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The hydrodynamics of a free flapping foil is studied numerically. The foil undergoes a forced
vertical oscillation and is free to move horizontally. The effect of chord-thickness ratio is
investigated by varying this parameter while fixing other ones such as the Reynolds number, the
density ratio, and the flapping amplitude. Three different flow regimes have been identified when we
increase the chord-thickness ratio, i.e., left-right symmetry, back-and-forth chaotic motion, and
unidirectional motion with staggered vortex street. It is observed that the chord-thickness ratio can
affect the symmetry-breaking bifurcation, the arrangement of vortices in the wake, and the terminal
velocity of the foil. The similarity in the symmetry-breaking bifurcation of the present problem to
that of a flapping body under constraint is discussed. A comparison between the dynamic behaviors
of an elliptic foil and a rectangular foil at various chord-thickness ratios is also presented. © 2009
American Institute of Physics. �doi:10.1063/1.3251045�

I. INTRODUCTION

Flapping wings or fins are commonly used by birds, in-
sects, fishes, and some microair vehicles �MAVs� to generate
propulsive forces. To understand the mechanism of thrust
generation, many experimental and numerical studies on
flapping foils have been conducted, such as in Refs. 1–6. It is
found that a reversed Karman vortex street in the wake of the
flapping body is the fundamental feature associated with
thrust generation. In most of the studies mentioned above,
the foil is placed in a steady stream and its movement in the
streamwise direction is prohibited. The flapping motion of
the foil is usually prescribed, either heaving or pitching or
the combination of these two. However, the conditions in
these studies are completely different from those in self-
propelled biolocomotions. In other words, the body velocity
in real biolocomotion is allowed to change in response to the
variation of the forward force. To our knowledge, only a few
papers can be found in the study of fundamental hydrody-
namics of a self-propelled flapping foil. In the experiment by
Vandenberghe et al.,7,8 it is shown that an axle-mounted
blade can spontaneously rotate when flapped vertically in a
fluid. In the numerical investigations, Blackburn et al.9 simu-
lated a bluff-body propulsion produced by a combined rotary
and translational oscillation; Alben and Shelley10 studied the
locomotion generation by a free flapping body through
symmetry breaking and vortex interactions; Alben11

proposed an efficient numerical method to compute the
coupled flow-body dynamics. Recently, Lu and Liao12

numerically predicted the critical Reynolds number �which
is based on the flapping frequency and amplitude� of
the problem proposed in Ref. 10. Furthermore, there are
some studies on the self-propelled fish swimming where the

prescribed time-dependent motion forms a backward-
traveling wave.13–15

In this paper, we consider the effect of geometric shape
on the hydrodynamics of a self-propelled foil. This study is
motivated by the quest to understand the relation between the
morphology of wings �fins� and their hydrodynamic perfor-
mance. A better understanding of this subject will be helpful
to the design of MAVs or autonomous underwater vehicles.
In this study, the foil is forced to flap up and down in a
sinusoidal fashion and free to move horizontally. The mov-
ing unstructured Chimera mesh technique developed in Refs.
16 and 17 is an efficient approach for the present problem
because the meshes need not to be regenerated when the foil
moves around freely. Thus, this numerical method is adopted
in this study. Numerical simulations are performed on the
elliptic and rectangular foils with the chord-thickness ratios
�CRs� ranging from 1:1 to 100:1, while other parameters
such as the Re number, the density ratio, and the flapping
amplitude are fixed.

The organization of the paper is as follows. The govern-
ing equations are given in Sec. II. The computational method
is then described in Sec. III. The numerical observations are
presented in Sec. IV. Finally, Sec. V concludes the article
with a summary and discussion.

II. A MODEL PROBLEM

The fluid motion is governed by the two-dimensional
incompressible Navier–Stokes equations,

�u

�t
+ u · �u = − �p +

1

Re
�2u , �1�

� · u = 0, �2�

where the Reynolds number Re is defined as
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Re = A�c/� . �3�

Here c is the chord length of the foil and � is the dynamic
viscosity of the fluid. A and � are the amplitude and the
angular frequency respectively of the sinusoidal oscillation.
The characteristic length, velocity, and time used to
nondimensionalize Eqs. �1� and �2� are c, A�, and c / �A��,
respectively.

The motion of the foil in the horizontal direction is gov-
erned by Newton’s law,

M
dūb

dt
= Fx. �4�

Here ūb is the dimensionless horizontal velocity of the foil.
Fx is the dimensionless horizontal force evaluated from the
solution of Eqs. �1� and �2� by integrating on the surface of
the foil. M is the dimensionless mass of the foil defined as

M =
�bS

� fc
2 , �5�

where �b and � f are the density of the foil and the fluid,
respectively, and S is the area of the foil.

The vertical motion is prescribed as

yb = A sin��t� . �6�

Using the aforementioned characteristic length and time
scales, this formula can be converted to a dimensionless
form as

ȳb = Ā sin�t̄/Ā� , �7�

where the bar symbol denotes dimensionless variables, i.e.,

ȳb = yb/c ,

Ā = A/c , �8�

t̄ = A�t/c .

III. COMPUTATIONAL METHOD

This study employs an unstructured Chimera grid
method to solve the Navier–Stokes equations. This approach
is very flexible in the sense that it allows the use of multiple
unstructured meshes that overlap each other to simulate the
objects of arbitrary shapes and arbitrary relative motions. For
the technical details of this numerical methodology and some
benchmark validations, please refer to Refs. 16 and 17.

A schematic representation of the computational domain
in the present problem is given in Fig. 1. On the four bound-
aries �I–IV� of the domain and the surface of the foil, nonslip

boundary conditions are applied. On the internal boundaries
between the overlapping grids, interpolation of velocity and
pressure are used to couple the solutions.

The present domain size of 60c�10c is chosen as a
compromise to save computational time and meanwhile
avoid too much blocking effect from the boundaries. The
local meshes for an elliptic foil at the CR equals to 3 are
shown in Fig. 2. The number of mesh points that are de-
ployed on the surface of the foil is 60. For the cases of larger
CRs �slender foils�, this number is increased accordingly.
These extra grid points are clustered near the leading and
trailing edges where the large gradients of flow quantities
exist. The distance from the first off-wall point to the surface
is 0.02. The number of mesh points in each case is deter-
mined so that the boundary layer from the body is well re-
solved. The time step used in the simulation is 0.005 and the
maximum Courant–Friedrichs–Lewy �CFL� number is
around 0.2. This maximum CFL number is defined as

FIG. 1. A schematic representation of the computational domain. c is the
chord length of the foil and b is the thickness.

FIG. 2. �Color� Meshes for the case of CR=3. �a� Meshes near the overlap-
ping region �red line: background mesh; blue line: moving mesh; thick blue
line: boundary of the moving domain�; �b� local mesh around the foil sur-
face where rectangular cells are used to capture the flow phenomenon in the
boundary layer.
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FIG. 3. �Color� The time history of the horizontal velocities for elliptic foils
at various CRs. Red: CR=1 �no symmetry breaking�; blue: CR=3 �chaotic
motion�; green: CR=5 �unidirectional motion�; brown: CR=15 �unidirec-
tional motion�.
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CFLmax=�t��u� /�h�max, where �u� is the velocity magnitude
and �h is the mesh size in each cell. After some gird size and
time step independent tests, it is confirmed that the mesh
resolution used in this study is fine enough and the time step
is sufficiently small to obtain an accurate solution.

IV. NUMERICAL OBSERVATIONS

There are four important dimensionless parameters in
our problem: the Reynolds number Re, the density ratio
�b /� f, the oscillation amplitude A /c, and the CR c /b �with b
being the thickness of the foil�. In this work, the following
parameters are used: Re=200, �b /� f =4, A /c=0.4, and
c /b=1–100. The first three parameters are fixed �except
where otherwise stated� while the CR varies in the range of
1–100. Simulations are performed for both the elliptic and
rectangular foils. The observations from these simulations
are summarized as follows.

A. Elliptic foil

The time history of the horizontal velocities for CR=1,
3, 5, and 15 are plotted in Fig. 3. From this figure, it is seen
that three different scenarios can be identified with the varia-
tion of CR, namely, no symmetry breaking �CR=1�,
chaotic motion �CR=3�, and unidirectional locomotion
�CR=5 and 15�.

In Fig. 4, the time averaged velocity is plotted as a func-
tion of CR. The two boundaries between the three scenarios
aforementioned are labeled in this figure as CR1 and CR2,
respectively. It is found through numerical experiments that
for an elliptic foil, CR1 and CR2 are located in the narrow
band of 1.6–2.0 and 3.0–3.5, respectively. It is also noted
that if we increase the CR within the region of CR�CR2,
the vortex structure in the wake does not change qualitatively
although the averaged terminal velocity varies �this will be
shown latter�.

To explore the cause of the different dynamics behaviors
in the three scenarios above, the flow fields of some typical

cases are illustrated here. The first case corresponds to the
symmetric and stable state �scenario I�, the second one cor-
responds to the chaotic state �scenario II�, while the third and
the fourth ones correspond to the unidirectional locomotion
�scenario III�.

The first case is CR=1, where the foil is actually a cir-
cular cylinder. It is found that no effective locomotion is
triggered by numerical perturbations �e.g., machine error and
mesh asymmetry�. It is seen that a left-right symmetric pat-
tern persists at t̄=200 �see the vorticity contours in Fig. 5�. It
is also found that the horizontal velocity does not decay to
machine zero after a long time of integration but its magni-
tude becomes very small �less than 10−3�. Further investiga-
tion confirms that this small velocity is caused by the
left-right mesh asymmetry and it can be further reduced
to O�10−4� by using a mesh of better symmetric property.
To test the stability of this left-right symmetric state, we
also impose a large initial perturbation of 0.01 on the

FIG. 4. Time averaged horizontal velocity of the foils vs CR. The two
boundaries between the three different scenarios are labeled. The velocities
are averaged after a periodic steady state is reached for the unidirectional
motions; while for other scenarios, they are averaged after ten periods of foil
oscillations to minimize the influence of initial condition.
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FIG. 5. �Color� Vorticity contours of an elliptic foil �CR=1� at t̄=200.
Despite a minor deviation of the symmetric axle from its initial position at
x=0, the left-right symmetric pattern of the vorticity contours is kept
�URL: http://dx.doi.org/10.1063/1.3251045.1� �Enhanced online�.

FIG. 6. �Color� Instantaneous vorticity contours of an elliptic foil �CR=3�:
�a� t̄=30, �b� t̄=50, �c� t̄=60, and �d� t̄=70. The black arrows indicate the
direction of the velocity of the foil. The formation of vortex pairs can be
seen in �a�, �c�, and �d� �URL: http://dx.doi.org/10.1063/1.3251045.2�
�Enhanced online�.
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horizontal velocity of the foil. It is found that terminal ve-
locity is almost the same as the one that is obtained without
the perturbation.

The second case is CR=3. In this case, the symmetric
pattern in the flow field is lost at t̄=4. Soon after symmetry
breaking, a vortex dipole �pairs� begins to emerge at one
edge of the foil. This dipole provides the propulsive force to
accelerate the foil toward one direction �this direction de-
pends on the initial conditions and is found to be the left in
this case�. From the time history of the horizontal velocity
that is shown in Fig. 3, it is seen that the foil moves back and
forth in a chaotic manner and no unidirectional locomotion is
achieved after a long time of simulation �the averaged veloc-
ity is very close to zero�. The chaotic dynamic behavior of
the foil is associated with the arrangement of the vortices and
the complex interactions among them �see Fig. 6�.

The third case is CR=5. The starting procedure �includ-
ing the symmetry breaking and the acceleration by vortex

dipoles� in this case is similar to that in the case of CR=3.
However, soon after the starting, a large vortical structure is
found to propagate almost horizontally to the left �the choice
of direction depends on the initial condition�. This vortical
structure possesses an alternating asymmetry about the cen-
ter line �see Fig. 7�.

This pattern is also termed as the reversed Von Karman
vortex street in some textbooks. Clearly, a unidirectional lo-
comotion is achieved in this case. The averaged terminal
velocity is found to be 0.56 from the time history plot of the
horizontal velocity �see Fig. 3�.

The fourth case is CR=15. The qualitative nature of the
vortex structure in this case is the same as that of CR=5. The
only difference lies in the angle of propagation of the vortex
structure in the wake �see Fig. 8�. In this case, the “dipoles”
are arranged along an oblique axis which is below the
center line �“below” or “above” depends on the initial per-
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FIG. 7. �Color� The reversed Von Karman vortex street behind an elliptic foil of CR=5. The large vortical structures propagate almost horizontally to the left
as the foil moves toward the right �URL: http://dx.doi.org/10.1063/1.3251045.3� �Enhanced online�.

5
4.5
4
3.5
3
2.5
2
1.5
1
0.5

-0.5
-1
-1.5
-2
-2.5
-3
-3.5
-4
-4.5
-5

FIG. 8. �Color� The reversed Von Karman vortex street behind an elliptic foil of CR=15. The large vortical structures propagate to the left obliquely �deflected
downwards� as the foil moves toward the right �URL: http://dx.doi.org/10.1063/1.3251045.4� �Enhanced online�.
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turbation in the simulation�. The terminal averaged velocity
is found to be 0.82, which is much larger than that in the case
of CR=5.

With the further increase in CR �e.g., CR=30, 50, or
100�, the vortex structure remains to be very similar to that
of CR=15. The terminal averaged velocity is found to first
increase and then decrease with the increase in CR �see Fig.
4�. The maximal terminal velocity is 0.85 at CR=30 among
the cases we studied. It is also observed that when the CR
becomes very large �e.g., CR=50 or 100�, large velocity
fluctuation is produced �see Fig. 9�. This large fluctuation in
the horizontal velocity is probably due to rather small mass
in such thin foils.

Recalling the previous discussions on the cases of lower
CRs, we can conclude that the CR has two contradicting
effects on the system. Foils with smaller CR �thicker foils�

have a larger added mass, i.e., more fluid needs to be pushed
out of the way for it to move forward. Thus the foils with
larger CR �thinner foils� move more easily than the thicker
ones. On the other hand, if the foil is too thin then its mass
becomes too small. Large velocity oscillations can be pro-
duced and the terminal velocity is even reduced.

From the numerical results above, it is seen that some
important features in the hydrodynamics can be influenced
by the CR. First of all, CR affects the stability and the
symmetry-breaking bifurcation. Below the critical ratio CR1,
the left-right symmetric state is stable and symmetry break-
ing does not occur. However, the value of CR1 is not a
constant and may depend on other parameters such as the
Reynolds number, the density ratio, and the oscillating am-
plitude. For example, the circular cylinder �CR=1� produces
a stable and symmetric pattern at A /c=0.4, but as the
oscillation amplitude increases, other flow pattern emerges.
It is shown in Figs. 10�a� and 10�b� that back-and-forth and
unidirectional motions can be achieved at A /c=0.8 and
A /c=1.0, respectively.

The CR can also affect the critical Reynolds number
of the symmetry breaking. It is found by some researchers
that the critical Reynolds number decreases as the CR
increases.10

The stability and the symmetry-breaking bifurcation in
this problem are still not very well understood. What is ob-
served here seems to share some similarity with the
symmetry-breaking bifurcation of an oscillating body that is
described in Ref. 18. In that study, a circular cylinder
�CR=1� is forced to oscillate in one direction and is con-
strained in the perpendicular one. The results in Ref. 18 are
summarized in a diagram �Fig. 4 of Ref. 18� in which the
parametric space �Re, A /c� is categorized into different flow
regimes �in Ref. 18 a Keulegan–Carpenter �KC� number
which is defined as 2�A /c is used in the diagram�. It is
found that for the case of CR=1, the point �200, 0.4� is
located in the regime of “stable and symmetric pattern” in
the diagram while the points �200, 0.8� and �200, 1.0� are
not. This evidence suggests that if the “left-right symmetry”
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FIG. 9. �Color� A comparison of the time histories of the horizontal velocity
of elliptic foils at three different CRs. Red color denotes the case of
CR=30, blue color denotes the case of CR=50, and green color denotes the
case of CR=100.

FIG. 10. Time histories of the horizontal velocity of an elliptic foil at CR=1 �circular cylinder� but with lager oscillating amplitudes. �a� is for A /c=0.8
�chaotic motion� and �b� is for A /c=1.0 �unidirectional locomotion�. Symmetry breaking does occur in both cases.
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is a stable state for a horizontally constrained it is also a
stable state for a freely moving one �at least when small
perturbations are considered�. Conversely, if the left-right
symmetry is unstable when the foil is horizontally con-
strained, then it is also unstable when the foil is free to move.
To check the validity of this conjecture, we also conduct
some additional tests on the cases of CR=3 and CR=5 by
constraining the foil in the horizontal direction. It is found
that an asymmetric vortical pattern develops naturally after
some periods of oscillation. The asymmetry in the horizon-
tally constrained state was also studied in Ref. 11. It was also
found there that the flow asymmetry happened at nearly the
same parameter value in both the constrained and freely
moving cases.

The arrangement of the vortices is another important fea-
ture of the flow that is closely related to the CR. It is found
that a thick body �e.g., CR=3� cannot easily shake off the
vortices that are shed during the previous strokes. These
vortices tend to circulate around the body and give rise to
complicated interactions among them. A slender body
�CR�CR2� can easily organize the vortices into large struc-
tures �oblique dipoles or staggered vortex street�. These vor-
tical structures generate large propulsive force on the body
and the body is then accelerated quickly to gain the forward
velocity. A large forward velocity in turn makes it easier to
shake off the vortices from the previous strokes. The vortex
shedding at an opportune moment, the formation of large
structures, and the coupling between the hydrodynamics and
the body dynamics are the three dominant factors in a
smooth transition to unidirectional locomotion.

Finally, the CR also affects the terminal velocity �if a
unidirectional locomotion can be generated�. The trend that
the terminal velocity first increases then decreases with the
increase in CR can be clearly seen in Fig. 4. It is found that
a maximal velocity of 0.85 is achieved near the CR of 30.

The different motions observed with the variation of CR
are mainly attributed to the following two effects: �1� the
increased strength of vorticity shed from a sharper edge
�higher CR� and �2� the increased form drag on a thicker
body �lower CR�. Furthermore, since the self-propelled sys-
tem enables the coupling between the flow and the body
dynamics, the change in mass of the foil with the variation of
CR should also be taken into consideration.

B. Rectangular foil

Rectangular shape is of interest since it is the real geom-
etry that is adopted in some experiments, such as in Refs. 7
and 8. Furthermore, the presence of sharp corners in the rect-
angular body may induce more intensive vorticity and this is
very different from the elliptic one. In this study, the
thickness-chord ratios previously assigned to the elliptic foil
are chosen and the simulations are also performed on the
rectangular foils. From the results, it is found that as we
increase the CR, the trend in the flow pattern, and body
dynamics is quite similar for both shapes. Most of the quali-
tative descriptions in Sec. IV A �such as the symmetric
breaking bifurcation, the three distinct scenarios and the vor-
tical patterns in the wake� are also valid in case of the rect-

angular foils. However, differences can still be found be-
tween them in the curves of averaged velocity versus CR
�see Fig. 4�. Some differences are highlighted here.

Results on the critical CRs CR1 and CR2 show that the
rectangular foils tend to transit at larger critical CR than the
elliptic foils do �both from the symmetric stable state to the
chaotic motion and from the chaotic motion to the unidirec-
tional locomotion�. It is found that elliptical foils have a
narrower “chaotic” locomotion region than the rectangular
foils.

From Fig. 4, it is also seen that for most CRs that are
studied in this paper �CR	50�, an elliptic foil moves faster
than a rectangular foil. This trend is not seen for very slender
foils, e.g., at CR=50 the velocities are almost the same while
at CR=100 a rectangular foil even moves faster than an el-
liptic one. For the elliptic foils, the terminal velocity first
increases and then decreases with the increase in CR and a
maximum terminal velocity is achieved at CR=30. However,
for the rectangular foils, such simple trend in terminal veloc-
ity is not found. Actually, on the velocity-CR curve of the
rectangular foil, a local minimum value is found at CR=50
where the two velocity curves intersect �i.e., the foils of the
two shapes have the same velocity�. In the range of CR that
is studied in this paper �1	CR	100�, the largest terminal
velocity for a rectangular foil is reached at CR=100. This
velocity is very close to the maximal velocity of an elliptic
foil at CR=30. Due to the concern of numerical inaccuracy,
we do not perform any simulations on foils with CR larger
than 100.

To further analyze the reason behind the difference in
terminal velocity from a rectangular foil and an elliptic foil,
we need to consider two factors that affect the generation of
thrust and form drag. First, a rectangular foil induces rela-
tively higher vorticity concentration near the body �thus
larger pressure difference� due to the presence of sharp cor-
ners. Second, a rectangular foil only utilizes pressure differ-
ences on the two sides �left-facing and right-facing� while an
elliptic foil utilizes pressure differences in the whole surface.
The competition of these two effects eventually determines
the difference in terminal velocity.

V. SUMMARY AND DISCUSSION

We study the effects of geometric shape on the hydrody-
namical characteristics of a foil that is forced to oscillate
vertically and free to move horizontally. It is found that the
CR can affect the stability and the symmetry breaking of the
system. A threshold of the CR �below which the bifurcation
does not occur� is found to be somewhere between 1.6 and
2.0 for an elliptic foil and between 3.5 and 4.0 for a rectan-
gular foil. This value is based on the simulations when other
parameters are fixed �i.e., Re=200, �b /� f =4, and A /c=0.4�.
The CR also affects the final state of motion if the symmetry
breaking occurs. Thicker foils give rise to a back-and-forth
�chaotic� motion; slender foils produce the structure of stag-
ger vortex street or oblique dipoles in the wake and generate
a unidirectional locomotion. We also found that the
symmetry-breaking bifurcation observed in this study shares
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some similarity with that of a constrained oscillating body
which is studied in Ref. 18 although no mathematical expla-
nation is currently available.

Some implications of this study on biolocomotion are
summarized below. First, it is easier and faster for a slender
foil to break the symmetry and transit to a unidirectional
motion than for a thick foil. Second, an elliptic foil with a
CR between 15 and 30 tends to operate in the optimized
Strouhal number. From Ref. 3 it is known that the Strouhal
number �which is defined as �A�� / ��U�� in animal cruising
is tuned to be within a narrow band between 0.2 and 0.4 for
the reason of energy efficiency. In our study, it is found that
for an elliptic foil of CR=5, the Strouhal number is 0.57,
while for CR=15, the Strouhal number becomes 0.39. This
number can be brought down to 0.37 if the CR reaches 30.
While for a rectangular foil, it is found that such an opti-
mized Strouhal number �approximately 0.38� is achieved at
CR=100. An interesting finding is that the optimized Strou-
hal number is achieved at a much larger CR on the rectan-
gular foils than that on the elliptic foils.

To explore the whole four-dimensional space �Re, A /c,
�b /�c, and c /b� will be very helpful to the understanding of
the physics in this problem. However, an exhaustive para-
metric study is still very time consuming based on our cur-
rent computing capability. It would be a good direction in
future endeavors. Another avenue for further research is the
role of asymmetry in the self-propelled flapping system. In
the present work, the Strouhal numbers are only compared
among the foils of left-right symmetric shapes. It is well
known that the asymmetry in the foil shape �e.g., sharp trail-
ing edge� can enhance the thrust generation significantly.19

Besides that the asymmetry in the flapping motion �e.g.,
pitching� is also very important in some biolocomotion prob-
lems, such as motions starting from rest.
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