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Abstract 

We present a slice-sampling method and study the ensemble evolution of a large finite nonlinear system in order to model 

materials failure. There is a transitional region of failure probability. Its size effect is expressed by a slowly decaying scaling 
law. In a meso-macroscopic range (- 105) in realistic failure, the diversity cannot be ignored. Sensitivity to mesoscopic 
details governs the phenomena. @ 1997 Published by Elsevier Science B.V. 

n .,,I r ~_~~ tmme rracture manifests an evoiution induced 
catastrophe (EIC) [ 11. This is an abrupt transition 
from the accumulation of damage to a catastrophe. 
Surprisingly, it shows a great diversity of transi- 
tion thresholds under the same macroscopic condi- 

tions [ 2,3]. Sometimes this is called sample-specific 
behavior. Using the slice-sampling method, we show 

that the above behavior appears in both small and 
large finite evolution systems, and that there is a 
scaling law. It is found that some minor mesoscopic 

differentiation can eventually induce macroscopic 
failure of materials, owing to the nonlinear evolu- 

tion far from equilibrium. Thus, sensitivity across 
meso- and macroscopic scales governs the diversity 
in macroscopic failure. 

Though failure is a complex phenomenon, it is usu- 
ally supposed that its essential features may be uni- 
versal. According to its nonlinear and nonequilibrium 
nature, we present some universal features and laws 
of this phenomenon, based on a chain model. 

XXI- _.._-_:-_ - -1..:- . . . ..I_ A, _lr__ v I 
we cxiI11111e a CIlaIIl WI111 IV SIKS, A = (Xi, i = 1, 2, 

. . .) N) . There are two options at each site. Xi = 0 and 
xi = 1 denote intact and broken sites, respectively. 

The dynamics of damage evolution is assumed to 
follow a load-sharing principle. That is to say, the 

load supported by an originally intact but now bro- 
ken cluster is shared by its two neighboring intact 

clusters. Therefore, an s-intact cluster (a cluster con- 
sisting of s connecting sites) separating a l- and an 
r-broken cluster will sustain an average stress c = 

[ 1 + (1+ r)/2s]~~, where a0 is the nominal stress. 
When the stress g becomes equal to or greater than 

the site strength uT,, the s-intact cluster will become 
broken. This condition can be expressed as [ 1 ] 

L= 
2s CO 

-<L,=p 
l+r u, - UOO’ 

(1) 

The nonlinear evolution law results in two kinds of 
evolution modes of the chain, according to their final 
states. These are globally stable (GS), that is, dam- 
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aged chain but no failure, and evolution induced catas- 

trophic (EIC), i.e., complete failure. 
Macroscopically, the system is described by two 

parameters, the critical ligament L, and the damage 

fraction p, where 

p=; (2) 

II = Cfi, x; is the total number of broken sites. p = 1 

represents complete failure. X = {_xi} describes the 

mesoscopic pattern of the chain. We introduce the 
phase space of the chain to discuss its statistical en- 
semble evolution and the effects of disorder in a meso- 

scopic pattern. 
The total number of states in phase space can be 

calculated by Mobius inversion [ 41, 

(3) 

where 4 is the Euler function. (n, N-n) is the maxi- 
mum common divisor of II and N-n, and d denotes the 
prime factors of (n, N - n), and their products are de- 

noted dl (II, N-n), respectively. fiN rapidly increases 

with increasing N. For example, when N = 20, flN = 

52488 and when N = 200, 0~ = 8.03 x 105’. Clearly, 
for small N, one can examine states in the whole phase 
space. But for large n, this method becomes impossi- 
ble, owing to the complexity of the computation. The 
commonly used stochastic sampling method also can- 
not determine the structure of the phase space. How- 

ever, this structure is very important to study the sen- 
sitivity. Therefore, we developed a stochastic but in- 
terrelated sampling method. This method uses two- 

dimensional slices through phase space [5]. We call 
it the slice-sampling method. 

Take two-dimensional coordinates ((Y, p), with 
O<a<NiandO<p<N-Ni,whereNiisan 

arbitrary integer in the range 1 < NI < N. Let the 
integersa.=1,2 ,..., Ni andP=l,2 ,..., N-N, 

correspond to the N sites of a chain randomly chosen 
one by one. Then, a point with integer coordinates 
(ai, pi) represents an initial state with czi + j3i bro- 
ken sites. These broken sites are located in the chain, 
according to the one by one randomly chosen rule in 
the integer range 1 < CY < (~1 and 1 < p < pi; see 
Fig. I. In this way, we construct a two-dimensional 
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Fig. 1. An example of a slice. N = 200, N1 = 100. L, = I .O. (-) 

EIC-GS boundary based on mean field theory, ( - - -) p-set. dotted 

area: nonsensitive zone of GS: lightly dotted area. sensitive zone 

of GS. 

slice through phase space, which represents a number 
of interrelated states. The Hamming distance between 

two states ( LYI , PI ) and ((~2. @) should be defined by 

H = Ia2 - a~ I + I& - PI I. (4) 

For example, the Hamming distance between two 
states due to a site break in a chain is H = I. The 
diagonal in the coordinates 

a+p=pN (5) 

is a p-set of states, i.e., all states with the same initial 

damage fraction p in the slice. 
In order to investigate the statistical ensemble evo- 

lution, we take a large number of slices at random and 
examine the evolution of every state on the slices for 

a given L,. The number of slices is selected according 
to the required precision. 

Before considering our results in detail, we brietly 
look at the prediction of the mean field approximation 
and percolation theory. According to these theories, 
there is a clear-cut transitional threshold from GS to 
EIC modes, 

pc = l/(1 + L). (6) 

Obviously, the transition is uniquely determined by 
the macroscopic parameter L, or pc, and the chain 
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shows no sample-specific behavior. This is due to the 
mean field approximation in the theory. On the con- 

trary, stress fluctuations can always exist, because of 
mesoscopic disorder in the materials. The assumed 

load-sharing rule ( 1) is a modeling description of the 

fluctuations. 
Now, let us examine the results of the present model. 

Fig. 1 shows an example of a slice, N = 200, Nl = 100, 

and L, = 1. For reference, the result of percolation the- 
ory is also shown in the figure. One can see that the 

boundary between GS and EIC modes does not coin- 
cide with the p-set lines. This means that the system 
is sample specific. That is, the macroscopic parame- 

ters p and L, are not sufficient to determine macro- 
scopic failure (GS to EIC) . After giving these macro- 

scopic parameters, one can only determine the failure 

probability @(p, L,). Numerical results, based on the 
statistics of a large number of slices, are shown in 
Fig. 2. A distinct feature is the existence of a transi- 

tional region pi < p < pu, where 0 < @ < 1. In this 
transitional region, GS and EIC modes coexist. The 

thermodynamical limits of the two bounds PI_ and pu 
can be derived as 

JimWpL = 0, (7) 

1 
$rnWpu = - 

-+ 1 +L,’ 
(8) 

respectively. Additionally, the results obtained by 
both slice-sampling and all-over methods are consis- 
tent with each other for the cases with N = 20 and 

30; see Fig. 2. 
An attractive problem is the size effect of the transi- 

tional region. Define the central position and the width 

of the transitional region as follows, 

Pt = 
J 

$$b 
0 

(9) 

(10) 

It is found that pt and A show similar behavior for dif- 
ferent values of L,. Fig. 3 shows pt and A as functions 
of the chain size N, when L, = 1. Approximately, we 

can write such scaling laws as 

0 0.1 0.2 0.3 0.4 0.5 0.6 

P 
Fig. 2. Failure probability @. L, = I .O. Slice method: (0) N = 20: 
(+) ~=30; (Cl) N=200; (A) N=2000. Exact method: (x) 
N = 20; (W) N = 30. (-) Mean field theory. 
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Fig, 3. Size effect of central position pt and width A of the 
transitional region. L, = 1.0. (+) pt. (x) 4 (-) scaling law. 

pt = aN_“, 

A = bN+, 

(11) 

(12) 

where a, b, (Y and p are all dependent on the pa- 
rameter L,. For L, = 1.0, we have a = 0.5454, LX = 
0.2199, b = 0.1038, and p = 0.2205. For example, 
when N = 10, Alo N 0.06. Because LY = p, A/p, is 
approximately independent of the size N. 
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Looking at realistic failure of materials, one may 

notice that the size range between macroscopic failure 
(m-cm) and mesoscopic structures (pm) is in the 
order of lo6 - 104. So, according to the scaling law 

( 12), A - (0.005-0.014) - 0.1 dia. Compared to the 
huge size span, the variation of the width of the tran- 
sitional region appears rather insensitive to the size. 
Moreover, in accordance with the scaling laws (for- 

mulas (11) and (12)), Ap -+O and pt -0, when 
N --+ 00. At this extreme, sample-specific behavior of 
this model vanishes, whereas realistic failure never 
shows features like pt + 0. This is clearly due to the 
finite meso-macroscopic size span involved in mate- 

rials failure. 
The underlying mechanism of the threshold diver- 

sity is the sensitivity of macroscopic failure to the de- 

tails of the mesoscopic pattern. In phase space, there 
is a sensitive zone, where a slight mesoscopic change 
in a state may lead to a significant macroscopic con- 
sequence, the transition from GS to EIC. Actually, the 

sensitive zone is always located in the vicinity of the 
boundary between GS and EIC, see Fig. 1. Compar- 
ing Figs. 1 and 2, one finds that the sensitivity appears 

over the whole transitional region. 

To illustrate the sensitivity, let us look at a simple 
example. According to the dynamics of the evolution 

( 1 ), one can construct a marginal EIC pattern, such as 

s = Int [ ( L /2) (j + 1 + C!_’ ,, 1 s,jt )] for an sj-intact 
ciustcr by aisuming SI = Int( L,) and r,i = I,, = 1. So, 
s,= 1.2,3,5,8,13,20,30,46 ,..., when_&= l.Oand 
N + 3~. This is quite similar to the Fibonacci series. 
As N + lx), we construct infinite marginal EIC states 

of such a kind. Then we can inversely construct infi- 
nite marginal GS states, by changing only one broken 

site in such a marginal EIC state to an intact one. Ap- 

parently, the distinction between GS and EIC is deeply 
rooted in such a subtle differentiation in the chain. 

In order to elaborate this sensitivity, we define a 
transitional probability P(p, L,). It is the probability 
of jumps from GS to EIC, merely owing to a stochas- 
tical increment Ap = 1 /II (the Hamming distance is 
H = I ). This gives a measure of the sensitive zone in 
phase space. Similar to the probability of all jumps to 
EIC owing to Ari = 1 in Ref. [ 61, there is a relation- 
ship between the transitional probability P and the 

failure probability @, 
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Fig. 4. Transitional probability p. N = 100. L, = I .O 

N=20 Lc=l.o 

Fig. 5. The probability of the difference of the final damage 

fraction for pairs of samples with the same initial p and H = 7. 

N = 20. L, = 1.0. 

(13) 

Fig. 4 shows the numerical results for P from a great 
number of slices. It has the same scaling law as ( I 1 ) 
or (12). 

Furthermore, we have also investigated the differ- 
ence of the macroscopic behavior of a pair of sam- 
ples with the same initial damage fraction p but the 
slightest mesoscopic difference. That is to say, there is 
only a pair of neighboring sites with different options 
(Hamming distance H = 2). Fig. 5 shows the proba- 
bility of the differences of their final damage fractions 
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for the case with N = 20 and for L, = 1 .O. In this fig- 
me, the peak of the probability distribution at the ex- 

treme difference /pi - pi I/( 1 - p) = 1 is a measure 

of the probability of this sensitivity [ 71. Obviously, it 

should not be neglected. 

The threshold diversity and the trans-scales sensi- 
tivity seem to be a fundamental feature in the nonlin- 
ear evolution of disordered finite systems with multi- 

scales. A full investigation of this feature can con- 
tribute to the understanding of materials failure and 
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