
Pergamon 
In,. .I Sol,hd.i S~rucrurm Vol 34. Nos. 35-36. pp 4499~4513, 1997 

cr: 1997 Elsevier Saence Ltd 

PI1 : SOO20-7683(97)00044-9 

All rights reserved. Pnnted in Great Brltam 
002(t7h83!97 $17.00 + .oo 

DYNAMIC MODE I PERTURBATION SOLUTION 
FOR A MOVING CRACK UNSTEADILY 

LI XIANG-PING and LIU CHUN-TU 
Institute of Mechanics, Academia Sinica, Beijing, 100080. People’s Republic of China 

(Received 30 January 1996; in reoised,form 20 Januar?, 1997) 

Abstract-Rice et al. (Journal oJ’Mechanics and Physics of Solids 42, 813-843) analyze the propa- 
gation of a planar crack with a nominally straight front in a model elastic solid with a single 
displacement component. Using the form of Willis et al. (Journal qf the Mechanics and Physics qf 
Solids 43, 319-341), of dynamic mode I weight functions for a moving crack, we address that 
problem solved by Rice et al. in the 3D context of elastodynamic theory. Oscillatory crack tip 
motion results from constructive-destructive interference of stress intensity waves. Those waves, 
including system of the dilatational, shear and Rayleigh waves, interact on each other and with 
moving edge of crack, can lead to continuing fluctuations of the crack front and propagation 
velocity. 0 1997 Elsevier Science Ltd. 

1. INTRODUCTION 

Experimental measurements by Fineberg et al. (1992) indicate that, in at least one plastic 
material, the limiting fracture speed is significantly less than the Rayleigh velocity, and the 
approach to this limiting speed is accompanied by the onset of a dynamic instability. 

Some insight regarding these issues can be obtained from the study of crack advance 
through brittle, locally heterogeneous materials (Fig. 1). In general, the fracture resistance 
(local fracture toughness) varies along the front of an advancing macroscopic crack due 
to microlevel heterogeneties, such as second-phase tough particles which can develop 
macroscopic toughing of a brittle matrix. Rice (1985), Gao and Rice (1989), Gao (1993) 
and Rice et al. (1994) developed a simplified analysis, based on linear perturbation theory 
for the configuration of an initially straight crack front which is trapped against forward 
advance by contact with arrays of obstacles. The obstacles are modeled as having the same 
elastic properties as the rest of the elastic medium, but with slightly higher fracture tough- 
ness. The half-plane crack results models finite-sized cracks, assuming the lengths of the 
cracks are large compared to other parameters such as obstacles spacing along the crack. 

The motivation for our work derived for recent studies by Rice et al. (1994) , of the 
perturbation from straightness of the edge of a propagating semi-infinite crack and the 
associated perturbation of the stress intensity factor, and by Willis et al. (1995), of dynamic 
mode I weight functions for a moving crack. Rice et al. (1994) analyzed a scalar wave 
equation. They found how a crack front moves unsteadily through regions of locally 
variable fracture resistance. Although in some respects such model results may provide a 
mechanism for the generation of rough tensile fracture surfaces when the average propa- 
gation speed of the crack is relatively small, it is important to derive exact results for some 
perturbation in z about a history z) = c(t) of motion that has arbitrary time dependent in 
the context of actual elasticity theory. 

In a substantial paper, Willis et al. (1995) found dynamic weight functions for arbitrary 
time-dependent loading of a plane semi-infinite crack extending at constant speed in an 
infinite isotropic elastic body. In the framework of first-order perturbation theory, the 
weight function is then employed to develop a relationship, between the Mode I stress 
intensity factory and a small but otherwise arbitrary time-varying deviation from straight- 
ness of the edge of a crack. The associated stress intensity factor was recognized as 
convolutions and the meanings of parameters in their dynamic weight functions are implicit 
and not very clear. 
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Periodic array of asperities: 

Gcrit ’ G c 

Fig. 1. A half-plane crack with an initially straight front, propagating to contact a periodic row of 
circular asperities of higher fracture toughness. 

Our primary purpose in the investigation here is to reexamine the problem of relating 
a small deviation from straightness of the crack to the associated perturbation of stress 
intensity factor, with the view toward exposing interact phenomena between crack trapping 
and wave trapping. By virtue of the Mode I dynamic weight function and Rice et al. model 
methods, we hope to learn how the crack front begins to surround and penetrate into 
various arrays of round obstacles and the extent to which such models results remain valid 
in the context of actual elasticity theory, rather than the modal theory. 

2. PROBLEM STATEMENT AND WEIGHT FUNCTIONS 

Consider a half-plane crack propagating in an unbounded solid, nominally in the x 
direction along the plane y = 0 (Fig. 2). The crack front at time t lies along the arc x = a(z, t) 
while we assume to have the form x = Vt+ .@(t, z), where the function 4 (t, z) is assumed 
to be bounded, and E is a small parameter. The crack front speed thus varies along the z 
axis and its shape deviates from straightness. 

In the framework of first-order perturbation theory, the displacement, stress and stress 
intensity factor fields associated with the perturbed crack are represented as ui+ AU,, (T,,+ Aoi, 
and K-k AK, respectively, where u,, CJ~, and K are the fields which give the unperturbed crack 
(straight crack) solution when F = 0, i.e., they were satisfied that : 

The equation of motion 

bij,, = pii,. (1) 

Fig. 2. A half-plane crack in unbound solid, propagating on plane _v = 0 with non-straight 
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Initial condition : 

u,(t, SE-) + 0 ast- --co. 
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(2) 

Boundary conditions : 

o,,(t,x,,O',z)+ -P(t,x,,z) asx, < Vt. (3) 

Stress strain relation : 

where 

Local dynamic stress intensity factor along the crack edge : 

cry,,(t, x, , 0, z) + K(t, z)/(JiGZF as X = x, - Vt -+ 0. (5) 

Following Willis et al., the associated perturbed stress intensity factor field may be 
expressed as 

AK(t,z) = E Q*(WC)-@(Q*ZC)+ (6) 

where “*” signifies the convolution over the variable t, X, z, interpreted in the sense of 
generalized functions and @ denotes crack perturbation, function Q, M are denoted as : 

Qn(t, z) = ~ v st(t)s(z)-= 
x2a2 7Tc( at ( tH(t- Izl/aa) 

z2(t2 __22/m2a2)‘/2 j 

Q< (t, z) = &(t)b(z) _ L ? tH(t - Izliyc)_ 
y2c2 Iry at z2(t2 _z2/y~c2)~9 

and 

OV ,,? 
5,Z = -pgTiqh iq, = P-’ ( j’ f/i - t: 

y= (5:+4:+P2(51-G)(tl -5h-))2 

z = 4(5”:+5:M(r’-C>(5’-4,)(5, -C)(5, -rhf))“2 

(7a-d) 
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5, = 4, +(s-Oi)(& -la) 

@a-g) 

where a, h, c denote the speeds of dilatational, shear and Rayleigh waves, respectively. 

W&Z) = {[VI (-+)*P+)}(t, 0, z) (9) 

and here is [v] (+) the Mode I dynamic weight function defined by Willis et al., its expression 
can be found from Appendix 1, and P’-) is 

p-, _ ap - gpf(-X). (10) 

The significance in fracture of A4 would depend upon the loading distribution on crack 
edge in the particular problem under discussion, and admission of a non-zero M would 
significance complicate the result, because the transform would no longer be an homo- 
geneous function. As the first step toward exposing interact phenomena between crack 
trapping and wave trapping, we only consider the case of constant K and zero M in this 
paper. So the term Q*K vanishes, and AK and @ satisfy 

AK(t,z) = K(&*Q) = K[(a(z, t) -a({, t>)*Q(t, z)] (11) 

where { denotes some reference location [ along the z axis, and for the Mode I problem, in 
virtue of eqn (7) and eqn (8), one finds 

AK(t, 2) = K W, t) - 4, O)* 
d2 ‘Q (t4-Q&+~ 

F,(-z/t)tH(t- (z(/aa) 
2 u 

71Z2 

-F:(0)6’(t)6(z)) (12) 

where 

:= AK,,(t,z)-AK,,(t,z)-AK,-(t,z) (13) 

AK,(t, z) = +((a(~. t) -a([, t>)*Q,(t, z)) 

= + 
a 

11 I’ (a(z’,t’)-a([‘,t’)) 5(t-ty(z-Z’)-; 
-3c --z ( ,za2 

H(t- t’- Iz-z’l/au) 

~J(t_tf):_(z_z’)Z/DI*U? 
dz’ dt’ 

1 
X 

(t-t’)H(t-t’-Iz-z’l/aa)dz,dt, 

7m(z - z’)2 Jiq2 - (z -z’)2/Q2u’ I ’ (14) 

The choice of [ in the above development is arbitrary, we may rename [ as z in the 
final expression, and set &z(c, t)/dt’ = V([, t’) = V(z, t’), thus 
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AK,(t,z) = $PV 
CC 

s s 

‘-‘z--“‘oo a(t- t’)( V(z’, t’) - V(z, t’)) dz, d*, 

. 
(15) 

-Cc -30 (z-z’)2 (tH’)%?a2-(z-z’)* 

Using same procedure, we obtain that 

AK,(t, z) = +’ 
s 

i i 
f-‘z-z”w c(t- t’)(V(z’, t’) - V(z, t’)) dz, dt, 

(16) 
-x --r (z-z’)2 (t- t’)‘y22 - (z-z’)2 

(VJZ’, t’) - VJZ, t’))(t - t’)F, 

AK,(t, z) = +’ 
21 s s r-I-_-:‘lha 

(z-z’)2 
dz’dt’, (17) 

-m -5 

with PV denoting the principal value integral and V(z, t) = da(z, t)/dt, V,(z, t) = d V(z, t)/& 
being the local crack velocity and acceleration, respectively. 

The stress intensity factor field associated with the perturbed crack is then 

K(t, z) + AK(t, z) = K-k AK, -AK,. - AKP (18) 

We derive the 3D solution as a linearized perturbation about the 2D results for a crack 
moving at a steady speed V,, under mode I situation, and hence for which 

K = K,, = k(V,)K* G = G,, = g(V”)G* (19) 

where 

l-5 
k(l/,) = c L- VII 

,r l-5 
s+(l,vo) dk,) = l- 7 

a 

(20) 

K*, G* being the static factors. 
The energy vector factor g(V) has complex functional form but it can be taken to be 

very simple form as eqn (20) for most practical purposes [e.g., Freund (1990)]. 
The result (18) can be rewritten as 

where 

K(t,z) = k(V)K*(l+Z,(z,t)-Z&t)-Z&t)) (21) 

Za(z, t) = i&W m s s ‘--z-z”oLa a(t- t’)( V(z’, t’) - V(z, t’)) dz, dt, 

PC.2 -cc (z-z’)2 (t-t’)2a2a2-(z-z’)2 

Z,(t,z) = ,PV cc ss t-‘=-=“*c c(t- t’)(V(z’, t’) - V(z, t’)) dz, dt, 

--m -m (z-zr)~&7j+2 -(z-z’)2 

(V,(z’, t’) - V,(z, t’))(t - t’)F, 

Z,(z, t) = ;Pv 00 ss r-I_-_;‘1/m 

(z-z’)2 
dz’ dt’. (22) 

-cc -zc 

From the above expression, we can learn that the dependency of the stress intensity 
factor on crack front shape deviations from straightness is given in these integrals as a 
functional of velocity and acceleration differences along the crack tip during the entire 



4504 Li Xiang-Ping and Liu Chun-Tu 

history of the crack motion. Examination of the expression for these integrals shows that 
there is the system of waves produced in mode I situation, including the dilatational waves, 
shear waves and Rayleigh waves. Those waves interact on each other and with the moving 
edge of crack, so that associated stress intensity factor history shows very complex feature 
(e.g., Li and Liu (1994), (1995)). After the crack has propagated beyond the local het- 
erogeneities of fracture resistance which launched them, as Rice et al. noted that, the 
constructive and destructive interference can lead to continuing fluctuations of the crack 
front shape and propagation velocity even when the front is moving through material of 
locally uniform fracture resistance. 

Following Rice et al. (1994), the fracture criterion is 

G(z, f) = G,,,tk z) (23) 

at points x = a(z, t) along the rupture front where V(z, t) > 0. Here G(z, t) is the energy 
release rate per unit of new crack area and the critical energy release rate, G,,,,(x, z) is 
regarded as a material property. 

Using the relation between the energy release rate and the dynamic stress intensity 
factor, we give that 

G = G*g( V)( 1 + I&, t) - zc(z, t) - I,(,-, t))’ (24) 

where G* = (1 -v2)/(2E)(K ) IS * 2 the rest energy release rate supplied to a straight crack 
front. 

From (23) and (24), the space and time varying motion of the crack front is governed 

by 

V(z, t) = ( c(1 -A(z, t)), if A(z, 2) < 1 

0 if A(z, 1) 3 1 ) 

where 

A(& t) = 
cc,,, (0, z> 

G*(l +Z,-Z, -I,)’ 

(25) 

(25)’ 

3. FOURIER REPRESENTATION OF RESULTS 

For purposes of numerical analysis of spontaneous crack growth, it is convenient to 
recast the results above in terms of Fourier components, in z, of a(~, t). 

Considering the domain of integration and changing the order and limits of the integral 
in (22), we have 

L,(z, 0 = & 
, s s =+w-‘7 a(t- t’)(V(z’, t’) - V(z, t’)) dz, dt, 

x r-zu,,-,‘) (Z-Z’)?& - t’)‘x2a’ -(z-z,)’ 

Z,.(z, t) = I, f i i 
z+y(,--r’, C(f - t’>( Vz’, t’> - w, t’)) dz, dt, 

-- -z ;-j.<(,-,‘) (Z-Z/)2J(t-t~)2,/2(.2-(,-X’)2 

(V,(z’, t’) - V[(Z, t’))(t- f’)F, 

-~- dz’ d t’ 
(z-g2 

(26) 

where the principal value of the integrals is assumed implicitly. 
Using in (26), the variable substitution z’ = z + aa(t - t’) sin 8 gives 
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I s s n:2 E;(clasin 6) V,(z+ xa(t- t’) sin 13, t’) - V,(z, t’) 
pcos 8 d8 dt’. (27) 

3c -n:2 sin’ 0 

We use for u(z, t) and V(z, t) the Fourier representation 

(28) 

Where N is chosen as a power of 2 and the over-dot denotes a derivative with respect 
to time. Here A,(t) and A,,(t) are real, and A_,(t) is the complex conjugate of A,(t) so that 
(A,(t)) involves N real functions, and similar remarks apply to the set {A,(t)} and {k’,(t)}. 
One require n A,/,4 -K 1 and k,/V, << 1, and we assume k,( - co) = 0, k’,( - co) = 0 for 
n # 0, we thus obtain 

Zc*,(z, t) = 2 zp(t)PG * := a, c,f (29) 
,1= -N 

where the coefficients are obtained as 

m> = +& I s I x,2 ~,(aasin9)A~(1’)(exp($,sin9)-l)cos9d9dl, 
(29)’ 

-Cc -TV2 sin2 9 

and where 

PO = 
27cnaui(t - t’) Bc _ Znnycjt - t’) 

set 

s nl2 
Q(P) = 

exp($ sin 9) -2 d9 

-n,2 n sin’ 9 

(30) 

(31) 

note that 
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Q”(d = -Jo(P), Q@> = Q’(o) = 0. (31)’ 

Consider new function F(q) = -Q(q)/q, by virtue of the relations between Q(q) and 
F(q), we may obtain (see Appendix 2) 

Using the expression of F(q), eqn (29)’ may be rewritten as 

and I{(t) can be rewritten as 

Here 

)D(t-- t’) dt’. 

exp(ipuu) - 1) du 

we easily verify that F,(x) is an even function, that is 

F,(x) = Fr(--4 

therefore, the result (35) may be simplified as 

s ’ 2 
D(t- t’) = --F,(aau) cos(/$u) du 

0 u* 

or I{(t) may be written as 

(32) 

(33) 

(34) 

(35) 

(36) 

(37) 

(38) 

4. MODAL ANALYSIS OF RECOVERY OF THE STRAIGHT CRACK FRONT FROM A 
PERTURBATION 

According to strictly linearized analysis concept proposed by Rice et al. (1994), the 
strictly linearized form of energy release rate, most conveniently given for 

(39) 

where Go is given by (19). 
Substituting in (39) the Fourier representation of V(z, t), I,, I, and I,, we have 
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2n7-c f 

+, s &,(W(Pc> dt’ - & I 

Y/L _a f s k’,(f) 
’ 2 

--F,(aau) cos(B,p) du dt’)eizxn’ (40) 
-x IJ uz 

The material property JG,,,,( x,z , assumed to be only slightly inhomogeneous for ) 
consistency with a first-order perturbation, can be written as a Fourier series : 

(41) 

In using the fracture criterion (23), we may approximate x as Vet as is consistent with 
a strictly linearized analysis in perturbation amplitude. Thus, the equation governing the 
crack tip motion is given by the requirement 

We then get for n = 0 

Tc G 

0 
1 + vo -k,(t) 

2(c- Vo) 1 = go(Vot) (43) 

and for n # 0 

-k,(t) n7c ’ 

- s 2(c-- Vo) cd _~ 
k,(t’)F(/i,) dt’+ k,(t’)F(/$) dt’ 

1 ’ 

I s 
/in(f) 

’ 2 
rrc(a ~30 

-~F,(aau)cos(/I,u)dudt’) =g,,(Vot). (44) 
0 uz 

Applying the Laplace transform to both sides of (44) and set k,(t) = B,(t), we find 
that 

where 

B,(s) = -r& (45) 

C,(s) = 2(~T~o,-s(~~~-~)+~(r~~-~) 

s ’ 2 
7ma s 

-- F,(aau) s2 
o u2 

---ddu (46) 
s2+q: 

and 

(47) 
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Fig. 3. Modal propagation velocity for a-straight crack after a heterogeneous strip, with V,) = 0.3c, 
p = 0.1, t, = 0, f? = 0.5,?, = 6.0, z = 5.7, c = 0.53851~ = 0.932736. 

Applying an inverse Laplace transform to (45), we obtain the modal velocity response 
to a toughness heterogeneity as 

B,(t) = k,(t) = L-l (~~(J (48) 

Inversion of the transform for B,(S) less straightforward but it can be carried out by 
numerical inversion method. 

Consider a simple case of a finite-width strip, having a single m # 0 Fourier component 
of heterogeneity, embedded in an otherwise homogeneous medium. Specifically, we assume 
that besides g,,, which is constant at &, only g,,,(r) and g_,Jr) are non-zero (they are 
complex conjugate of each other), we write 

gm(4 = g-t?,(~) = 
P&i ( ) 2 (W-r,)-W-h)) 

where His the Heaviside unit step function and p is the (small) amplitude. 
That is, writing 1 for i//ml, the result is that the response to 

Jrn = &(l +pcos (273) i 

(49) 

(50) 

for x within the strip, with ,,/m = fi f or x outside it, that the propagation velocity 
is 

l/(2, t) = V, +2k,,(r) cos 2ni 
( ) 

. (51) 

Figure 3 gives calculations for V(z, t) when V, = 0.3c, p = 0.1, t, = 0, t2 = 0.5 and 1 = 2L. 
From the figure, we see that when a straight crack enters a heterogeneous region its motion 
is modulated by a set of decaying oscillations. 

5. NUMERICAL SIMULATION ON DYNAMIC GROWTH OF A CRACK 

In this section the previous results are used to simulate the dynamic growth of a crack 
along a plane having a non-uniform distribution of critical energy release rate. The plane 
of the crack is characterized by a homogeneous “background” critical energy release rate 
G cntcl, from which there are local perturbations where G,&x, z) # G,,ito. 
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Following Rice et al., our simulations begin with a straight crack propagating with a 
uniform velocity V,, in the region x < 0. The calculation of space and time varying dynamic 
crack propagation in the heterogeneous region x > 0 (correct to first order) is done using 
the following procedure : 

(1) Having crack front positions, velocities and accelerations at a general (discrete) time 
step mAt 

a(z,mAt) = i A,(mAt)ei2”‘f 
n= _v 

V(z,mAt) = 2 k,(mAt)e’2Rnf 
n= -n; 

V*(z, mAt) = 2 k’,(mAt)ef2Rn~. (52) 
II= --N 

Use the FFT procedure to calculate from current velocities V(z, mAt), accelerations 
V,(z, mAt) the Fourier coefficients k,(mAt), &(mAt) ; we first FFT the set {a(~,, t)} to get 

m-l 

A*(t) = c V(z,, t)e-2”‘ni (m = 2N) (53) 
j=O 

this coefficient set {a,(t)} is related to 

A, = &m forn = 0 torn/2-1 

A?.'2 = &,/2m for n = m/2, -m/2 

A, = Lmi21m forn = -m/2+1 to -1. 

Verify that first order perturbation conditions k,/ V. cc 1, n&At/n << 1 are satisfied. 
(2) Calculation local crack front velocities for the next time increment as follows : 
(2.1) using (33) and (38) and history of k,, k:, to calculate the coefficient Z;, Z:, I/, (mAt), 
where the integral calculations of eqns (33) and (38) by use of Gaussian quadrature formulas 
are : 

zi(ti) ZZ- 

x F 
t;+t,_, 

mAT- ~ t,--t,-l 
2 + -rY; DTw, 

&tJ+~&,) 
2 

+ ‘L(t;)-&L,) y 
2 I 

x F t, - t,e I mAT- ?;!d + _~ 2 Yl DTwi 

COS(/?~~) dt*wk. (54) 

Here y,,, wj are the jth Gaussian zeros and weights of order 12, respectively. The third 
nonlinear polynomials transform has been used to delete the singular point “0” in the 
equation of I<. 
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Next, we rearrange from {Z:(t)} to {Z;(t)}, following the same rules as for rearrange 
from {a,(t)} to {k,(t)} above. 
(2.2) use FFT to invert Zz(mAt), (a = a, c, F) to Z(z, mAt) 
(2.3) use (25) and current crack front positions to calculate velocities V(z,(m + 1)At) during 
the next time step. 
(3) use difference formula to calculate accelerations V,(z,(m+ 1)At) during the next time 
step : 

V,(z,(m+ 1)At) = (V(z,(m+ 1)At) - V(z, mAt))/At. 

(4) Calculate the local crack front positions at the end of the next time step as 

a(z.(nz + 1)At) = a(z, mat) + V(z,(m + l)At)At 

(5) Write output, check exit criteria (location of crack front or violation of first order 
conditions) ; increase time index m by 1, go to step (1). 

6. RESULTS AND DISCUSSION 

Figure 1 shows a periodic array of circular asperities with radius R and center to center 
spacing L. Following the conditions of Fares (1989) for the validity of quasi-static first- 
order analysis and by Gao and Rice (1989), Rice et al. (1994), we choose R/L = 0.1, and 
the speed of Rayleigh waves c = 0.53851a = 0.93273b. All calculations have been non- 
dimensionalized. 

In order to check correctness for our numerical computational program, we firstly 
calculated several problems solved by Rice et al. (1994) and obtained same results. Figure 
4 shows one of those results using Rice et al. model, calculated for the case I’, = 0.3c, 
hitting an infinite row of asperities with G,,i,(left) = G,,i,(right) = 4G,. 

Figure 5 shows crack front profiles in the regions at successives times and G,,,, 
(left)/G,, = 4.0 and G,,,,(right)/G, = 2.0, where G,,i,(left) and G&right) denote, respectively, 
the critical energy release rates of the left and right asperities in a fundamental wavelength 
2 = 2L. G,, denote non-asperity regions. The computations are done using m = 2N = 256 
and At = @5Nc. At the initial instant, a straight crack was propagating with a uniform 
velocity V0 in the region x < 0. The asperities block the crack advancement after it pen- 
etrates into the inter-asperity G, regions. As a result, the distribution of velocity initial 
uniform, turns wavy and shows instability feature in a successive instants. Then the weaker 
right asperity broke, the left asperity also broke after some further crack front motion. 

Figure 6 shows calculations for the case V,, = 0.45c, hitting an infinite elliptical asperit- 
ies (~-0.5)~/3+(~-0.1)~ < 0.12 and (z- 1.5)2/3+(x-O.1)2 d 0.12 with G,,,,(left)/G, = 3.0 
and G,,,,(right)/G, = 2.0, at this relatively large incoming crack velocity, the asperities break 
after causing a small retardation in crack front positions. By virtue of the Mode I dynamic 

1.0 

0.8 
a 
2 
6 
bi 

0.6 

x 
& 0.4 
t.i 

z 0.2 

0 
0 0.5 1.0 1.5 2.0 

Z/L 

Fig. 4. Positions a@, t) vs z at successive times, for a crack at incoming speed V0 = 0.3c, hitting an 
infinite row of asperities with G,,,,(left) = 4G, and G&right) = 4G,, using Rice et al. model results. 
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0.4 - 

2 
s 0.3 - 
< 
X 
& 0.2 - 
N’ 
X 
- 0.1 - 

0 
._. 

I I I I 

0 0.5 1.0 1.5 2.0 

ZIL 

Fig. 5. Positions a(z, I) vs z at successive times, for a crack at incoming speed V, = 0.3c, hitting an 
infinite row of asperities with G,,,,(left) = 4G, and G&right) = 2G,. (a) t = 45At; (b) t = 120At: 

(c) t = 240At; (d) t = 320At. Here At = 11640. 

0.5 r 

I 
0 0.5 1.0 1.5 2.0 

ZlL 
Fig. 6. Positions a@, t) vs z at successive times, for a crack at incoming speed V, = 0.45c, hitting an 
infinite row of elliptical asperities (z-0.5)*/3+(x-0.1)’ < 0.1’ and (z- l.5)2/3+(x-O.l)2 < 0.1’ 
with G&left) = 3Go and G&right) = 2G,. (a) t = 5081; (b) t = lOOAt; (c) ( = 160At; 

(d) t = 220At. Here At = l/640. 

weight function and its numerical simulations in a first order perturbation analysis of the 
deviation from straightness of the crack edge, we observe that, oscillatory effects in crack 
motion, as denoted by Rice et al., are found to follow encounter of the crack front with 
regions of variable toughness and these may also be interpreted in terms of constructive- 
destructive interference of stress intensity waves initialed by encounters of the crack front 
with asperities and then propagating along the front. These waves, including system of the 
dilational, shear and Rayleigh waves, interact on each other and with moving edge of crack, 
lead to oscillatory feature of crack front profiles. It seems that the type of oscillatory crack 
motion could be the basis for careful recent measurements by Gross et al. (1993). 
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APPENDIX I 

Mode I dynamic weight function [(il”’ defines as 

[cl I+) =@+“W, 

where “*” denotes the convolution over the variable t, A’, : 

_ 

easily obtain : 

(A.21 

Here 4.x = ~,X+~2xZ and T+(o.<,,<~) is 

T(o,5,52) = T+(o,5,,52)T~(w,5,.5*) 

Detail expression of T(w, 5,. t2) can be found from Willis ct al. (1995). 

APPENDIX 2 

The function F(q) satisfies equation 

F’(q) + $%) = f Jo(q) 

F(y) = 1 (S q PJ,,(P) dp+ C 
q2 0 

One notes that 

(A.11 

(A.3) 

(A.4) 

@.I) 

(B.2) 

ti#‘(q) = L$- y + ““‘) = kim( -Q”(q)+ F) = ;JO(0) = 0.5. 
YZ 

While 



Mode I perturbation solution 

thus C = 0. 
One has 

F(q) = L s ’ Jo (PIP dp. 
Y2 0 

By virtue of the relation between the Bessel functions Jo(p) and J,(p) 

one has 

F(q) = L q2 s ; $ @J, (~1) dp = fy 
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(B.3) 

(B.4) 

So one obtains eqn (33) 


