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ABSTRACT Recently, people are confused with two opposite variations of elastic modulus with
decreasing size of nano scale sample: elastic modulus either decreases or increases with decreas-
ing sample size. In this paper, based on intermolecular potentials and a one dimensional model,
we provide a unified understanding of the two opposite size effects. Firstly, we analyzed the mi-
crostructural variation near the surface of an fcc nanofilm based on the Lennard-Jones potential.
It is found that the atomic lattice near the surface becomes looser in comparison with the bulk,
indicating that atoms in the bulk are located at the balance of repulsive forces, resulting in the
decrease of the elastic moduli with the decreasing thickness of the film accordingly. In addition,
the decrease in moduli should be attributed to both the looser surface layer and smaller coor-
dination number of surface atoms. Furthermore, it is found that both looser and tighter lattice
near the surface can appear for a general pair potential and the governing mechanism should be
attributed to the surplus of the nearest force to all other long range interactions in the pair po-
tential. Surprisingly, the surplus can be simply expressed by a sum of the long range interactions
and the sum being positive or negative determines the looser or tighter lattice near surface re-
spectively. To justify this concept, we examined ZnO in terms of Buckingham potential with long
range Coulomb interactions. It is found that compared to its bulk lattice, the ZnO lattice near
the surface becomes tighter, indicating the atoms in the bulk located at the balance of attractive
forces, owing to the long range Coulomb interaction. Correspondingly, the elastic modulus of one-
dimensional ZnO chain increases with decreasing size. Finally, a kind of many-body potential for
Cu was examined. In this case, the surface layer becomes tighter than the bulk and the modulus
increases with deceasing size, owing to the long range repulsive pair interaction, as well as the
cohesive many-body interaction caused by the electron redistribution.

KEY WORDS size effect, elastic modulus, surface effect, atomic/molecular potential, surface layer

I. INTRODUCTION
Recently, the rapid development of nanotechnologies and the extensive use of nano-scale materials

and structures make the understanding and characterizing of their mechanical properties an urgent
task. On the other hand, nano-scale materials and structures often exhibit very different from their
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conventional counterparts, even elastic moduli vary significantly when the sample size decreases to
nano-scale.

Various experiments on nanofilms and nanowires show that the elasticmoduli strongly depend on their
size, i.e. their thickness or diameter. But, to the surprise of most people, the tendency of the variations
are radically different for different materials[1–4]. Atomic/molecular simulations also show the similar
difference in the size-dependence. For instance, both molecular dynamics (MD) and molecular statics
(MS) simulations of nanofilms based on Lennard-Jones potential[5,6] show decreasing modulus with
decreasing film thickness; Whereas MD simulations of ZnO nanowires based on Buckingham potential
with long range Coulomb interactions[7,8] show an inverse size effect, namely increasing modulus with
decreasing nanowire diameter.

In fact, small size often leads to a large surface to volume ratio. Thus, the surface effects are
usually considered to take the responsibility for the variations of mechanical properties at nano scale.
Some theoretical models concerning surface effects, such as continuum models[9–13] and microscopic
models[14–16] have been developed to explain the size dependence.

The two opposite size effects on elastic modulus implies that there might be different surface effects
resulting fromatomic/molecular interactions. For instance, Leach[17] stated that ‘the surface properties of
metals are such that the surface tends to relax inwards but systems described by two-body interactions
tend to relax outwards’ in the popular book ‘Molecular Modelling’. Therefore, to identify the key
aspects involved in atomic/molecular interactions governing the two opposite effects becomes a crucial
issue in the study of mechanical properties of nano-scale materials. However, as far as we know, a
unified understanding of these two different kinds of size and surface effects based on atomic/molecular
interactions still remains open. As a matter of fact, the situation of these atoms or molecules near the
surface is very different from those in the bulk in several aspects:

1. These atoms have smaller coordination number;
2. The atomic lattice near the surface is no longer the same as in the bulk, because the lattice near

the surface has to be readjusted to achieve a new equilibrium, different from the bulk.
Obviously, the variations of elastic properties of nano-scale materials with decreasing size are merely a

representation of these differences. Hence, from the viewpoint of the basic atomic/molecular interactions,
the question is what is the unique atomic/molecular mechanism underlying the two different size effects
on elastic properties.

In the present paper, the two kinds of surface effects on elastic modulus are studied based on
atomic/molecular potentials. Firstly, the size effect of a fcc nanofilm with (001) surface on elastic
moduli is discussed in terms of Lennard-Jones potential with long range attractive interaction. Then,
the mechanism underlying the looser or tighter lattice near the surface is revealed. Furthermore, as a
case study showing the inverse size effect, ZnO is examined by means of Buckingham potential with
long range Coulomb interaction. Finally, many-body Finnis-Sinclair potential for Cu is examined to
study the influence of many-body effect on the surface layer and size effects of elastic modulus.

II. SURFACE EFFECT ON ELASTIC MODULUS
DUE TO LENNARD-JONES POTENTIAL

2.1. What is Surface Layer

Firstly, atoms on the free surface have smaller coordination number Z than its bulk, for example,
for a cubic lattice Z = 5 on the surface rather than 6 in the bulk, see Fig.1.

The other important issue concerning the surface is the microstructural variation. In this section,
as an example, we examine the microstructural variation near the surface in an fcc nanofilm, which
has two {001} surface and 2N + 1 (001) atomic layers in the thickness direction, i.e. [001] orientation,
as shown in Fig.2(a). This nanofilm is originally constructed with the bulk lattice constant a and then
readjusted to achieve a new equilibrium with two free surfaces.

Considering that the length/width to thickness ratio of the nanofilm is sufficiently high, we assume
that:
a) All atoms distribute uniformly in the length and width directions after the readjustment, neglecting
the side boundary effect;
b) All (001) plane atoms are still coplanar after the readjustment.
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Fig. 1. Coordination number of atoms (black atoms).

Fig. 2. (a) Sketch of the fcc nanofilm. (b) Variation of lattice after readjustment.

Hence, the only geometrical nonuniformity is the spacing of layers in the thickness direction. We
denote the spacing between the ith and the (i+1)th layer by di, i=1, · · ·2N . After readjustment, the very
interior lattice in a thick enough film should be uniform in all three directions and the corresponding
lattice constant 2dN should equal to a, as shown in Fig.2(b). The series of spacing di near surface can
be determined by solving the force equilibrium equation of a representative atom of each layer in the
thickness direction.

Lennard-Jones potential between atoms i and j is

u(rij) = 4ε0

[

(

r0

rij

)12

−
(

r0

rij

)6
]

(1)

which is used to describe the interactions between atoms, and the force between atoms i and j can be
written as
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So, the z-component of the force can be written as

fz(rij) = 48zij
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)
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and the total z-component force acting on a representative atom in the ith layer can be written as

F i
z =

∑

rij≤rc

fz (rij) = 0 (i = 1, · · ·, 2N + 1) (4)
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where rij is the vectorial distance between atoms i and j, rij = ri − rj , rij is the modulo of rij ; xij ,
yij and zij are the corresponding coordinate components of rij , respectively, ε0 and r0 are the two
potential parameters and rc is the cutoff radius.

Considering that the long range attractive interaction in Eq.(3) is proportional to r−7
ij , then the

cutoff radius of rc = 8rnearest is chosen to guarantee a precision better than a millionth in calculation,
where rnearest = 21/6r0 is the distance corresponding to the minimum of Lennard-Jones potential, since
r−7
c /r−7

nearest = 8−7 = 4.8 × 10−7 when rc/rnearest = 8.
Because the x-o-y plane is symmetric, there are N independent equations in Eq.(4) for the thin film.

By solving these equations simultaneously with iterative method, the spacing series di can be obtained.
The results for the cases N = 3, 6 and 20 and the corresponding curve fitting are shown in Table 1 and
Fig.3 respectively. There is a slight difference between the cases of N = 3, 6 and 20, as shown in Table
1, and d8 ≈ d9 ≈ d10, for the case N = 20. The lattice constant in the bulk 2d20 = 0.97158 · 22/3 r0

also agrees well with the lattice constant for infinite fcc lattice a = 0.971 · 22/3r0 given by Kittel[18].

Table 1. Spacing series di: (a) N = 3; (b) N = 6; (c) N = 20

Spacing (22/3r0) (a) N= 3 (b) N= 6 (c) N= 20

d1

d2

d3

d4

d5

d6

d7

d8

d9

d10

0.498041
0.488467
0.486774
-
-
-
-
-
-
-
-

0.498021
0.488392
0.486535
0.486029
0.485866
0.485814
-
-
-
-
-

0.498021
0.488392
0.486535
0.486030
0.485865
0.485810
0.485793
0.485790
0.485790
0.485790
. . .

It can be seen from Fig.3 that the spacing near the surface is a little longer than that in the bulk,
and this deviation decreases rapidly. d5 is only 0.011% greater than d6, for the case N = 20. So, the
non-uniform region is a very thin layer (8 atomic layers at most) near the surface, named as the surface
layer later.

Fig. 3. Spacings of two neighboring layers normalized by d20, for N = 3, 6 and 20.

To quantitatively express the thickness of the surface layer, the data is fitted with an exponential
formula di/dN = 1+e−i/t0, and t0 = 0.27232 for N = 20. This means that a reduction of 1/e in spacing
d appears when the layer’s number increases to t0.

From all the above discussions, the special features of the surface are: the nonuniform lattice and
smaller coordination numbers of the atoms near the surface.
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2.2. Effect of Surface Layer on Elastic Modulus

2.2.1. Effect of coordination number of surface layer on elastic modulus

In this sub-section we discuss the effect of the coordination number of surface layer on elastic modulus
in terms of a simple model. Generally speaking, the total energy U can be written as the sum of two
parts: the bulk term and the non-bulk term:

U =
1

2

∑

i

∑

j 6=i

u (rij) =
1

2

∑

i∈bulk

∑

j 6=i

u (rij) +
1

2

∑

i/∈bulk

∑

j 6=i

u (rij) (5)

where u(rij) is the pair potential between atoms i and j. The bulk term consists of the energy of all
equivalent atoms and the rest is the non-bulk term, see Fig.4. Clearly, the bulk term is independent of
sample size, while the non-bulk term may be size-dependent.

Fig. 4. Schematic diagram of a finite cubic crystalline lattice showing four different parts. The atoms in the bulk, surface,
edge and corner have different coordination numbers.

For example, as shown in Fig.4, for a finite cubic crystalline lattice containing M = N3 atoms, after
taking only the nearest neighboring interaction into account, we can write the total energy of the cubic
lattice as

U =
u (r)

2

{

Z1 (N − 2)
3

+ Z2

[

6 (N − 2)
2
]

+ Z3 [12 (N − 2)] + 8Z4

}

(6)

where N is the total of the layers in each directions, Z1, Z2, Z3, and Z4 are the coordination numbers
of each atom in the bulk, surface, edge and corner respectively, r is the distance between two nearest
atoms and should be a function of strain. The term with preceding factor Z1 in Eq.(6) is the bulk term,
and the rest are non-bulk terms. The strain energy density of the cubic lattice W can be written as

W = (U − U0) /V (7)

where U0 is the total energy of the cubic lattice without any deformation, V = (Nr)3 is the volume of
the cubic lattice as conventionally defined[6]. Also, stresses σx, σy and σz can be written as

σx =
∂W

∂εx
, σy =

∂W

∂εy
, σz =

∂W

∂εz
(8a)

Now let us consider the contribution of the non-bulk terms on the elastic bulk modulus K as an
example. Suppose εx = εy = εz = ε, then volumetric strain e = εx + εy + εz = 3ε, hydrostatic stress
Θ = (σx + σy + σz)/3 can be written as

Θ =
∂W

∂e
=

1

3

∂W

∂ε
(8b)

The bulk modulus K is defined as

K =
∂2W

∂e2
=

1

9

∂2W

∂ε2
=

1

18N3r3

∂2u (r)

∂ε2

{

Z1 (N − 2)3 + Z2

[

6 (N − 2)2
]

+ Z3 [12 (N − 2)] + 8Z4

}

(9)
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Fig. 5. Normalized bulk modulus K/KB as a function of N .

Obviously, K is a function of N , i.e. size-dependent. Only if Z1 = Z2 = Z3 = Z4, K tends to be
(Z1∂

2u(r))/(18r3∂ε2), namely the size-independent value of the bulk material KB. However, for a
cubic lattice Z1 = 6, Z2 = 5, Z3 = 4, and Z4 = 3, namely Z2,3,4 < Z1, the modulus K is less than its
bulk value KB with decreasing size, see Fig.5. Clearly, the difference in coordination numbers between
the non-bulk and the bulk atoms results in a size effect on elastic modulus, regardless of any variation
of lattice spacing near the surface.

2.2.2. Effect of nonuniform spacing of surface layer on elastic modulus

Although smaller coordination numbers of surface atoms can induce size effect on elastic modulus,
as mentioned in previous section, the variation of lattice spacing near the surface results in even more
significant size effect on elastic properties. Now, as a concrete case study, we turn to discuss the elastic
moduli of a fcc nanofilm with such a surface. As shown in Fig.3 and Table 1, we suppose that the
spacing between all layers except the outmost six layers (near the upper and lower surface) are uniform
along the thickness direction (with uniform lattice constant a = 2dN , N = 20). Also, the nanofilm is
assumed to have uniform strains εx, εy and εz in three directions. Then the stresses σx, σy and σz

can be obtained by dividing the corresponding forces by the cross section areas. The last but not least
point is that we take the second and third nearest neighbors’ effects into account. The significance of
the issue is explained in §III.

The force between two atoms i and j can be expanded as a function of strains

f (rij + ∆rij) = f (|rij + ∆rij |)
rij + ∆rij

|rij + ∆rij |
≈

[

f (rij) +
∂f (rij)

∂rij
∆rij

]

rij

rij
(10)

where rij is the vectorial distance between atoms i and j, rij is the modulo of rij , and

∆rij = |rij + ∆rij | − rij

=
[

x2
ij (1 + εx)

2
+ y2

ij (1 + εy)
2

+ z2
ij (1 + εz)

2
]1/2

−
(

x2
ij + y2

ij + z2
ij

)1/2

≈
x2

ijεx + y2
ijεy + z2

ijεz

rij
(11)

The x-component of the force can be written as

fx (rij + ∆rij) ≈
[

f (rij) +
∂f (rij)

∂rij
∆rij

]

xij

rij
. (12)

While calculating σx, we cut the nanofilm into two equal parts, see Fig.6(a). The total normal forces
exerted on the right part by the left can be written as

Fx =
2N+1
∑

i=1

mF i
x =2

6
∑

i=1

mF i
x + (2N + 1 − 12)mF inner

x (13)
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Fig. 6. Schematic diagram for force calculation: (a) forces exerted on the first, second, · · ·, (N + 1)th layers of the right
half part from the left. (b) the first ( 1©), second ( 2©) and third ( 3©) nearest neighbor atoms of a pair of representative
atoms (black) in the ith layer for the calculation of the total forces exerted on the pair of representative atoms.

where m is the total number of unit cells in the two directions in plane, F i
x is the total forces exerted

on a pair of representative atoms (two black atoms in Fig.6(b)) in the ith layer of the right half part
by the whole left half part. F i

x can be written as

F i
x =

rij<r3rd
∑

j∈left part

fx(rij + ∆rij) (14)

where r3rd is the distances between an bulk atom and its third nearest neighbor, i.e. the cutoff distance.
Whereas, F inner

x = FN+1
x , is the total force exerted on a pair of representative atoms in the (N + 1)th

layer, as shown in Fig.6(a). So, the second item on the right hand side of Eq.(13) means that all layers
except the outmost six layers near the surface are uniform.

The area of (100) cross section can be written as

Sx = ma

[

a

2
(2N + 1 − 12) + 2

6
∑

1

di

]

(15)

Therefore, the normal stress σx and σy can be written as

σx =
Fx

Sx
(16)

σy =
Fy

Sy
(17)

where Sy = Sx.
In order to calculate σz, we have to cut the nanofilm into two parts from the middle of the nanofilm

(between the Nth layer and the (N + 1)th layer). Because of the uniformity of the bulk lattice, the
total normal force exerted on one part by the other can be written as

Fz =
2m
∑

i=1

mF i
z =2m2F inner

z (18)
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where F inner
z = FN+1

z . Again, σz can be written as

σz =
Fz

Sz
(19)

where Sz = (ma)2 is the area of (001) cross section. σx, σy and σz are linear functions of εx, εy and εz.
Substituting Eqs.(12) ∼ (15) and (18) into Eqs.(16), (17) and (19) yields the elasticity relations

σx = C11εx + C12εy + C13εz

σy = C21εx + C22εy + C23εz

σz = C31εx + C32εy + C33εz

(20)

where the elastic constants Cij are given by

C11 =
a

Sx

[

(2N − 12 + 1) (c1 + 2c2 + 6c3) − 2

(

1

4
c1 + 3c3

)

+ 6c1 + 24c2

+
a2

2

6
∑

i=1

ci
1st

(

ri
1st

)2 + 17a2
6

∑

i=1

ci
3rd

(

ri
3rd

)2 + a2
6

∑

i=1

c1i
3rd

(

r1i
3rd

)2

]

C12 =
a

Sx

[

(2N − 12 + 1)

(

1

2
c1 + 3c3

)

− 3c3 + 6c1

+24c2 + 8a2
6

∑

i=1

ci
3rd

(

ri
3rd

)2 + a2
6

∑

i=1

c1i
3rd

(

r1i
3rd

)2

]

C13 =
a

Sx

[

(2N − 12 + 1)

(

1

2
c1 + 3c3

)

− 2

(

1

4
c1 +

3

2
c3

)

+ 2

6
∑

i=1

d2
i c

i
1st

(

ri
1st

)2 + 20

6
∑

i=1

d2
i c

i
3rd

(

ri
3rd

)2 + 4

6
∑

i=1

(di + di+1)
2
c1i

3rd
(

r1i
3rd

)2

]

C21 = C12, C22 = C11, C23 = C13, C31 =
c1 + 6c3

a
, C32 = C31, C33 =

2 (c1 + 2c2 + 6c3)

a
(21)

where r1st, r2nd and r3rd are distances between an bulk atom and its first, second and third nearest
neighbor atoms, ri

1st, ri
2nd, ri

3rd and r1i
3rd with superscript i are distances between an arbitrary repre-

sentative atom in the ith layer and its first, second and third nearest neighbor atoms (there are two
different kinds of third nearest neighbor atoms, ri

3rd and r1i
3rd are the corresponding distances). c1, c2,

c3, ci
1st, ci

2nd, ci
3rd and c1i

3rd are the corresponding stiffness, for example,

c1 = −∂f (rij)

∂rij

∣

∣

rij=r1st
and c1

1st = −∂f (rij)

∂rij

∣

∣

∣rij=r1

1st

To illustrate the meaning of the stiffness, considering the looser surface discussed in §2.1, The stiffness
near the surface c1

1st = 19.88 (4ε0/r2
0) is less than its bulk value c1 = 25.36 (4ε0/r2

0), because d1 > d20,
see Table 1.

All elastic constants except C31, C32 and C33 depend on N . For the case of σy = σz = 0, according
to σx = Eεx, the elastic modulus E in 〈100〉 direction can be written as

E =
(C11 − C12) (C12C33 − 2C31C13 + C11C33)

C11C33 − C31C13
(22)

The obtained relation between E/E∞ and N is shown in Fig.7, where E∞ is the corresponding bulk
value as N approaches to infinite, i.e. E∞ = lim

N→∞
E (N). It is found that the elastic modulus in 〈100〉

decreases with decreasing N .
To justify the above analysis, the elastic moduli E in 〈100〉 direction for different thickness, N = 6,

15 and 30, are also numerically calculated using molecular statics (MS). The corresponding simulations
have 53× 67× 13, 53× 67× 31 and 65× 67× 61 layers in three directions, respectively. For each given
thickness, the test piece is firstly relaxed for energy minimum, and then stretched in 〈100〉 direction by
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strain step of 0.1% to 1%. At each strain step, the test piece is relaxed to the energy minimum, and
then the corresponding normal stress in 〈100〉 direction is calculated. The elastic moduli E in 〈100〉
direction is obtained by linear fitting of σx ∼ εx. The modulus for different thickness obtained with
MS simulations is also shown in Fig.7. It can be seen from Fig.7 that the result of Eq.(22) agrees well
with the result of molecular statics.

Fig. 7. Normalized elastic moduli E in 〈100〉 direction as
functions of N obtained by MS simulation (open triangles)
and Eq.(22) (open circles).

Fig. 8. Comparison of the variations of normalized elastic
modulus in 〈100〉 direction as a function of N with uniform
(•) and looser (o) surface layers.

In order to split the effect of the smaller coordination number on the surface from that of the looser
surface lattice on elastic modulus, we also examined a virtual uniform nanofilm with dN (N = 20) as
its spacing in three axial directions. The corresponding expressions of the elastic constants C0

ij and

modulus in 〈100〉 direction E0 are

C0
11 =

2

(2N + 1) a
[(2N + 1 − 4) (c1 + 2c2 + 6c3) + 2 (1.75c1 + 4c2 + 6c3)]

C0
12 =

2

(2N + 1) a
[(2N + 1 − 4) (0.5c1 + 3c3) + 2 (c1 + 3c3)]

C0
13 =

2

(2N + 1) a
[(2N + 1 − 4) (0.5c1 + 3c3) + 2 (0.75c1 + 3c3)]

C0
21 = C0

12, C0
22 = C0

11, C0
23 = C0

13, C0
31 =

c1 + 6c3

a
, C0

32 = C0
31

C0
33 =

2 (c1 + 2c2 + 6c3)

a

(23)

E0 =

(

C0
11 − C0

12

) (

C0
12C

0
33 − 2C0

31C
0
13 + C0

11C
0
33

)

C0
11C

0
33 − C0

31C
0
13

(24)

The normalized modulus E0/E∞ in 〈100〉 direction is shown in Fig.8, showing the decreases with
decreasing thickness, owing to the smaller coordination number on the surface. This effect is also seen
in simple cubic lattice[16].

For comparison, we put the two curves of E/E∞ and E0/E∞ together in Fig.8. Now, we can conclude
that although both smaller coordination number and looser surface layer contribute to the reduction of
the elastic moduli, the looseness of surface layer reduces the modulus more pronouncedly. The reduction
of elastic modulus in 〈100〉 direction is about 11% when N = 6 and 1% only when N = 60 (about several
nanometers thick). This tendency agrees well with other numerical results[6]. In Ref.[6], the reduction
of elastic modulus in 〈100〉 direction is about 10%, for the film with 13 layers of atoms.

III. MECHANISMS UNDERLYING ATOMIC SPACING NEAR SURFACE
Now, we ask why the surface layer with L-J potential becomes looser and whether the looser surface

is universal or not. Apparently, when we separate an infinite bulk medium into two semi-infinite bodies,
a new planar surface is created. Accordingly, the atomic lattice near the surface is differentiated from
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the original uniform bulk lattice, either expanding outwards owing to the repulsive forces or shrinking
inwards owing to the attractive forces, resulting from all inside atoms of the semi-infinite body. To
illustrate the surface state clearly, let us examine a long one-dimensional chain of N + 1 atoms with
spacing a, as shown in Fig.9.

Fig. 9. Sketch of a long one-dimensional atomic chain.

After adopting a pair potential u(rij) and taking the superposition of energy for the atomic system,
where rij is the distance between atoms i and j, the total potential energy of the atomic chain can be
written as

utot =
1

2

N+1
∑

i=1

N+1
∑

j 6=i

u (rij) ≈
1

2
(N + 1) 2

N/2
∑

n=1

u (na) (25)

In the latter approximation works, provided the chain is such long that the ends of the chain are
neglected and all atoms could be considered as identical (N >> 1), or the chain is a large circle.

Now, we can determine the equilibrium lattice constant a0, by means of the minimization of the
total potential energy with respect to the lattice spacing a:

dutot

da
≈ (N + 1)

N/2
∑

n=1

n
∂u (x)

∂x
|x=na0

= (N + 1)

N/2
∑

n=1

nu′ (na0) = 0 (26)

where u′(x) denotes the derivative of function u with respect to its argument x. Since the total of atoms
N + 1 is a constant, the equilibrium lattice constant a0 should satisfy the following condition,

N/2
∑

n=1

nu′ (na0) = 0 (27a)

Additionally, from this equilibrium condition, the nearest force −u′(a0) (positive indicating repulsive
force as usually defined) at equilibrium state can be expressed by a certain sumof longer range interactions
(n ≥ 2) as

−u′ (a0) =

N/2
∑

n=2

nu′ (na0) (27b)

Since the terms u′(na0) with n ≥ 2 rather than−u′(na0) appear frequently later, we name them as longer
interactions. Clearly, u′(na0) > 0 or < 0 represents attractive or repulsive interactions, respectively.
On the other hand, for the one-dimensional case, the one-side force acting on a representative atom i
from all unilateral atoms (for instance all N/2 atoms left to the representative atom i, see the shaded
area in Fig.10) can be written as

f i = −
i+N/2
∑

j=i+1

∂u (rij)

∂ri
= −

i+N/2
∑

j=i+1

∂u (ri − rj)

∂ri
er (28a)

where er is the unit vector of the position vector r. Note that positive f i denotes the repulsive force
acting on atom i from all atoms in the left semi-infinite chain, and vise verse. Since rij = ri − rj can

Fig. 10. One-side force acting on atom i.
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be rewritten as na in one-dimensional chain, the one-side force f i acting on the representative atom i
in the bulk with uniform lattice spacing a0 can be written as

f i = −
N/2
∑

n=1

u′ (na0)er = −u′ (a0)er −
N/2
∑

n=2

u′ (na0)er (28b)

Equation (28b) implies that the one-side force from the left semi-infinite body acting on the representative
atom in the bulk is governedby the surplus of the nearest force−u′(a0) to all other long range interactions
u′(na0) in a pair potential. After substituting the equilibrium condition Eq.(27b) into the one-side force
expression in Eq.(28b), one can obtain an alternative expression of the one-side force from the left
semi-infinite body acting on the representative atom in the bulk as

f i =

N/2
∑

n=2

(n − 1) u′ (na0)er (29)

This means that the one-side force from semi-infinite chain acting on a representative atom in the
bulk can be expressed exclusively by a certain sum of the long range atomic/molecular interactions
of a pair potential from n ≥ 2. More specifically, provided all derivatives u′(na0) > 0 for (n ≥ 2),
i.e. all n ≥ 2 atoms are in the range of attraction-dominated pair interaction, the one-side force from
semi-infinite chain acting on a representative atom in the bulk would be positive, namely a repulsive
force. At first glance, this result seems to be very peculiar and abnormal. As a matter of fact, the
repulsive one-side force is resulting from the surplus of the force due to the nearest atom (n = 1),

namely −u′ (a0) =
N/2
∑

n=2
nu′ (na0), to the long-range interactions from all other atoms (n ≥ 2), namely

N/2
∑

n=2
u′ (na0). In addition, it should be noted that the above simple result (Eq.(29)) is obtained in terms of

one-dimensional chain model, hence with no relation with the details of lattice. Provided an equivalent
one-dimensional lattice model containing information about the lattice structure and orientation is
adopted, the result depends not only on the potential but also the lattice structure and orientation,
however the expression is not going to be so concise.

Now, we take Lennard-Jones potential as an example. It is well known that Lennard-Jones potential
is a kind of potential with long range attractive interactions, the unilateral force fi acting on an atom in
the bulk should be repulsive according to Eq.(29). The value of the force fi in one dimensional chain is
accordingly calculated to be 0.02417 (4ε0/r0), which means a repulsive force. For the case of an infinite
uniform fcc lattice being separated into two semi-infinite bodies by a (001) plane, the one-side force
exerting on a representative atom i from all unilateral atoms (for instance all atoms above atom i, as
shown in Fig.11) can also be calculated in a similar way and it is 0.6841 (4ε0/r0), also repulsive force
but much greater than that of the one dimensional chain. Consequently, the lattice near the free surface
for a fcc lattice with Lennard-Jones potential would be looser than the bulk.

Fig. 11. Schematic diagram of one-side force exerted on atom i from all unilateral atoms above (001) facet.

More generally speaking, since the one-side force from a semi-infinite body acting on a representative
atom in the bulk, Eq.(29), is determined by the summation of long range interactions starting from
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n = 2, any predominant attractive long range pair interaction u′(na) > 0 for n ≥ 2, should also lead
to a repulsive one-side force. As a matter of fact, all Mie-type potentials

u(r) = ε0

[

k

l − k

(r0

r

)l

− l

l − k

(r0

r

)k
]

(30)

where ε0 is the energy when distance r = r0, l and k are the power indices of repulsive and attractive
interactions respectively and l > k, see Fig.12(a). Figure 12(a) shows this kind of long range attractive
interactions and demonstrates repulsive one-side force in the bulk. Whilst, an attractive one-side force
would need some predominant repulsive long range interaction, namely predominantly u′(na) < 0. This
implies a tendency of increasing potential with decreasing distance between two atoms and this would
be against the existence of a minimum energy in the pair potential, necessary for a stable equilibrium
state. To balance the two tendencies, such potentials showing attractive one-side force in the bulk
should present a certain minimum relevant to the equilibrium state a = a0 as well as a maximum
to guarantee the existence of predominant repulsive long range interactions u′(na) < 0, as shown in
Fig.12(b). However, which potentials in reality could present such a feature? Because of the importance
of this matter in the surface effect, we discuss this issue in details in §IV.

Fig. 12. Two kinds of potential energy profiles, the predominant long range interaction is: (a) attractive interaction, and
(b) repulsive interaction.

IV. SURFACE EFFECT ON ELASTIC MODULUS

DUE TO BUCKINGHAM POTENTIAL WITH COULOMB INTERACTION
In this section, we examine a kind of potential including long range repulsive interaction, namely

Buckingham potential with Coulomb interaction, to study the influence of long range repulsive in-
teractions on the microstructure of the surface layer of ZnO. The form of this potential is written
as

u(rij) =
qiqj

rij
+ A exp

(−rij

ρ

)

− C

r6
ij

(31)

where rij is the distance between two ions; qi is the charge of ion i; A, ρ and C are potential parameters
and their values for ZnO are listed in Table 2. The first term in Eq.(31) represents the long range
Coulomb interaction.

Table 2. Short range interaction parameters for zinc oxide, from Ref.[7]

A (eV) ρ (Å ) C (eV Å6 )

O2− O2− 9547.96 0.21916 32.0
Zn2+ O2− 527.70 0.35810 0.0
Zn2+ Zn2+ 0 0 0
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Fig. 13. Sketch of one-dimensional ZnO chain.

Fig. 14. Profile of pair potential for: (a) O-O; (b) Zn-Zn; (c) O-Zn.

As discussed in §III, we examine an infinite one-dimensional ZnO chain, as shown in Fig.13. For such
a binary compound, three pair potentials: uO-O, uZn-Zn and uO-Zn should be considered. The profiles
of these three pair potentials are shown in Fig.14. In addition, since the chain presents a lattice with
period 2a, see Fig.13, the first two potentials for the atoms belonging to the same specie are valid only
for the atoms with period n × 2a, see solid lines in Fig.14(a) and Fig.14(b), namely with its second
near atom and so on; whereas the last potential for two different atoms is valid to every atom with its
nearest atom and other atoms with period 2a thereafter, see the solid line in Fig.14(c). So, the total
potential of the chain, as in Eq.(25), can be expressed by,

utot ≈
N

2
2 {uA-B (a) + uA-B (3a) + ...... + uA-A (2a) + uA-A (4a) + ......}

= N







N/2
∑

n=1

′uA-B (na) +

N/2
∑

n=2

′uA-A (na)







(32)

where
∑′ denotes the summation with step ∆n = 2 and subscripts A − A and A − B denote the

interactions between atoms belonging to the same specie and different species, respectively. Similar to
Eq.(27b), the equilibrium atomic spacing of the compound chain a0 can be obtained by the minimization
of the total energy as

−u′
A-B (a0) =

N/2
∑

n=2

′nu′
A-A (na0) +

N/2
∑

n=3

′nu′
A-B (na0) (33)
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Fig. 15. One-side force acting on Zn-atom i.

Fig. 16. Terms in the summations of Eq.(29) for force: (a) fO; (b) fZn.

According to the parameters in Buckingham potentials of ZnO, the equilibrium lattice constant a0

governed by Eq.(33) is 1.653 Å.
Now, we can turn to the one-side force fA acting on an atom belonging to specie A in the binary

compound chain, as shown in Fig.15. Similar to the derivation of Eq.(29), the one-side force acting on
the atom fA in the binary compound chain can be derived as

fA =





N/2
∑

n=2

′ (n − 1)u′
A-A (na0) +

N/2
∑

n=3

′ (n − 1)u′
A-B (na0)



er (34)

According to Eq.(34), the one-side forces fO and fZn acting on O-atom and Zn-atom are calculated.
All terms in the summations of Eq.(34) for both forces fO andfZn are plotted in Fig.16. Although there
are some oscillations in the plots, the summations are definitely negative, because of the predominate
negative term u′

A-A(2a0) resulting from the long range Coulomb repulsive interactions (i.e. black dots in
Fig.16). Above all, the two one side forces fO and fZn are −2.730 eV/ Å and −2.697 eV/ Å, respectively,
and are attractive as anticipated in §2.2.

Because of the attractive one-side force acting on the atom in the bulk ZnO, the atom near the
free surface would shrink inwards, not always tends to expand outwards as claimed by Leach[9] and
Trimble[19], once a free surface is created. To illustrate this issue, the spacing of a semi-infinite one-
dimensional ZnO chain is calculated accordingly and the results are shown in Fig.17. It can be seen
from Fig.17 that the outermost spacing becomes less than that in the bulk and the general tendency
of the spacing variation near the surface is also shrinking, although some oscillations appear near the
surface. The average spacing of the first twenty atoms near the surface is 1.649Å, a bit less than that in
the bulk 1.653Å. As a result, the surface layer could be stiffer and the corresponding elastic modulus
would increase with the decreasing sample size, e.g. the length of the chain. We calculate the modulus
of the one-dimensional ZnO chain, defined as the ratio of the force to the strain, to check if the above
supposition is valid, namely the modulus would increase with decreasing sample size. The linear fitting
of the force-strain curves for 5-atom, 7-atom and infinite one-dimensional ZnO chain are shown in
Fig.18. It can be seen from Fig.18 that the modulus increases with the decreasing size. These results
justify the inverse size dependence of ZnO. Actually, this sort of inverse size dependence of increasing
modulus with decreasing sample size has been obtained by means of molecular dynamics (MD) as well
as molecular statistical thermodynamics (MST) simulations of ZnO nanorods[7,8,20]. So, the multi-fold
cross check clearly validates the inverse size dependence of elastic modulus in ZnO with Buckingham
potential including long range Coulomb interaction.
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Fig. 17. A semi-infinite one-dimensional ZnO chain (a) and its atomic spacing (b). (b-1) the outmost atom is O-atom;
(b-2) the outmost atom is Zn-atom.

Fig. 18. Elastic moduli as functions of the total number of
atoms.

Fig. 19. Schematic diagram of one-side force exerted on
atom i from all unilateral atoms above.

As an practical example, the lattice constant a0 of infinite rocksalt ZnO lattice and the corresponding
one-side force exerting on a representative atom i from all unilateral atoms (for instance all atoms above
atom i, as shown in Fig.19) are also calculated as a0 = 4.849 Å, and the one-side force fO and fZn are
equal to −1.249 eV/ Å and −1.160 eV/ Å respectively, which are once again attractive forces as shown
in the one dimensional chain.

V. SURFACE EFFECT ON ELASTIC MODULUS

DUE TO MANY-BODY FINNIS-SINCLAIR POTENTIAL
In this section, we examine a kind of many-body potential, namely Finnis-Sinclair potential for Cu to

study the influence of many-body effect on the surface layer and size effects. The form of this potential
is written as

U =
∑

i

ui, ui = −√
ρi +

1

2

∑

j 6=i

Vij , ρi =
∑

j 6=i

φij

Vij =
6
∑

k=1

ak (rk − rij)
3 H (rk − rij)

φij =
2
∑

k=1

Ak (Rk − rij)
3 H (Rk − rij)

H (x) =

{

0 (x < 0)

1 (x > 0)

(35)
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where U is the total potential of system; ui the potential of atom i; ρi electron density; Vij is the
pair potential; ak, rk, Ak and Rk are potential parameters. The profiles of these many-body and pair
potentials for Cu[21] are shown in Fig.20, the pair potential is repulsive while many-body potential is
attractive.

Similar to Eq.(25) and Eq. (27b), the total potential energy and equilibrium atomic spacing a0 of
an infinite chain can be obtained. After separating this infinite chain into two semi-infinite chains, we
can also calculate one-side force exerting on the outmost atom i from all other atoms of the semi-
infinite chain. According to the parameters in Finnis-Sinclair potentials of Cu, one-side force fi is
equal to −0.4263 eV/Å, which is an attractive one-side force. This involves two contributions from pair
potential (−0.004788 eV/Å) as well as many-body potential (−0.4215 eV/Å). For the case of an infinite
uniform fcc lattice being separated into two semi-infinite bodies by a (001) plane, the one-side force is
also calculated and is −0.9770 eV/Å, also an attractive force. Consequently, the lattice near the free
surface for a fcc lattice with many-body Finnis-Sinclair potential would be tighter than the bulk and
result in increasing modulus with decreasing size.

To justify this size effect, the elastic moduli E in 〈100〉 direction of FCC Cu nanofilms with different
thicknesses are numerically calculated using molecular statics (MS), see Fig.21. As anticipated, the
elastic modulus does increase with the decreasing thickness.

Fig. 20. Profiles of pair potential, many-body potential and
total potential between two atoms.

Fig. 21. Elastic moduli in 〈100〉 direction as functions of
number of layers.

VI. CONCLUSIONS
In this paper, we firstly analyzed the surface microstructure and the surface effect on elastic moduli

of a fcc nanofilm with (001) surface based on Lennard-Jones potential. It is found that the lattice near
the surface is no longer uniform but becomes looser than that in the bulk and the elastic modulus in
〈100〉 direction decreases with decreasing thickness. This agrees well with previous numerical results[6].
It is worthy noting that the decrease in elastic modulus should be attributed to the looseness of the
surface layer as well as the smaller coordination number.

More importantly, it is found with one dimensional model that the looseness of the surface layer
results from the surplus of the force −u′(a) due to the nearest atom (n = 1) to all other long range
interactions (Σu′(na), n ≥ 2) in a pair potential. In particular, the surplus can be uniquely expressed
by a certain summation of the long range interactions (Σ(n−1)u′(na), n ≥ 2) in pair potential. Hence,
the lattice near the surface is not always loose as stated by Leach[9] but can become either looser or
tighter than that in the bulk depending on the sign of the sum.

As an example of the inverse size effect, Buckingham potential with long range Coulomb interaction
in ZnO is examined. Rather than the looser lattice near the surface for the materials with Lennard-Jones
potential, the atomic lattice near the surface in ZnO becomes tighter than that in the bulk. This can
also be explained by the surplus of the nearest force to the long range interactions (n ≥ 2) in the pair
potential. Actually, the tightened lattice near the surface in ZnO results from the long range Coulomb
interaction. In addition, the elastic modulus of one-dimensional ZnO chain shows increasing modulus
with decreasing size.
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For many-body Finnis-Sinclair potential, there is not such a concise expression of the one-side force,
but still the long range repulsive interaction along with the electron redistribution effect leads to the
tighter surface layer and the increasing modulus with decreasing size.

In conclusion, the difference in atomic/molecular pair potentials, especially their long-range inter-
actions (attractive or repulsive) results in two kinds of surface layer (looser or tighter surface layer) and
leads to two kinds of size dependence of elastic moduli in nano-scale materials (decreased or increased
modulus with decreasing size). For many-body potential, the long-range interactions along with the
many-body effect lead to microstructural variations near the surface and size effects of elastic modulus.
Generally speaking, the size effect of materials could be attributed to the microstructure near surface,
governed by the corresponding atomic/molecular potentials. After using the symbol ⇐ to represent
the governing relationship, the dominated mechanisms governing the two kinds of size effects can be
qualitatively summarized in Table 3.

Table 3. Summary of the dominated mechanisms governing the two kinds of size effects

Elastic modulus decreases with decreasing size Elastic modulus increases with decreasing size

⇑

Looser atomic lattice near surface than the bulk
⇑

The atom in the bulk is in the balance of repulsive
one-side forces
⇑

Long range attractive interactions in pair poten-
tials, (

P
(n−1)u′(na)>0, n ≥ 2)

(like Mie-type potentials)

⇑

Tighter atomic lattice near surface than the bulk
⇑

The atom in the bulk is in the balance of attractive
one-side forces
⇑

Long range repulsive interactions in pair poten-
tials, (

P
(n−1)u′(na)<0, n ≥ 2)

(like Coulomb interaction)
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