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Fig. 2 Finite element model of the singular vessel
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Fig. 3 The axial and longitudinal pressure distribution of blood flow with horizontal position (A P=199.98 Pa)
(a) The pressure distribution of blood flow as gravity is considered(G #0). (b) The pressure distribution of blood flow as gravity is neglected(G=0).
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Fig. 5 The axial and longitudinal pressure distribution ® _ o maxed 636 (ii) E—— . 0% o P,
of blood flow with upside-down position (A P =199.98 Pa) ) "“"i“”. %
(8) The pressure distribution of blood flow as gravity is considered ' max=0 595 (ii) NMEGG_—_—_—_——_— , . s o,
i —— i)

i

(G #0). (b) The pressure distribution of blood flow as gravity is S max min ) O
neglected (G = 0).
Table 1 The effect intensity of gravity(EIG) with Fig. 6 The pressure distribution of blood flow under
different postures (AP =199.98 Pa) variant inlet-outlet pressure differences (IODP)
Postures Horizontal Upright Upside-down in 3D FSI model and 3D fluid-only model
FIG /(Pa-m") 0.580 1385 2985 ::) 3D FSI model. (b)3D fluid-only model. (i) The axial pressure
Hormalization 1 2.388 3.940 WD Ch The e ; IR TS poskion of

cutting planes is x=0.04 m; x=0.1 m; x=0.16 m; y=0.
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Fig. 7 The variation curve of the effect of gravity on pressure extreme values of blood
flow under variant IODP in 3D FSI model and in 3D fluid-only model
(a) 3D FSI model.m—m: Change in Pmax from 3D FSI model; @— e: Change in Pmin from 3D FSI model. (b) 3D fluid-only model. m—m: Change in
Pmax from 3D Fluid-only model; e— e: Change in Pmin from 3D Fluid-only model. /: Maximum pressure difference for G #0 from that for G=0. 2:

Minimum pressure difference for G # 0 from that for G=0.
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Effects of Gravity on The Pressure of Blood Flow in a Tapered Vessel
Based on a 3D FSI Mathematical Model With Posture Change

MU Wen-Ying”, YU Gang"", ZHUANG Feng-Yuan?
(" Institute of Mechanics, The Chinese Academy of Sciences, Beijing 100190, China;
2) Bioengineering Department, Beijing University of Aeronautics & Astronautics, Beijing 100191, China)

Abstract Gravity is the most fundamental biomechanical stimulus for posture change. Pressure of blood flow is
one of primary indicators to evaluate cardiovascular performance. Up to now, the underlying mechanism of effects
of posture change on cardiovascular system is still unclear. A 3D FSI mathematical model with posture change was
presented. By applying the body force terms to the fluid equation and the vessel wall equation, the model could be
used to study posture change and the effects of gravity on the pressure of blood flow quantitively. Under different
inlet-outlet pressure difference(IODP) and different postures such as horizontal, upright and upside-down one, the
effects of gravity were simulated. In horizontal position, the pressure distributions of blood flow transformed from
2D(two-dimensional) axis-symmetry without gravity to 3D asymmetry with gravity under small [ODP. With IODP
increasing, gravity had less effects on pressure distribution and extreme value. As IODP reached 10 665.6 Pa
(80 mmHg) and 2 666.4 Pa(20 mmHg) respectively, this effect was observed to be constant. Similar results were
obtained from 3D fluid-only model. In either upright or upside-down position, 2D axis-symmetric pressure
distribution was observed with and without gravity, yet the position, in which extreme pressure appeared, was
different in upright position from that in upside-down one. Finally, the effect intensity of gravity in upright or
upside-down position was more than twice as much as that in horizontal one. The results indicate that introducing
body force term into the fluid and solid equations to present a novel model, which was based on hemodynamics,
will provide a new way to study posture change. Effects of gravity on pressure distribution and extreme value
changed with different postures and IODP. If IODP is small, ignoring effect of gravity and postures so as to

simplify the hemodynamics model to 2D axis-symmetric one, the conclusion should be drawn with caution.
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