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a b s t r a c t

We consider adhesive contact between a rigid sphere of radius R and a graded elastic

half-space with Young’s modulus varying with depth according to a power law E ¼

E0(z/c0)k (0oko1) while Poisson’s ratio n remaining a constant. Closed-form analytical

solutions are established for the critical force, the critical radius of contact area and the

critical interfacial stress at pull-off. We highlight that the pull-off force has a simple

solution of Pcr ¼ �(k+3)pRDg/2 where Dg is the work of adhesion and make further

discussions with respect to three interesting limits: the classical JKR solution when

k ¼ 0, the Gibson solid when k-1 and n ¼ 0.5, and the strength limit in which the

interfacial stress reaches the theoretical strength of adhesion at pull-off.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Contact mechanics pioneered by Hertz (1882) has been widely applied in many branches of engineering, particularly in
the studies of tribology and indentation. Since 1970s, molecular interactions between contacting objects have also been
incorporated into contact mechanics models. Johnson et al. (1971) developed the JKR model of adhesive contact based on a
balance between elastic and surface energies. The JKR model predicted a compressive stress field near the central region of
contact and a singular tensile stress field near the contact edges. On the other hand, Derjaguin et al. (1975) proposed the
DMT model in which the stress field remains in the Hertz profile within the contact region while intermolecular adhesion is
assessed outside the contact area. It was later realized by Tabor (1976) that the JKR model is more suitable for contact
between relatively large and soft bodies, while the DMT model is more suitable for contact between small and rigid bodies.
A more general model (MD model) was developed by Maugis (1992) who showed that the JKR and DMT models can in fact
be unified within a Dugdale (1960) type of cohesive model of adhesive contact.

The adhesive contact mechanics represented by JKR and DMT models has triggered extensive research effort over the
past three decades (Muller et al., 1980; Greenwood and Johnson, 1981; Barquins, 1988; Carpick et al., 1996; Chaudhury
et al., 1996; Baney and Hui, 1997; Greenwood, 1997; Johnson and Greenwood, 1997; Barthel, 1998; Greenwood and Johnson,
1998; Kim et al., 1998; Morrow et al., 2003; Chen and Gao, 2006a, 2006b, 2007a, 2007b; Chen et al., 2008). In recent years,
it is also becoming a valuable platform to study biological adhesion systems such as cell–cell contact (Chu et al., 2005;
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Chen and Gao, 2006b), cells on stretched substrates (Chen and Gao, 2006a), as well as adhesion systems of gecko and
insects (Autumn and Peattie, 2002; Artz et al., 2003; Glassmaker et al., 2004; Hui et al., 2004; Gao et al., 2005; Spolenak
et al., 2005; Yao, 2006; Yao and Gao, 2006, 2007; Chen and Gao, 2007a; Chen et al., 2008; Chen and Soh, 2008). Among
these studies, Yao (2006) and Yao and Gao (2007) considered an interfacial crack model and showed that graded elastic
materials can promote robust adhesion. In particular, it was found that a linearly graded elastic material can be made flaw
tolerant, i.e. with interfacial stress uniformly approaching the theoretical strength of adhesion at pull-off, irrespective of
the contact size (Yao, 2006; Yao and Gao, 2007).

So far, there has been only limited study on adhesive contact in graded elastic materials. The few existing models are
only applicable for certain special cases and often do not consider the effects of adhesion. For example, the models
developed by Holl (1940), Hruban (1958), Lekhnitskii (1962) and Booker et al. (1985a, 1985b) are limited to problems
involving a point or line load on a graded elastic half-space with a specific Poisson’s ratio; while the models of Gibson
(1967), Gibson et al. (1971), Gibson and Sills (1975), Brown and Gibson (1972), Awojobi and Gibson (1973) and Calladine
and Greenwood (1978) are limited to a linearly graded elastic medium. Recent advances in indentation theory have shed
new lights on the deformation mechanisms of graded elastic materials. Giannakopoulos and Suresh (1997a, 1997b)
conducted a series of elegant studies on the micromechanics of indentation on a three-dimensional compositionally graded
elastic solid through a combination of analytical, computational and experimental investigations. Giannakopoulos and
Pallot (2000) obtained closed form solutions to a rigid cylinder or a rigid flat punch on a power-law graded elastic half-
space.

The present paper is aimed at a more systematic study of adhesive contact on a power-law graded elastic material, with
special emphasis on establishing a number of simple analytical solutions to enhance our general understanding in this
area.

2. Closed-form solutions to adhesive contact on a power-law graded elastic half-space

Fig. 1 shows a rigid sphere of radius R in adhesive contact with a power-law graded elastic half-space. A set of cylindrical
coordinates r and z are set up such that r lies along the interface and z points into the depth of the graded material. The
rigid sphere is subjected to an externally applied normal compressive force P and the contact area has radius a.

For the power-law graded material, we assume its Young’s modulus varies with depth according to

EðzÞ ¼ E0
z

c0

� �k

; 0oko1, (1)

where E0 is a reference modulus, c0 a characteristic depth (c040) and k a grading exponent. The Poisson ratio n of the
material is assumed to remain constant. Since the effect of tangential traction is usually negligible under normal load
(Johnson, 1985), we focus our attention to the case of frictionless contact and neglect any tangential tractions within the
contact zone.
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Fig. 1. Adhesive contact between a rigid sphere of radius R and a power-law graded elastic half-space with Young’s modulus varying with depth z

according to E(z) ¼ E0(z/c0)k (0oko1) while Poisson’s ratio remaining a constant. An external compressive force P is acting on the sphere and the radius of

the contact area is a.
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The power-law graded material defined in Eq. (1) reduces to a homogeneous material in the limit k ¼ 0 and the other limit
k ¼ 1 corresponds to the so-called Gibson solid. For 0okr1, the Young’s modulus increases from zero at the surface to E0 at the
characteristic depth z ¼ c0. Different combinations of k and c0 lead to a variety of Young’s modulus variations. We also note that
the power law in Eq. (1) has the limitation/disadvantage that the modulus E approaches zero at the surface. This law is chosen
here mainly to facilitate the derivation of simple closed form analytical solutions which can serve as bench mark solutions to
understand and guide numerical analysis of more general forms of graded materials. This limitation has been discussed by
Giannakopoulos and Suresh (1997b) in their analysis of indentation on graded materials. Giannakopoulos and Suresh (1997b)
conducted finite element analysis of a more realistic form of power law material E(z) ¼ E0[(z+L)/c0]k and showed that, to a first
approximation, the solution in this case can be simply obtained as a superposition of the E ¼ E0(z/c0)k solution and the solution to
a homogeneous elastic solid with elastic modulus E(z) ¼ E0(L/c0)k.

The Hertz type solutions to a rigid sphere or a rigid circular punch on a power-law graded elastic half-space have
been thoroughly discussed by Giannakopoulos and Suresh (1997b). Following Johnson (1985) and Maugis (1992), the
solution to adhesive contact between a rigid sphere and an elastic half-space can be constructed by superposing
the corresponding Hertz solutions to a rigid sphere and to a circular punch. Following this strategy and using the solutions
provided by Giannakopoulos and Suresh (1997b), we write the distribution of contact pressure in the present adhesive
contact problem as

pðrÞ ¼ p1ðrÞ � p2ðrÞ, (2)

p1ðrÞ ¼
ð3þ kÞP1

2pa2
1�

r

a

� �2
� �ð1þkÞ=2

; p2ðrÞ ¼
ð1þ kÞP2

2pa2
1�

r

a

� �2
� �ðk�1Þ=2

; 0oko1, (3)

where p1(r) corresponds to the Hertz solution for a rigid sphere and p2(r) the solution for a rigid punch; the latter
represents the effect of molecular adhesion. Note that the interfacial stress has a singularity of (k�1)/2 at the contact edge,
which reduces to �1/2 in the JKR limit k ¼ 0. Here and throughout the paper, we will adopt the convention of contact
mechanics (Johnson, 1985) in defining tensile stresses/forces as negative and compressive stresses/forces as positive.

The total applied force can be written as

P ¼

Z a

0
pðrÞ2pr dr ¼ P1 � P2, (4)

where

P1 ¼

Z a

0
p1ðrÞ2pr dr; P2 ¼

Z a

0
p2ðrÞ2pr dr. (5)

Here, P1 and P2 have the same mathematical form as the corresponding Hertz solutions for a rigid sphere and a rigid
punch, which can be found in Giannakopoulos and Suresh (1997b) as

P1 ¼
a3þk22�kp

C1Rð1þ kÞð3þ kÞG 1
2þ

k
2

� 	
G 3

2þ
k
2

� 	 ; P2 ¼
2a1þkdz2 cos kp

2

py�ð1þ kÞ
, (6)

where

C1 ¼

G
1� k

2

� �

G
1þ k

2

� �21�ky�p; y� ¼
ck

0

E�

Cb sin
pb
2

� �
G

1þ k

2

� �

2ð1þkÞ
ffiffiffi
p
p

G 1þ
k

2

� �

C ¼

21þkG
3þ kþ b

2

� �
G

3þ k� b
2

� �
pGð2þ kÞ

; b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ kÞ½1� ku=ð1� uÞ�

p
; E� ¼

E0

1� n2
:

8>>>>>>>>>><
>>>>>>>>>>:

(7)

Following the convention of contact mechanics, we adopt the parabolic approximation for the surface profile of the rigid
sphere within the contact area (Johnson, 1985) and write the normal displacement along the surface of the half-space as

uzðrÞ ¼ dz �
r2

2R
; �a � r � a, (8)

where R is the radius of the rigid sphere and dz its vertical displacement.
Similar to the adhesive force, the displacement dz can also be decomposed as

dz ¼ dz1 � dz2, (9)

where dz1 is associated with the contact pressure p1(x) and dz2 associated with p2(x). The corresponding expression can be
found in Giannakopoulos and Suresh (1997b) as

dz1 ¼
a2

R

1

1þ k
; dz2 ¼

py�

cos kp
2

P2ð1þ kÞ

2a1þk
. (10)
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The elastic strain energy stored in the half-space can be calculated from

UE ¼
1

2

Z a

0
p rð Þuz rð Þ2pr dr. (11)

Substituting the stress solution in Eqs. (2) and (3) and displacement solution in Eqs. (8) and (9) into Eq. (11) yields

UE ¼
1

2
P1dz �

P1a2

Rð5þ kÞ
� P2dz þ

P2a2

Rð3þ kÞ

� �
. (12)

On the other hand, the adhesion process reduces the surface energy by an amount equal to

US ¼ �pa2Dg, (13)

where Dg denotes the work of adhesion. The total free energy UT of the system is thus

UT ¼ UE þ US. (14)

The radius of the contact area is determined by minimizing UT under given dz, i.e.

@UT

@a

����
dz

¼ 0. (15)

Combining Eqs. (12)–(15) leads to

2paDg ¼ 1

2
dz

@P1

@a
jdz
�
@P2

@a
jdz

� �
�

a2

Rð5þ kÞ

@P1

@a

����
dz

"

�
2P1a

Rð5þ kÞ
þ

a2

Rð3þ kÞ

@P2

@a

����
dz

þ
2P2a

Rð3þ kÞ

#
, (16)

where

@P1

@a

����
dz

¼
a2þk23�kp

DC1ð1þ kÞG 1
2þ

k
2

� 	
G 3

2þ
k
2

� 	 ; D ¼ 2R (17)

@P2

@a

����
dz

¼
2 cos pk

2

py�ð1þ kÞ

2ð3þ kÞ

Dð1þ kÞ
a2þk � dzð1þ kÞak

� �
. (18)

Substituting Eqs. (6), (9), (17) and (18) into Eq. (16) yields

py��ð1þ kÞ2

2 cos pk
2

Dg
E�R

� �
P2

DgR

� �2

�
21�kp2

C�1G 1
2þ

k
2

� 	
G 3

2þ
k
2

� 	
cos pk

2

�
2

1þ k

" #
a

R

� �3þk

ak P2

DgR

� �

þ
23�kp

C�1y
��
ð1þ kÞ2ð3þ kÞG 1

2þ
k
2

� 	
G 3

2þ
k
2

� 	 a

R

� �6þ2k

a2k E�R

Dg

� �

�
8 cos pk

2

py��ð1þ kÞ3ð3þ kÞ

a

R

� �6þ2k

a2k E�R

Dg

� �
� 4p a

R

� �3þk

ak ¼ 0, (19)

where

y�� ¼
Cb sinðpb=2ÞG 1þk

2

� 	
2ð1þ kÞ

ffiffiffiffi
p
p

G 1þ k
2

� 	 ; C�1 ¼
G 1�k

2

� 	
G 1þk

2

� 	21�kp and a ¼ R

c0
. (20)

Eq. (19) describes the relationship between the normalized load P2/(DgR) and the normalized contact radius a/R.
A relation between P/(DgR) and P2/(DgR) can be obtained from Eqs. (4) and (6) as

P

DgR
¼

a

R

� �3þk

ak E�R

Dg

� �
22�kp

C�1y
��
ð1þ kÞð3þ kÞG 1

2þ
k
2

� 	
G 3

2þ
k
2

� 	� P2

DgR
. (21)

Eqs. (19) and (21) can now be used to solve for the relation between the load P and the contact radius a.
The subsequent calculations are quite lengthy and complex but the methodology is standard. We skip all the details and

present only the final solution. The relation between the applied load P and the contact radius a can be simplified as

P ¼
d2a3þk �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4d1d3a3þk

p
2d1

, (22)
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where

d1 ¼
py�ð1þ kÞ2

2 cos pk
2

� 	
R3Dgck

0

; d2 ¼
4

R4ck
0ðkþ 3ÞDg

; d3 ¼
4p

R3ck
0

. (23)

The critical condition

@P

@a
¼ 0 (24)

gives the critical contact radius at pull-off as

acr ¼
p2y�ð1þ kÞ2ð3þ kÞ2R2Dg

8 cos pk
2

" #1=ð3þkÞ

, (25)

where y* has been defined in Eq. (7).
Substituting Eq. (25) back into Eq. (22) leads to the following simple closed-form solution for the pull-off force:

Pcr ¼ �
kþ 3

2
pRDg. (26)

It is interesting that the pull-off force is independent of the characteristic length c0, the Poisson ratio n, and the Young’s
modulus E0. It only depends linearly on the gradient exponent k, as well as the radius R of the sphere and the work of
adhesion Dg. Our analysis shows that this well known feature of the classical JKR model is valid also for a power-law graded
material.

Figs. 2(a, b) plot the normalized pulling force P/(RDg) as a function of the normalized contact radius a/R under
prescribed values of k, a, E*R/Dg and n; the classical JKR solution is also shown for comparison. One can see that the contact
radius a/R at pull-off tends to decrease with increasing a ¼ R/c0 for given values of k.
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Fig. 2. The normalized force P/(DgR) versus the normalized contact radius a/R for different values of a ¼ R/c0, and gradient exponent (a) k ¼ 0.1; (b)

k ¼ 0.5. Fixed parameters are E*R/Dg ¼ 100 and n ¼ 0.3.
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The distribution of interfacial stress at pull-off is shown in Fig. 3 for different values of the gradient exponent k. It can be
seen that the interfacial stress at pull-off becomes more uniformly distributed as k increases from the JKR limit when k ¼ 0
to the Gibson limit when k ¼ 1.

The average interfacial stress at pull-off can be directly evaluated from Eqs. (25) and (26) as

scr ¼ �
ðkþ 3ÞRDg

2

8 cos pk
2

p2y�ð1þ kÞ2ð3þ kÞ2R2Dg

" #2=ð3þkÞ

. (27)

The corresponding plane strain problem of adhesive contact between a rigid cylinder and a power-law graded half-space
has been discussed by Giannakopoulos and Pallot (2000). However, we found some errors in their analysis. For
completeness of the present discussion, the corrected plane strain solution is briefly discussed in Appendix.

Our analysis is analogous to the JKR model which assumes that there are no adhesive interactions outside the contact
region. In contrast, the DMT model takes into account adhesive forces outside the contact area but assumes that the stress
distribution within the contact region remains in the Hertz form. Tabor (1976) showed that these two theories are
applicable in the opposite limits of a non-dimensional parameter

m ¼ RDg2

E�2d3
0

 !1=3

, (28)

corresponding to the ratio between the elastic deformation of the contacting surfaces and the effective range d0 of surface
interactive forces. While the JKR theory applies to relatively large and soft bodies corresponding to a large Tabor parameter,
the DMT model holds for small and rigid solids with a small Tabor number. A detailed analysis on the applicability of JKR
and DMT theories with respect to the Tabor parameter was carried out by Greenwood (1997).

In principle, the work of Greenwood (1997) can be extended to investigate the range of applicability of our model for a
graded material. While a complete analysis is beyond the scope of the present work, here we provide some preliminary
discussions on the Tabor parameter for graded power-law materials. Combining Eqs. (9), (10), (25) and (26) in the paper
shows that the maximum deformation of the graded half-space at pull-off has the form,

dzmax ¼ gðk; nÞ
R1�kDg2c2k

0

E�
2

" #1=ð3þkÞ

, (29)

where

gðk; nÞ ¼ 1

1þ k
�

p
ð3þ kÞ cos pk

2 G 3þk
2

� 	
G 1�k

2

� 	
" #

p2ð1þ kÞ2ð3þ kÞ2y��

8 cos pk
2

" #2=ð3þkÞ

�
p2ð1þ kÞð3þ kÞðy��Þ2=ð3þkÞ

4 cos pk
2

8 cos pk
2

p2ð1þ kÞ2ð3þ kÞ2

" #ð1þkÞ=ð3þkÞ

. (30)

In the limit k ¼ 0, Eq. (29) reduces to the JKR solution for a homogeneous solid,

dJKRmax ¼ �
1

4

3p2RDg2

E�
2

� �1=3

. (31)
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Fig. 3. Distributions of normalized interfacial stress �p(r)R/Dg at pull-off under prescribed parameters E*R/Dg ¼ 100, n ¼ 0.5, a ¼ 100 and different

values of the gradient exponent k. The case k ¼ 0 corresponds to the classical JKR solution.
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A generalized Tabor parameter for the power-law graded material is defined as

m� ¼ 4

ð3p2Þ
1=3

jdzmaxj

d0
¼

4

ð3p2Þ
1=3

gðk; nÞ
�� �� R1�kDg2c2k

0

E�
2
d3þk

0

" #1=ð3þkÞ

, (32)

where the coefficient 4/(3p2)1/3 is added so that the generalized Tabor parameter can reduce to Eq. (28) when k ¼ 0.

3. Special solutions in the Gibson limit k ¼ 1 and m ¼ 0.5

Taking the asymptotic limit k-1 and n-0.5 in the general solution for a power-law graded material discussed in the
previous section, we find the solutions for adhesive contact on the so-called Gibson material (Gibson, 1967; Gibson et al.,
1971; Gibson and Sills, 1975).

In the Gibson limit, the stress distribution in the contact region is reduced to

pðrÞ ¼
2P1

pa2
1�

r

a

� �2
� �

�
P2

pa2
, (33)

where

P1 ¼
pa4E0

6Rc0
; P2 ¼

2pE0a2dz2

3c0
; P ¼

pa4E0

6Rc0
� P2. (34)

The vertical translation of the rigid sphere dz is found to be

dz ¼
a2

4R
þ

3c0P

2pa2E0
; dz1 ¼

a2

2R
; dz2 ¼

3P2c0

2pa2E0
. (35)
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Fig. 4. The normalized force P/(DgR) and the normalized contact radius a/R in the Gibson limit k ¼ 1 and n ¼ 0.5, and in the JKR model for n ¼ 0.5: (a)

under different values of E0R/Dg; (b) under different values of a.
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The relation between the load P and the contact radius a becomes

P ¼
pa4E0

6Rc0
� 2pa2

ffiffiffiffiffiffiffiffiffiffiffi
DgE0

3c0

s
. (36)

Figs. 4(a, b) plot the relation between the normalized force P/RDg and the normalized contact radius a/R for different
parameter values of RE0/Dg and a ¼ R/c0. The analogous JKR limit when k-0 and n ¼ 0.5 is shown for comparison. One can
see that the contact radius at pull-off is influenced strongly by a and RE0/Dg. Explicitly, the critical contact radius can be
obtained by taking the limit k-1 and n ¼ 0.5 in Eq. (25) as

acr ¼
12R2c0Dg

E0

 !1=4

. (37)

In the Gibson limit, the pull-off force is simply

Pcr ¼ �2pRDg. (38)

Interestingly, this result coincides with the pull-off force predicted by the DMT model (Derjaguin et al., 1975) for adhesive
contact on a homogeneous material. This seems just a coincidence because the critical contact radius does not resemble the
corresponding solution of the DMT model.1
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Fig. 5. Distributions of normalized interfacial stress �p(r)R/Dg at pull-off in the Gibson limit k ¼ 1 and n ¼ 0.5 and in the JKR model for n ¼ 0.5: (a) under

different values of E0R/Dg; (b) under different values of a.

1 In the DMT model, the critical contact radius is zero at pull-off.
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In the Gibson case, the interfacial stress at pull-off can be obtained from Eq. (33) as

pðrÞ ¼ �2
E0Dg
3c0

� �1=2

r2; �1 � r � 1, (39)

where r ¼ r/acr. In comparison, the corresponding result in the JKR model (Johnson, 1985) is

pJKRðrÞ ¼
9E�

2

Dg
p2R

 !1=3

ð1� r2Þ
1=2
�

2

3

9E�
2

Dg
p2R

 !1=3

ð1� r2Þ
�1=2; �1 � r � 1. (40)

The normalized interfacial stress �pR/Dg at pull-off is plotted as a function of r/a in Fig. 5(a, b) for prescribed parameter
values of a ¼ R/c0 and E0R/Dg. The results show that the critical stress in the Gibson limit is negative (tensile) everywhere
within the contact region. In contrast, the critical stress is positive (compressive) in the middle of the contact area and
negative (tensile) near the contact edge in the JKR limit.

Table 1 summarizes various closed form solutions for adhesive contact on a power-law graded material, including
special solutions in the Gibson and JKR limits. For convenience, we also list the two-dimensional JKR solution (Chaudhury
et al., 1996; Johnson et al., 1971; Baney and Hui, 1997) and the Gibson solution to be discussed in the Appendix.

We wish to point out that the contact solutions described in this paper are valid only below the so-called strength limit
(Gao and Yao, 2004; Yao et al., 2007) in which the interfacial stress reaches the theoretical adhesion strength sth at pull-off.
To see this, let us combine Eqs. (37) and (38) first to calculate the average interfacial stress at pull-off as

scr ¼ �

ffiffiffiffiffiffiffiffiffiffiffi
DgE0

3c0

s
. (41)

Interestingly, the average interfacial stress at pull-off for adhesive contact on a Gibson half-space is independent of the
radius of the rigid sphere R and only depends on Dg and E0/c0. As c0 decreases under fixed E0 and Dg, the average interfacial
stress at pull-off continuously increases until it eventually saturates at the theoretical strength �sth of the interface
(negative for tensile stress). Setting the pull-off stress in Eq. (41) equal to �sth gives a condition for the so-called strength
limit (Yao et al., 2007)ffiffiffiffiffiffiffiffiffiffiffi

DgE0

3c0

s
¼ sth, (42)

which can be alternatively expressed as

c0cr ¼
DgE0

3s2
th

. (43)

On the other hand, the maximum interfacial stress at pull-off can be found from Eq. (39) as

pmax ¼ �2
E0Dg
3c0

� �1=2

; r ¼ �1 (44)

The restriction that the maximum interfacial stress should not exceed the theoretical strength �sth of the interface yields
another condition for the strength limit

c0cr ¼
4DgE0

3s2
th

. (45)

Comparing Eqs. (43) and (45), one can see that, once the characteristic length c0 falls below 4DgE0=3s2
th, the contact

mechanics solutions based on the balance between elastic energy and surface energy are no longer valid. In the strength
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Table 1
A summary of solutions for adhesive contact on a power-law graded elastic half-space.

acr Pcr scr

JKR model (Johnson et al., 1971) 3
2

pR2Dg
3E�

h i1=3 � 3
2pRDg

�
8E�

2
Dg

3p2 R

� �1=3

Power-law (present paper)

E(z) ¼ E0(z/c0)k

Eq. (25) � kþ3
2 pRDg Eq. (27)

Gibson limit (present paper)

E(z) ¼ E0(z/c0)k, v ¼ 0.5
12R2c0Dg

E0

� �1=4 �2pRDg
�

ffiffiffiffiffiffiffiffi
DgE0

3c0

q
Plane strain JKR (Baney and Hui,

1997; Chaudhury et al., 1996)
2DgR2

pE�

� �1=3
� 3

2
pRE�Dg2

2

� �1=3

� 3
4

p2 E�
2
Dg

4R

� �1=3

Plane strain Gibson (present

paper) E(y) ¼ E0y/c0, v ¼ 0.5
3R2Dgc0

E0

� �1=4
� 8

3
R2 E0Dg3

3c0

� �1=4
� 4

3

ffiffiffiffiffiffiffiffi
DgE0

3c0

q
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limit, the correct stress distribution within the contact area at pull-off should be uniform and equal to the theoretical
adhesion strength. In this case, the assumption of seamless contact between the sphere and the half-space in Eq. (8) is
inappropriate and one would generally need a cohesive type model to accurately describe interfacial stress distribution. We
do not pursue more details here.

4. Summary

The present paper has been aimed at developing a more systematic study of adhesive contact between a rigid
sphere and a power-law graded elastic material. The emphasis is on establishing a number of simple closed-form anal-
ytical solutions, including those of the critical force, the critical contact area and the average interfacial stress at pull-off,
to enhance our general understanding in this area. The most important finding is that, for adhesive contact between a
rigid sphere of radius R and a graded elastic material with Young’s modulus varying with depth according to a power
law E ¼ E0(z/c0)k (0oko1) while Poisson’s ratio n remaining a constant, the pull-off force has a simple solution
of Pcr ¼ �(k+3)pRDg/2 where Dg is the work of adhesion. For this problem, the critical radius of contact is given in
Eq. (25) and the average interfacial stress at pull-off is given in Eq. (27). The derived analytical solutions have
been discussed and compared in three important special limits: the classical JKR solution when k ¼ 0, the Gibson solid
when k-1 and n ¼ 0.5, and the strength limit when the interfacial stress uniformly reaches the theoretical adhesion
strength at pull-off.
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Appendix. Plain strain solutions for adhesive contact between a rigid cylinder and a power-law graded elastic material

Giannakopoulos and Pallot (2000) have previously treated the problem of adhesive contact between a rigid cylinder and
a power-law graded elastic half-space. Their basic approach has been adopted in the present study. However, during the
course of this study, we also found some errors in the analysis of Giannakopoulos and Pallot (2000) which are briefly
discussed below, along with the corrected solution.

For the plane strain problem of adhesive contact between a rigid cylinder and a power-law graded elastic
half-space described by Eq. (1), the total applied load P can be related to the contact pressure p(x) as (Giannakopoulos
and Pallot, 2000),

P ¼ P1 � P2; pðxÞ ¼ p1ðxÞ � p2ðxÞ, (A.1)

whereZ a

�a
pðxÞdx ¼ P;

Z a

�a
p1ðxÞdx ¼ P1;

Z a

�a
p2 xð Þdx ¼ P2. (A.2)

The normal surface displacement is quoted in Eq. (B4) of Giannakopoulos and Pallot (2000) as ūy ¼ dy � x2=2a (�arxra)
and the total elastic strain energy stored in the half-space is quoted in Eq. (B5) of Giannakopoulos and Pallot (2000) as
UE ¼ 2

R a
0 pðxÞūyðxÞdx. These expressions are erroneous and lead to an incorrect expression for the elastic energy stored in

the half-space given in Eq. (B9) of Giannakopoulos and Pallot (2000):

UE ¼ 2dyðP1 � P2Þ � f 1ðkÞ
P1a

ffiffiffiffi
p
p

8

G 3þk
2

� 	
G 3þ k

2

� 	þ f 2ðkÞ
P2a

ffiffiffiffi
p
p

4

G 1þk
2

� 	
G 2þ k

2

� 	 ,

which in turn leads an incorrect expression for the balance between surface energy and elastic energy given in Eq. (B14) of
Giannakopoulos and Pallot (2000):

Dg ¼ dy
@P1

@a

����
dy

�
@P2

@a

����
dy

 !
� f 1ðkÞ

ffiffiffiffi
p
p

16

G 3þk
2

� 	
G 3þ k

2

� 	 P1 þ a
@P1

@a

����
dy

 !

þ f 2ðkÞ

ffiffiffiffi
p
p

8

G 1þk
2

� 	
G 2þ k

2

� 	 P2 þ a
@P2

@a

����
dy

 !
.

In fact, the denominator 2a in Eq. (B4) of Giannakopoulos and Pallot (2000) should be 2R, i.e.

ūy ¼ dy �
x2

2R
ð�a � x � aÞ; dy ¼ dy1 � dy2. (A.3)
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In addition, the coefficient ‘‘2’’ in Eq. (B5) of Giannakopoulos and Pallot (2000) should be corrected as ‘‘1/2’’, i.e.

UE ¼
1

2

Z a

�a
pðxÞūyðxÞdx ¼

Z a

0
pðxÞūyðxÞdx. (A.4)

Once these corrections are made, it can be shown that the elastic energy stored in the power-law graded half-space is

UE ¼
dy

2
ðP1 � P2Þ � f 1ðkÞ

P1a2
ffiffiffiffi
p
p

16R

G 3þk
2

� 	
G 3þ k

2

� 	þ f 2ðkÞ
P2a2

ffiffiffiffi
p
p

8R

G 1þk
2

� 	
G 2þ k

2

� 	 . (A.5)

Minimizing the total free energy UT ¼ UE+US, where Us ¼ �2aDg, by imposing @UT=@a
��
dy
¼ 0, Eq. (B14) of Giannakopoulos

and Pallot (2000) is corrected as

2Dg ¼ dy

2

@P1

@a

����
dy

�
@P2

@a

����
dy

 !
� f 1ðkÞ

ffiffiffiffi
p
p

16R

G 3þk
2

� 	
G 3þ k

2

� 	 2aP1 þ a2 @P1

@a
jdy

� �

þ f 2ðkÞ

ffiffiffiffi
p
p

8R

G 1þk
2

� 	
G 2þ k

2

� 	 2aP2 þ a2@P2

@a

����
dy

 !
, (A.6)

where

f 1ðkÞ ¼
Gð3þ kÞ

2ð1þkÞG2 3þk
2

� 	 ; f 2ðkÞ ¼
Gð1þ kÞ

2kG2 1þk
2

� 	 , (A.7)

f 3ðk;bÞ ¼
2ð1� k2

Þ

bðkþ 2Þ sinðbp=2Þ

G 3þk
2

� 	
G 3þkþb

2

� �
G 3þk�b

2

� �
G 3�k

2

� 	 , (A.8)

h̄ðk; nÞ ¼ b
kþ 1

ðkþ 2Þ sinðbp=2Þ

k
G

3þ kþ b
2

� �
G

3þ k� b
2

� �
Gð1þ kÞG 1�k

2

� 	
Gð3þ kÞG 1þk

2

� 	 (A.9)

and

b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ kÞ 1�

kn
1� n

� �s
; E� ¼

E0

1� n2
(A10)

are the same as those in Giannakopoulos and Pallot (2000).
Substituting the normal displacement and the relation between the load and the contact half-width into (A.6) leads to

the following relation between the normalized load P/Dg and the normalized contact half-width a/R:

h̄k

p
a

R

� ��ðkþ1Þ

ðaÞ�k Dg
E�R

� �
P

Dg

� �2

�
1

2
f 3h̄

3k

2
þ 1

� �
�

1

k

� �
a

R

P

Dg

þ
pf 2

3h̄ðkþ 1Þ

8
�

p
4k2h̄ðkþ 2Þ

" #
a

R

� �kþ3

ðaÞk E�R

Dg � 2 ¼ 0. (A.11)

We have not been able to find a simple closed form solution to the plane strain equation (A.11). However, this equation
can be easily solved in the Gibson limit k ¼ 1 and n ¼ 0.5. In the Gibson limit, the relation between the contact half-width a

and the external force P becomes

P ¼
4a3E0

9Rc0
� 4a

ffiffiffiffiffiffiffiffiffiffiffi
DgE0

3c0

s
. (A.12)

Solving (A.12), we find that the critical contact half-width acr at pull-off is

acr ¼
3R2Dgc0

E0

 !1=4

, (A13)

and the pull-off force Pcr is

Pcr ¼ �
8

3

R2E0Dg3

3c0

 !1=4

. (A.14)

The average interfacial stress at pull-off scr ¼ Pcr/(2acr) is

scr ¼ �
4

3

ffiffiffiffiffiffiffiffiffiffiffi
DgE0

3c0

s
. (A.15)
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Somewhat similar to the axisymmetric problem of adhesive contact by a sphere discussed in the main text of this paper,
the pull-off interfacial stress in the plane strain model is also independent of the radius of the contacting object.
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