip system, x 1, keeps increasing until it reaches its saturated value 
Xo~iJ + X l p i : p j  +X.3(pi .  pj)3. In the saturated value, Xl represents the phenomen- 
ological kinematic hardening. Thus, bx > 0 and Xl > 0. As for X3, since the yield surface 
tends to be sharper in loading direction and to be flatter in the opposite direction, X3 
should be positive. Moreover, compared to the isotropic hardening which is indepen- 
dent of the slip direction of an activated slip system, the kinematic hardening behaves 
differently whenever an activated slip system changes from a forward slip to a back- 
ward slip. This fact is expressed by the factor sign(TJ).  When the backward slip 
continuously increases, x i decreases until it reaches the saturated value 



An anisotropic elastic-plastic constitutive model for single and polycrystalline metals--II 217 

_Xo~iJ_ x i p i .  p / _  X3(pi .  pj)3. Especially at the beginning of a backward slip, the 
hardening modulus Xo8 ~ + XIP i" PJ .-1-X3(P i" p j)3 q._xi is greater than the hardening 
modulus Xb8 (/+ XIP i : PJ -1- X3(P i : pj)3 _ x i for the continuous forward slip. 

It is worthwhile to point out that eqns (29) and (30) describe the evolution of the 
yield surface, and do not represent the relation between the yield surface and the slips 
and directions of slip systems. This method of describing hardening in a form of dif- 
ferential equation with respect to time is the same as in, e.g. Armstrong and Frederick's 
(1966) model for (phenomenological) kinematic hardening. This method is based on the 
experimental observation that a yield surface or hardening is dependent on plastic 
deformation history. Therefore, eqns (29) and (30) are, in general, unintegrable into 
direct relations between hardening and slips and directions. In some elastic-plastic con- 
stitutive models, e.g. Chaboche's (1986) nonlinear super-positional model and Dafalias 
and Popov's (1976) two surface model, the evolution of hardening with plastic defor- 
mation cart be integrated in some specific cases, such as simple tension or simple torsion 
under infinitesimal deformation. But this model does not have this feature, because the 
evolution equations, eqns (29) and (30), specify the relation between hardening and slips 
and directions, instead of the hardening and phenomenological plastic deformation. 

To specifically determine the material parameters for a given material, it is preferred to 
have an experimental yield surface as well as experimental stress-strain data on simple 
tension or ~:orsion. From one dimensional experimental stress-strain data, the elastic shear 
modulus and the initial yield stress can be determined, if the elastic deformation is 
assumed to be isotropic. From the experimental yield surface, the saturated values of the 
hardening, Ro, R2 and X1, X3 can be estimated. This provides a starting point to numeri- 
cally determine these parameters and the shape-controlled parameters br and bx through 
implementing the model. The detailed procedure of estimating these parameters is given in 
the following determination of the parameters for the fully annealed OHFC copper. 

Figure 1 shows the loading paths of the tubular copper specimen. The specimen was 
first twisted along path O ~ C to 13% and underwent some unloading along C ~ U, and 
reloaded with combined stretching and twisting at angles of 0,15, 30, 45, 60, 75, 90 and 
180 ° to the shear stress axis. 

In terms of engineering stress and strain, the experimental data of simple shear defor- 
mation, the solid lines, are given in Fig. 2, in which curve OC is the first stage torsion, 
curve CU is the unloading before the nonproportional loading, curve UF is the reversal 
loading which corresponds to the loading path of 0 ° in Fig. 1, and curve UCD is the 
reloading corresponding to the loading path of 180 ° . By using 0.2% offset strain as the 
yield criterion, the initial yield point and the reversal yield point are labelled by point A 
and point E in Fig. 2. From these data, the initial shear yield stress r0 is found to be 
1.732 ksi, and the elastic shear modulus G, is taken to be the average slope of OA and CE. 
The Poisson's ratio is assumed to be 1/3. 

Also from Fig. 2, the stress-strain data at the loading point C and the reloading point E 
can be found. At point C, the stress and strain are 12.2 ksi and 13.4%. At point E, the stress 
and strain are -8.30 ksi and 12.8%. These data show that when plastically deformed to 
about 13%, the material has isotropic hardening of (12.2 + 8.30)/2 - 1.732 = 8.518 (ksi) 
and kinematic hardening of (12.2-  8.3)/2 = 1.95 (ksi). In addition, the loading slope 
around point C is much smaller than the reloading slope around point E. This phenomenon 
suggests that the kinematic hardening has developed to a significant extent when plastic 
deformation reaches to 13%. In other words, it would be a good approximation of the 
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kinematic hardening if the saturated value of the kinematic hardening is taken to be a 
little larger than 1.95 ksi, say 2 ksi. Accordingly, since the kinematic hardening given by 
eqn (29) is approximately an exponential function of plastic deformation, then the shape- 
controlled parameter bx should be a value, say 100, such that it makes the kinematic 
hardening value almost equal to its saturated value when plastic deformation is about 
13%. 

With these estimated parameters for kinematic hardening, the parameters for iso- 
tropic hardening can be further estimated. At point D in Fig. 2, the stress and strain 
are 16.7 ksi and 26.9%. By subtracting the estimated kinematic hardening and the initial 
yield stress from the stress, the isotropic hardening at this point is about 
16.7 - 1.732 - 2 = 12.968 (ksi). With the two isotropic hardening values and if the iso- 
tropic hardening given by eqn (30) is approximated by an exponential function, then the 
saturated value and the shape-controlled parameter br for the isotropic hardening to be 
17.82ksi and 5. 

The above estimated values, 17.82 and 2ksi, of the saturated isotropic and kinematic 
hardening are based on the experimental data under simple shear deformation. They are 
the approxiimation of the terms R0 + R2(P i " pj)2 and X 1 P  i • PJ + X3(P i : pj)3 in eqns 
(30) and (29), or in other words, R0 + 4R2 and 2Xl + 8X3 are approximately 17.82 and 
1.95ksi, since -1 /2  < pi . pj < 1/2. In order to specifically estimate R0, R2, X1 and )(3, 
the experimental yield surface at point U in Fig. 1 is given by Fig. 3(a) and (b). Figure 3(b) 
is a representation of Fig. 3(a) in which o is the angle between a direction originated at the 
stress point (0,0) and the unloading direction or the negative shear stress axis. The iso- 
tropic and kinematic hardening is calculated by considering the yield surface in Fig. 3(a) 
to be symmetrical to the shear stress axis and by measuring the length minus the initial 
yield stress and the center in every direction. In Fig. 3(b), the isotropic hardening appears 
to be a quadratic function of cos o as shown by the dashed line with a maximum value of 
10.35 ksi and a minimum value of 8.518 ksi. If this ratio of 10.35/8.518 = 1.27 is supposed 
to hold for Ro to R0 + 4R2, then R0 = 1.27(R0 + 4R2) --- 1.27 × 17.85 = 22.67 (ksi) and 
R2 = (17.85-22.67)/4 =-1 .21  (ksi). Moreover, Fig. 3(b) shows that the kinematic 
hardening is approximately a pure cubic function of cos o as shown by the dashed line. 
That sugge.sts that X1 could be supposed to be zero and )(3 to be the saturated value of 
8 x 2 = 1 6 k s i .  

Starting with these estimated values, the parameters for the OHFC copper can be 
finally determined, with the goal that the parameters make the numerical prediction of the 
model as close to the whole set of experimental stress-strain data as possible. The final 
values of the parameters are found to be R0 = 23 ksi, R2 = - 1 . 5  ksi, br = 5, X1 = O, 

)(3 = 16 ksi and bx = 100. Obviously, the elastic parameters and the initial yield stress do 
not need to be put into the numerical iterating process and should keep their values as 
obtained from the simple shear stress-strain data. 

V. EXPERIMENTAL DATA AND PREDICTION OF THE MODEL 

Figures 2 and 3(a) show that the model's determined material constants give a predic- 
tion that agrees well with the experimental data on the simple shear deformation, includ- 
ing the loading, unloading and reversal loading, and the yield surface after the first stage 
loading. The model is especially successful at predicting that a yield surface changes not 
only in its size and position, but also its shape. 
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Figure 4 gives the experimental data and the prediction of  the model concerning the 
axial and shear strains under the nonproportional loading paths of  15, 30, 45, 60, 75 and 
90 ° in Fig. 1. For the sake of convenience, the strains are taken to be zero at the beginning 
of  the additional loading, i.e. at U. This result shows that the model can predict the 
direction of  plastic strain rate very well. In the model, all the framework follows the 
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Fig. 4. Comparison of directions of plastic strain rates. Experiments; ...... predictions of the model. 

plasticity theory of crystals, rather than the yield surface and the commonly used nor- 
mality rule. Actually, after the direction-dependent quantities, instead of state-dependent 
quantities, are used to describe the plasticity-induced anisotropic behavior, the conven- 
tional normality rule still holds for the direction-dependent quantities in relation to the 
yield surface. This treatment is an extension of the normality rule to the case of strong 
anisotropy. To show the effect of this extension, Fig. 5 represents the predictions of other 
three models given by Khan and Cheng (1996a), in which (a) is the result of Chaboche's 
(1986) super-positional nonlinear model, (b) is the result of the endochronic model 
(Valanis, 1971; Valanis and Lee, 1982; Watanabe and Atluri, 1986 and (c) is the result of 
the two-surface model (Dafalias and Popov, 1976; Dafalais, 1983. Comparison of Fig. 4 
with Fig. 5 shows that the prediction of this model does not have as systematic a depar- 
ture from the experimental data as do those of other models. 

Figure 6 shows the experimental data and the prediction of the model concerning the 
shear stress--strain relation after the first-stage twisting load. The shear strain is the rela- 
tive deformation to the beginning of the non-proportional loading. The results show that 
the prediction agrees with the experimental data. 

VI. FURTHER DEVELOPMENT OF THE MODEL 

The success of the prediction of the constitutive model to the anisotropic behavior of 
OHFC copper under non-proportional finite deformations encourages us to consider the 
further development of the model. Among the potential aspects to be developed, the non- 
Schmid effect and the visco-plasticity seem significant. 

As pointed out previously, the key point of the model lies in the description of the 
plasticity-induced anisotropic behavior. Instead of using many state-dependent internal 
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(c) experiments; ...... Dafalias and Popov's (1976) model. 



An anisotropic elastic-plastic constitutive model for single and polycrystalline metais--II 223 

15 

10 

-5  

-10  

15 
,...., ,, ' ' ' '" '"" 

..'"' ..- 30 

60 "" .45 

75 

90 

-15  ~ , ' ' 
-0.1 -0.05 0 0.05 0.1 

shear strain 
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Experiments; 

variables as an extension of the conventional Mises-type flow theory, this model is based 
on direction-dependent variables and focuses on the interaction among them. As a simple 
and natural extension of  the plasticity theory of crystals, the direction-dependent variables 
are a large number of randomly distributed slip systems. All of  the descriptions of  slip 
systems, including the relation between slips and plastic strain rate and the Schmid law, 
are applied to the direction-dependent variables. As we know, the Schmid law is the same 
as the Tresca criterion of  the maximum shear stress in the case of  randomly distributed 
slip systems. If  the Tresca criterion is changed to another criterion, such as Mises-type 
criterion, as', the phenomenological experimental data on the initial yield surface sug- 
gested, the Schmid law has to be changed, or the non-Schmid effect needs to be added, or 
in a general sense, the direction-dependent variables do not necessarily need to be slip 
systems. 

One way to include the non-Schmid effect is to consider the representation of a stress 
state of  a material element. It is known that a stress can be expressed by three principal 
values. If  the volume part of  a stress is supposed to be independent of plastic deformation, 
the plastic behavior can be described with just two of the three values. The maximum 
shear stress is one of  them. Thus, the Schmid law is one parameter approach to the plastic 
behavior. The non-Schmid effect is the effect of  the other parameter. If trl, tr2 and era 
denote the t]hree principal stresses, where erl _< O"2 _( 03,  (0"30 - -  t l r l ) /2  is the maximum shear 
stress, then ~730 - er2 may be used to describe the non-Schmid effect. However, mechanism 
of  plastic deformation is mainly due to the shear deformation, and it is better to describe 
plastic defonxiation in terms of  shear stresses. It is easily verified that a deviatoric stress s 
can be expressed as two shear stress values. For  instance, s can be written as 
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s = rP + V~rcos~PP + ~/-2rsin(~PPP (43) 

where 
1 

P = ~ ( m ® n + n ® m ) ,  (44) 

1 
PP = ~ (m ® k + k ® m), (45) 

PPP = ~ (k ® n + n ® k), (46) 

n, m and k are three unit vectors perpendicular one to another, r and q~ are two para- 
meters. Obviously, the first term of this expression corresponds to the Schmid law, and the 
rest may be used to describe the non-Schmid effect. In this case, the direction-dependent 
variables are represented by P + x/~cos~PP + v~ sin ~PPP with P, PP and PPP  taking 
many values in the three-dimensional space. By using the yield criterion that a stress times 
the direction-dependent variables reaches a critical stress, the Mises yield surface is 
obtained when every direction has the same critical stress. Moreover, the direction- 
dependent variables are related not only to the geometrical quantities P, PP and PPP,  but 
also to the stress parameter ¢. The necessary introduction of parameter ~ into the vari- 
ables can also be explained with the viewpoint of the relation between the variables and 
plastic strain rate. Normally, each variable corresponds to the direction of a plastic strain 
rate. As we know, the direction of a plastic strain rate has four independent components 
under a general stress state, but in three-dimensional space, there are only three indepen- 
dent geometrical variables. It is necessary to include a stress parameter, e.g. ~, to resolve 
the difference. 

This model can also be extended to include the effect of deformation rate. The model 
includes the description of the behavior of the direction-dependent variables. If every 
direction is a component of deformation, the effect of the deformation rate could be 
added to each of the components. 

A simple way of considering the effect of deformation rate in this model is to use the 
concept of over-stress for every direction like the description of one-dimensional visco- 
plastic stress-strain relations (e,g. Perzyna, 1963; Yao and Krempl, 1985). Let r, r / and yi 
denote the stress, the static critical stress and plastic deformation of the ith direction, 
respectively. Then, the following power function may be a good approximation of the 
viscoplastic stress-strain relations of every direction: 

~.i 
~i = A(I --7 1 -1)  n (47) 

rd 

where A and n are two material parameters, and < x > =  x for x > 0  and < x > =  0 for 
x < 0. As for the static critical stress r ic, it is suggested that the hardening given by eqn 
(34) is applied. 

It is noted that the numerical implementation of  the elastic-viscoplastic constitutive 
model is much simpler than that of  the elastic-plastic constitutive model. In the elastic- 
viscoplastic constitutive model, plastic deformation rate, #i or !~,  is directly calculated 
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from stress and hardening which are already known from an incremental calculation 
process. While in the elastic-plastic constitutive model, plastic deformation depends on 
stress and hardening rates which are not totally known before the calculation and an 
iterative calculation is usually required. More significantly, there is no problem concern- 
ing the existence of (gU-I in eqn (34) in the elastic-viscoplastic constitutive model. There- 
fore, the application of the elastic-viscoplastic constitutive model is preferred in practice 
to that of the elastic-plastic constitutive model. For instance, if A and n in the above 
equation are all taken to be 1, the difference between r i and r~ will be negligible when Vi 
is the order of 10 -4 and the elastic-viscoplastic constitutive model will reduce to the 
elastic-plastic constitutive model. 

VII. CONCLUSIONS 

1. The comparison of the prediction of the model to the data concerning stress-strain 
relations of OHFC copper under the non-proportional finite deformation shows: (a) 
that the description of polycrystalline metals in terms of a large number of randomly 
distributed director-slip systems could be a practical anisotropic elastic-plastic 
constitutive model; (b) that the approach to the interaction among the multiple 
directors with a three-degree polynomial of their relative locations satisfactorily 
describes the shape change of the subsequent yield surface with plastic deformation 
and (c) that the Armstrong and Frederick nonlinear evolution equation of the 
hardening of every director is a good approximation of the nonlinear stress-strain 
relations. 

2. Most of the material parameters in the model could be easily estimated and deter- 
mined from experimental data from an one-dimensional stress-strain relation and a 
subsequent yield surface. The final determination of the material parameters, as 
usual, should be completed through the numerical implementation of the model. 

3. The further development of the model is possible; the generalized directors, instead 
of slip systems, and the inclusion of the effect of deformation rate are outlined as 
some examples. 

4. The detailed study of the model is needed for other materials or other complicated 
deformation histories to examine other aspects of the model. 
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