
Acta Mech Sin (2009) 25:303–310
DOI 10.1007/s10409-009-0242-x

RESEARCH PAPER

Multi-scale calculation of settling speed of coarse particles
by accelerated Stokesian dynamics without adjustable parameter

Long Wang · Jiachun Li · Jifu Zhou

Received: 13 November 2008 / Accepted: 4 January 2009 / Published online: 8 April 2009
© The Chinese Society of Theoretical and Applied Mechanics and Springer-Verlag GmbH 2009

Abstract The calculation of settling speed of coarse parti-
cles is firstly addressed, with accelerated Stokesian dynamics
without adjustable parameters, in which far field force act-
ing on the particle instead of particle velocity is chosen as
dependent variables to consider inter-particle hydrodynamic
interactions. The sedimentation of a simple cubic array of
spherical particles is simulated and compared to the results
available to verify and validate the numerical code and
computational scheme. The improved method keeps the same
computational cost of the order O(N log N ) as usual
accelerated Stokesian dynamics does. Then, more realistic
random suspension sedimentation is investigated with the
help of Mont Carlo method. The computational results agree
well with experimental fitting. Finally, the sedimentation of
finer cohesive particle, which is often observed in estuary
environment, is presented as a further application in coastal
engineering.

Keywords Sedimentation · Stokesian dynamics ·
Many-body interactions · Multi-scale

1 Introduction

Particle suspension dispersion systems play important roles
in coastal engineering, in which particle settling speed is
a crucial factor in parameterizations to simulate sediment
transport [1]. The sedimentation of particles in the real envi-
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ronment is rather complex. In the river, particles may move
in group, the behavior of which is totally different from that
of a single particle. And in estuary, the charge on the fine
silt particles would cause the formation of flocs, whose set-
tling speed is a few orders of magnitude larger than that of
discrete particles. Many factors such as particle size distri-
bution, salinity, turbulence, etc. have effects on sedimenta-
tion. However, the most fundamental consideration among
them is inter-particle hydrodynamic interaction for particle
with radius ranging from microns to a few millimeters. With
emphasis on the hydrodynamic force in this paper, the atten-
tion is mainly paid to the sedimentation of coarse particles in
still water. For coarse particles, gravity is the only external
force while Brownian motion and physicochemical interac-
tion are neglected.

As we know, classical Stokes formula

U0 = 2

9

a2(ρp − ρw)

µ
g, (1)

gives settling speed for a single sphere in unbounded domain.
For multi-particle system, the falling speed can be directly
expressed as

U = U0 f (φ),

where f (φ) is hindered settling function, φ volume frac-
tion. U0 denotes Stokesian settling speed for a single parti-
cle. Great efforts have been made to study the form of f (φ).
Richardson and Zaki gave an empirical formula

f (φ) = (1 − φ)n, (2)

where n is an empirical constant. Some other theoretical or
empirical formula are summarized by Tory [2] as follows. A
semi-empirical formula

123



304 L. Wang et al.

f (φ) = (1 − φ)2

(1 + φ1/3) exp(5φ/3(1 − φ))
(3)

was put forward by Barnea and Mizrahi. Cell model was
applied by Happel to give a theoretical formula

f (φ) = 2 − 3φ1/3 + 3φ5/3 − 2φ2

2 + 4φ5/3/3
. (4)

Besides the application of hydrodynamics for sedimentation,
Mills and Snabre [3] determined the function using mean-
field approach

f (φ) = 1 − φ

1 + kφ/(1 − φ)3
. (5)

Although the above formulas are available, the assump-
tion of discrete particles and spatially homogeneous distribu-
tion restricts their applications. The sedimentation of particle
aggregation, such as flocs in the estuary, can not be estimated
by these formulas, since potential interactions between par-
ticles or particle shape cannot be taken into consideration
by these formula. That is to say, the extrapolation of these
formulas to more complicated cases is physically infeasible.

The primary difficulty in modeling particle suspension
lies in the large separation of scales. The scale of flow can be
up to the order of meters, whereas the interactions between
particles take place on the micron scale. It is almost impos-
sible for traditional approaches to cover all length and time
scales. Consequently, we have to resort to the multi-scale
modeling strategy, namely, the motions of fluid phase and
particle phase are simulated on different scale [4]. For parti-
cle suspension system, the bulk properties can be obtained by
ensemble average of the particle properties. For instance, the
settling speed of coarse particles is actually the mean value of
settling speed of each individual particle. Thus, large-scale
macroscopic properties are collective behavior of small-scale
microscopic properties from the multi-scale point of view.

Vincent [5] simulated the sedimentation of a pair of
non-spherical particles with boundary element method.
Sherwood [6] investigated the motions of the 2-dimensional
plate-like particle with Brownian dynamics. However, in the
framework of Brownian dynamics, the hydrodynamic inter-
action is ignored or replaced by addition of two-body inter-
actions. Glendinning and Russel [7] studied sedimentation
and diffusion with a pairwise addition. Error sedimentation
speed and negative self-diffusion coefficient might proba-
bly occur with two-body superposition. Feng and Joseph
[8] studied the unsteady motion of particle with finite ele-
ment method. Lattice Boltzmann method (LBM) is applied
by Nguyen et al. [9] to investigate the particle suspension.
Boek et al. [10] adopted dissipative particle dynamics(DPD)
to research colloidal suspension. In this kind of methods, the
motion of fluid phase is simulated on the mesoscopic level,
which means more computational cost is required on calcu-
lation of fluid phase.

On the basis of the superposition of fundamental solu-
tion of Stokesian equation for small Reynolds motion, Brady
and Bossis [11] developed a method that accounts for both
the many-body interactions and the near-field lubrication
effects by splitting the hydrodynamic interaction into a far-
field mobility and a pairwise additive resistance calculation.
The method known as Stokesian dynamics (SD) has been
widely used for particle dispersion systems to study hydrody-
namic transport properties, rheology and particle microstruc-
ture. The main disadvantage of the method SD, however, is
that it requires inversion of a far-field mobility matrix with
a computational cost of order O(N 3), which limits parti-
cle number to only the order of one hundred. For most par-
ticle systems, hundreds of particles are needed to capture
the microstructure correctly. To avoid both the costly con-
struction of the far-field mobility matrix and its inversion,
Sierou and Brady [12] put forward accelerated Stokesian
dynamics (ASD), which reduces the computational cost to
the order O(N log N )with the same accuracy as SD by using
iterative methods and the particle-mesh-Ewald technique.
However, extra parameter is needed to assure the positive
definiteness of resulting equation in the method similar to
Sierou’s.

In order to avoid the extra adjustable parameter, the
far-field forces instead of particle velocity are chosen as
dependent variables in the present article [13]. Simple-cubic
array of spheres sedimentation is firstly calculated and the
results are compared with exact solutions. Scaling of the
computational cost of this method with particle number is
subsequently presented. Then, more realistic random
sedimentation is studied by the improved accelerated Stoke-
sian dynamics in excellent agreement with previous formula.
Finally, the sedimentation of finer cohesive particles often
observed in estuary is examined as an application in coastal
engineering.

2 Accelerated Stokesian dynamics without adjustable
parameter

The small particle motions can be described with Stokesian
equation due to small Reynolds number [14]. The linearity
of Stokesian equation relates the particle velocity to the force
acting on the particle with mobility matrix:

M · F = U, (6)

where U is the translational-angular velocities, F is the force-
torque vector. In contrast, the inversion problem is then to
relate the force to the particle velocity:

R · U = F, (7)

where R is the resistance matrix.
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Very probably, a great many particles involved in real envi-
ronment, for instance, particles in coastal engineering, is of
the characteristics of movement in group, the behavior of
which is totally different from the motion of a single particle.
The issue in group motion belongs to many-body interactions
among particles or the many-body hydrodynamic interac-
tions. Durlofsky et al. [15] developed a method that accounts
for both the many-body interactions and the near-field lubri-
cation effects by splitting the hydrodynamic interaction into
a far-field mobility M and a pairwise additive resistance cal-
culation. The main disadvantage of the method, however, is
that it requires inversion of a far-field mobility matrix with a
computational cost of O(N 3) (N is the number of particles
in the system), which limits the method to particle number
to the order of one hundred. To avoid both the costly con-
struction of the far-field mobility matrix and its inversion,
Sierou et al. [12] put forward accelerated Stokesian dynam-
ics (ASD), which reduces the computational cost to the order
O(N ln N )with the same accuracy by using iterative method
and particle-mesh-Ewald technique.

The disturbance velocity field at r due to particle m can
be written as

u(r) = 1

8πµ

(
1 + a2

6
∇2

)
J(r − rm) · Fm + · · · , (8)

where µ is viscosity, a is particle radius, Fm is the force
exerted by particle m on fluid, and J(r) is Stokeslet or Oseen
tensor

Ji j (r) = 1

r

(
δi j + rir j

r2

)
.

When the fluid velocity is determined by Eq. (8), we can
obtain the force exerted by particle n on the fluid by use of
Faxen formulas [14] for spheres

Fn = 6πµa

[
Un −

(
1 + a2

6
∇2

)
u′

n

]
, (9)

where u′
n is far-field fluid velocity evaluated at the center of

the particle n. In the same manner, the force Fn will induce
a new force Fm . The procedures repeat infinitely until the
forces pertinent to the two particles are kept unchanged. This
is the essence of reflection method.

The method of reflections of the force version can be
expressed in a matrix form as follows [16]

F(i) = IB ·
[
U − M̃ · F(i−1)

]
, (10)

where

IB = −6πµa I,

(M̃)mn = (1 − δmn)
1

8πµ

(
1 + a2

6
∇2

)2

J(rm − rn).

The vectors U = [U1, . . . ,U N ]T, F(i) = [F(i)1 , . . . , F(i)N ]T

represent the set of particle velocity and force vectors, respec-
tively. I is unit tensor. Ichiki and Brady [16] have shown the
equivalence between the method of reflections and inversion
of mobility matrix.

Equation (10) is the iteration matrix form of reflection
method, and its equivalent direct matrix form turns out

(I + Mref) · F = IB · U, (11)

where Mref = IB · M̃ is the reflection matrix. One can
recognize Eq. (10) as Jacobin iterative method at a glance.
When comparing Eq. (6) with Eq. (11), we can understand
that the method of reflection is one of many possible iterative
methods to obtain the inverse of the mobility matrix and the
inverse of the mobility matrix certainly includes many-body
interactions.

In near field, a lubrication force in term of matrix Rlub

must be introduced when two particles is close to each other
due to ignorance of higher order singularities. Thus, in the
absence of particle inertia, the particles motion equation can
be expressed as[

Rlub + (I + Mref)
−1 · IB

]
· U = −Fe, (12)

where Fe is external non-hydrodynamic force exerted on the
particles, such as gravity or potential force.

There is an inversion operation in Eq. (12). However, it is
inefficient for large system to solve the equation directly. A
scheme applied to the resolution of equation can be expressed
as

− Rlub · U = Fe + Fff , (13)

where

Fff = (I + Mref)
−1 · IB · U (14)

indicates the far-field hydrodynamic force which is solved
in advance. In order to guarantee the positive definiteness of
the lubrication matrix Rlub, however, an extra parameter β
is needed to add to both sides of Eq. (13). The final particle
motion equation looks like

− (Rlub + β I) · Unew = Fe + Fff − β I · Uold, (15)

which is identical to that used in Sierou method [12] ifβ = 1.
There are some drawbacks in this scheme. First of all, to

achieve satisfying convergent rate, the parameter β should
be carefully chosen. Many tests are required under differ-
ent conditions. Secondly, we may always find disagreement
between the velocity Unew and Uold. In order to keep their
consistency, an additional iterative scheme is needed. And
finally, the far-field force Fff is actually calculated based on
the velocity Uold instead of Unew.

The unknowns associated with a particle are velocity U
and hydrodynamic force F. The above method chooses the
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velocity U as unknowns. As an alternative, hydrodynamic
force F can be chosen as unknowns, thus resulting in a math-
ematically consistent scheme. In particular, the scheme facil-
itates to avoid an extra parameter and additional iterations.

As a result, Eq. (13) can be rewritten as

Rlub · U + Fff = −Fe. (16)

With the aid of Eq. (14), the velocity U in Eq. (16) is replaced
by hydrodynamic force Fff . So, the equation with force as
dependent variables can be expressed as

Rlub · I−1
B · (I + Mref) · Fff + Fff = −Fe. (17)

Once the far-field force is calculated, the Faxen formula is
again used to obtain the particle velocity.

In the present scheme, the left side of Eq. (17) includes
both far-field and near-field force. In contrast, the previous
mentioned particle motion Eq. (15) only involves near field
lubrication force at the left side. Such a difference leads to
the necessity of an extra parameter. The further reason comes
from Eq. (12). In order to avoid the inversion operation at
the left side of Eq. (12), the far-field force should be given
in advance. So, the far-field and near-field forces can not
be solved simultaneously. If force is chosen as dependent
variables, the involved inversion operation disappears, which
permits the solution of both far-field and near-field force con-
currently, just as stated in Eq. (17).

To speed up the calculation of Eq. (17), a conjugate
gradient-type iterative method, GMRES (generalized mini-
mum residual) method is applied. The crucial step in GMRES
is to implement the matrix-vector multiplication of the reflec-
tion matrix Mref with far-field force Fff . For this purpose,
particle mesh Ewald technique is used, which is described in
detailed by Sierou and Brady [12].

3 Validation of the method

To validate the method, the sedimentation of a simple cubic
array of sphere is calculated. The initial position of spheres
is given by

rn = n1a1 + n2a2 + n3a3, n1, n2, n3 = 0,±1,±2, . . . ,

where ai, i = 1, 2, 3 is base vector between two spheres. For
simple cubic array,
⎡
⎣ a1

a2

a3

⎤
⎦ = h

⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦ ,

h is a parameter representing the distance between spheres.
Hasimoto [17] has provided an asymptotic approxima-

tion for dilute concentration. For simple cubic array, the

Fig. 1 The dimensionless sedimentation speed Us of SC array of
spheres with different volume concentration (%). Good agreement
between these results is presented when volume concentration is less
than 20%

relationship between settling speed and concentration is

Us/U0 = 1 − 1.7601φ1/3 + φ − 1.5593φ2 + · · · . (18)

Sangani and Acrivos [18] started from the Hasimoto funda-
mental solution and gave a more accurate formula

Us/U0 = 1 − 1.7601φ1/3 + φ − 1.5593φ2

+ 3.9799φ8/3 − 3.0734φ10/3 + · · · . (19)

Zick and Homsy [19] obtained numeric solution from Fred-
holm integral equations of the first kind.

The settling speed Us is non-dimensionalized in terms of
U0 in Fig. 1. We may find that the results are almost identical
to the exact solution as the volume fraction is less than 20%
and they tend to overestimate the sedimentation speed for
larger volume fraction. The reason for the fact is attributed
to the omission of high-order multipoles.

4 Computation scheme and results

In order to accelerate matrix-vector multiplication of the
reflection matrix Mref with far-field force Fff , particle-mesh
Ewald method is used. The method starts from Hasimoto’s
fundamental solution [17] and splits the far-field force into
real-part sum and wave-part sum by applying of splitting
factor α. The velocity field introduced by wave-part sum is

uW S
i (r) =

∑
k �=0

2πα

V0

{
k2δi j − ki k j

}
φ1(παk2)

×
( ∑

p

Fj (r p)

8πµ
e2π ik·rp

)
e−2π ik·r, (20)
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Fig. 2 The effect of splitting factor α on dimensionless settling speed.
The refinement of grid extends the plateau to smaller α region where
wave-part sum is dominant. The real-part sum is independent of grid
size for larger α

where V0 is the volume of the computational domain, k is
wave number, φν is incomplete �-function. For wave-part
sum, the force acting on the particle is distributed on the
mesh and fast Fourier transform is used to keep the com-
putational cost to the order O(N log N ). The velocity field
introduced by real-part sum is

u RS
i (r) = 1

4πµ

∑
n

Fn
j

[
− π

α3/2 r̄2φ1/2δi j

+α−1/2φ−1/2δi j + π

α3/2 r̄i r̄ jφ1/2

]
, (21)

where r̄ = r − rn . For real-part sum only particles within the
cutoff radius rc of a particle are considered in order to reduce
the computational cost to the order of O(N ). Therefore, the
overall computational cost is of the order O(N log N ).

The effect of splitting factor α on settling speed is dis-
played for φ = 1.96 and 15.5% in Fig. 2. The wave-part sum
becomes dominant for smaller α while the real-part sum is
more important for larger α. Since a plateau can be observed
in Fig. 2, the splitting factor α is suggested to be chosen in
the range where settling speed is insensitive to α. For refined
mesh, the plateau can be extended leftward to smaller α.
Since real-part sum is independent of mesh size, the refine-
ment of mesh exhibits no effect for larger α.

The effect of cutoff radius rc on settling speed is shown
in Fig. 3. With the increment of cutoff radius from 2

√
3a to

4
√

3a, 6
√

3a, the plateau extends to large α, and exhibits no
effect on small α. The choice of splitting factor, cutoff radius
and mesh size are critical for the acceleration of computation.

The efficiency of the method is displayed in Fig. 4 where
CPU time (in seconds) versus the particle number N is plot-
ted. The configurations of the particles in this case are regular

Fig. 3 The effect of cutoff radius rc on dimensionless settling speed.
With the increment of cutoff radius, the plateau extends to larger α and
has no effect on small α

Fig. 4 The CPU time T as function of particle number N . With the
increment of particle number, the CPU time increases according to the
scale of N log N

simple-cubic array. The volume fraction of particles is
45.2%. Figure 4 shows that the actual calculation time acc-
ords with the expected N ln N scaling law. In order to speed
up the calculation, parallel technique with OpenMP is ado-
pted. Figure 5 presents the accelerate ratio, which exhibits
good linearity with CPU number.

On the basis of the above description, coarse particle sed-
imentation of more realistic random suspension is calculated
by using Mont Carlo approach. The positions of particles are
randomly generated and then checked whether the location
has been previously occupied by other particles. If true, a new
position is regenerated again until all the positions of parti-
cles are specified as an initial state. Then the simulation of
particle sedimentation is started. The procedure stops when
a stable statistical average sedimentation speed is reached.
The gravity is the only external force and 1,000 particles
are used in the calculations. As Phillips [20] and Ladd [21]
pointed out, the sedimentation system size may exert appar-
ent effects on settling speed as observed in Figs. 6 and 7.

123



308 L. Wang et al.

Fig. 5 The parallel performance: accelerate ratio with OpenMP. The
good linear relation between CPU number N and speedup is shown

Fig. 6 Probability density functions of non-dimensional sedimenta-
tion speed with different particle number N in the case of volume
fraction 0.124%

Figure 6 shows the PDF (probability density function ) of
sedimentation speed with different particle number N for
volume fraction 0.124%. With the growth of particle num-
ber, the shape of PDF becomes more flatter, which implies
the randomness in the system is enhanced.

The effect of system size on sedimentation speed can be
estimated by the formula [20]

	U ∼ (φ/N )1/3. (22)

It means that the deviation from the mean settling speed drops
while we use many more particles. Mo and Sangani [22] gave
a corrected sedimentation speed formula

Us = Us(N )+ 1.7601(φ/N )1/3µr S(0)U0, (23)

where

µr = 1 + 2.5φ + 7.35φ2, (24)

Fig. 7 The non-dimensional sedimentation speed as function of par-
ticle number in the case of volume fraction of 0.124%. The solid line
is computational results. The dashed line is corrected sedimentation
speed, which is independent of particle number

S(0) = (1 − φ)4

1 + 4φ + 4φ2 − 4φ3 + φ4 . (25)

In Eq. (23), Us(N ) is the variation of computational results
with particle number N . On the other hand, Fig. 7 shows the
corrected sedimentation speed for volume fraction of dif-
ferent particle number. The corrected sedimentation speed
are nearly constant, independent of particle number, which
proves the validity of the presented calculation results.

The effects of volume fraction on sedimentation speed
are displayed in Fig. 8. There are 1,000 particles used for all
runs, and results are corrected by Eq. (23). Richardson and
Zaki formula is fitted with n = 5.9 in the present study. In
Fig. 8, we may see that corrected results and fitting data by
Eq. (23), denoted by solid circle and triangle, respectively,
are very close. Very probably the small deviation is partially
due to the truncation of multipole expansion and partially
due to the non-uniform particle size in experiments.

5 Further application in the cohesive particles
suspension system

The sediment grains in the estuary usually are finer cohesive
particles. Due to physicochemical property, cohesive parti-
cles commonly aggregate into flocs. The conventional expla-
nation of flocculation is based on DLVO theory. Namely, van
der Waals attraction and double layer repulsion constitutes
DLVO theory framework. The counter-ions in the water are
attracted by charge on the particle surface and give rise to
double electric layer. For constant charge density, the elec-
trostatic energy Vr can be expressed as:
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Fig. 8 The dimensionless random sedimentation speed dependence
on volume fraction. The solid square is computational results, the solid
circle is corrected results, and the solid triangle is fitting data with RZ
formula

Vr = −2πaεψ2 ln
(

1 − e−κh
)
, (26)

where ε is the dielectric constant of water, a is particle radius,
ψ is surface potential, κ−1 is the Debye reciprocal length and
h is the closest distance between two particles. The van der
Waals attractive energy Va can be expressed as

Va = − a A

12h
f (p), (27)

where A is the Hamaker constant and f (p) is the retardation
factor, given by the following formula

f (p) =

⎧⎪⎪⎨
⎪⎪⎩

1

1 + 1.77p
, p < 1,

2.45

5p
− 2.17

15p2 + 0.59

35p3 , p > 1,
(28)

where p = 2πh/λ, λ is London wavelength and usually is
0.1µm. Thus, the overall potential is

Vt = Va + Vr .

The effect of electrolyte concentration on flocculation is
embodied by the change of Debye reciprocal length κ−1,
which can be written as

κ−1 =
√
εkBT

2I eF
,

where kB is the Boltzmann constant, F is the Faraday con-
stant, T is temperature, e is elementary charge, I = 1

2

∑
ci z2

i
is ionic strength (zi is ionic valence, ci is ionic molarity).
When the electrolyte concentration increases or ionic valence
is high, the Debye reciprocal length decreases and the dou-
ble electric layer gets thinner, which is favorable for particle
aggregation.

Fig. 9 Dependence of dimensionless settling speed on electrolyte con-
centration. The abscissa is electrolyte concentration (mol/L), the ordi-
nate is non-dimensional settling speed

Beside hydrodynamic interactions and gravity, DLVO
potential between particles is also included in our calcula-
tion. The following potential parameters are used in the pres-
ent study: A = 4 × 10−20 J, ψ = −250 mV, T = 300 K,
a = 2 µm, the particle density is 2,650 kg/m3, the particle
weight concentration is 6.424 kg/m3.

Figure 9 displays the effect of the electrolyte concen-
tration on settling speed. With the increasing of electrolyte
concentration, the settling speed rises rapidly until the elec-
trolyte concentration exceeds 0.1 mol/L. The ultimate set-
tling speed almost remains unchanged when the critical value
of 0.1 mol/L is reached.

Obviously, the settling speed of flocs is faster than that of
coarse particle because they aggregate into flocs (see Fig. 10).
This is an indirect result reflecting the effect of salinity on sed-
imentation. Further study should take such factors as
Hamaker constant, surface potential, etc. into consideration
in more detail.

6 Conclusions

In this study, the settling speed of coarse particles is investi-
gated with modified accelerated Stokesian dynamics, which
avoids the necessity of extra adjustable parameter. The sedi-
mentation simulation of a simple cubic array of spheres as a
test is used to validate the method by examining dependence
of settling speed on volume fraction. The comparisons with
exact solution are satisfying for small volume concentration.
The computational cost has been proved to remain the order
of O(N log N ). Mont Carlo approach is used to study more
realistic random suspension sedimentation. The results agree
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Fig. 10 The aggregation of particles due to potential interactions

well with previous formula. We further apply the method to
the sedimentation of fine cohesive particles indicating that
the settling speed of flocs is considerably larger than that
of coarse particles. The method used in the present paper is
capable of predicting the sedimentation behaviors of particle
suspension dispersion system in more complicated natural
and industrial environments.
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