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a b s t r a c t

In this paper, we investigate the adhesive contact between a rigid cylinder of radius R and a graded elastic
half-space with a Young’s modulus varying with depth according to a power-law, E ¼ E0ðy=c0Þk

ð0 < k < 1Þ, while the Poisson’s ratio m remains constant. The results show that, for a given value of ratio
R=c0, a critical value of k exists at which the pull-off force attains a maximum; for a fixed value of k, the
larger the ratio R=c0, the larger the pull-off force is. For Gibson materials (i.e., k ¼ 1 and m ¼ 0:5), closed-
form analytical solutions can be obtained for the critical contact half-width at pull-off and pull-off force.
We further discuss the perfect stick case with both externally normal and tangential loads.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The adhesion system on the feet of geckos has a hierarchical
structure (Autumn and Peattie, 2002); the bottom surfaces of the
toes of geckos are covered with scalelike structures called lamellae
and, each lamella is coated with hundreds of thousands of fibers
called setae. Each seta is branched into hundreds of projections
called spatulae. The properties of geckos’ adhesive system macro-
scopically appear to be anisotropic and continuously graded with
depth. The attachment pad of a cicada shows a smooth top mem-
brane covering an elongated foam structure, which is expected to
have a strong elasticity grading (Scherge and Gorb, 2001). Based
on an adhesive contact model of anisotropic materials, Chen and
Gao (2007) showed that the anisotropic feature could potentially
explain the on-the-fly adhesion release of geckos. This leads us to
the following question: What is the adhesive behavior of graded
materials?

The current studies on contact behavior for graded elastic mate-
rials are limited, and while the few existing models are only appli-
cable to certain individual cases and do not consider the effects of
adhesion. For example, the models developed by Holl (1940), Hru-
ban (1958), Lekhnitskii (1962) and Booker et al. (1985a,b) are all
limited to problems involving a point or line load on a graded elas-
tic half-space, while the models of Gibson (1967), Gibson et al.
(1971), Gibson and Sills (1975), Brown and Gibson (1972), Awojobi
and Gibson (1973) and Calladine and Greenwood (1978) are lim-
ited to a linearly graded elastic strata.

Recent advancements in indentation theory have been valuable
in shedding light on the deformation mechanisms of elastic graded

materials. For example, Giannakopoulos and Suresh (1997a,b)
developed a fundamental understanding of the micromechanics
of indentation on a three-dimensional, compositionally graded
elastic solid through a combination of analytical, computational
and experimental investigations, while Giannakopoulos and Pallot
(2000) obtained indentation solutions of a rigid cylinder and a rigid
flat punch on elastic graded substrates. A simple framework for the
two-dimensional adhesive contact model of graded materials was
also given by Giannakopoulos and Pallot (2000), but without any
discussion of the adhesion behaviors. Chen et al. (submitted for
publication) analyzed the problem of a sphere in adhesive contact
with a power-law graded half-space and obtained closed-form
analytical solutions of the critical contact radius and the critical
force at pull-off.

The present paper is aimed to extend the three-dimensional
adhesive contact model (Chen et al., submitted for publication) to
a plane strain problem. The adhesion behavior of graded materials
will be mainly discussed within the framework of adhesive contact
mechanics, which has so far been widely extended (Chaudhury
et al., 1996; Johnson and Greenwood, 1997; Greenwood and John-
son, 1998) based on three famous theories (Johnson et al., 1971;
Derjaguin et al., 1975; Maugis, 1992). It is hoped that the solutions
in the present paper will help researchers understand the adhesion
behaviors of graded tissues in biology.

2. Plain strain model with only normal load

A plane strain model of a rigid cylinder of radius R in adhesive
contact with an elastic graded half-space is illustrated in Fig. 1. A
set of Cartesian coordinates x and y are set up such that x lies along
the interface and y points into the depth of the material. An exter-
nal normal force P is placed on the above cylinder.
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The Young’s modulus of the graded half-space varies with depth
according to a general power-law

EðyÞ ¼ E0ðy=c0Þk; 0 < k < 1; ð1Þ

where E0 is a reference modulus, c0 a characteristic depth of modu-
lus variation, and k the power exponent. The power law variation of
the elastic modulus with depth is shown in Fig. 2.

According to Giannakopoulos and Pallot (2000), Green functions
describing the relations of the interfacial displacements and trac-
tions in the contact region can be expressed as

bck
0 sinðpb=2Þ

2ð1þ kÞIkE�

Z a

�a

pðsÞ
kjx� sjk

ds ¼ �uyðxÞ; ð�a < x < aÞ; ð2Þ

where pðxÞ denotes the normal traction in the contact region
�a < x < a. �uy denotes the normal interfacial displacement, which
can be written as (Johnson, 1985)

�uy ¼ dy �
x2

2R
; ð�a < x < aÞ; ð3Þ

where dy is the vertical translation of the rigid cylinder, and x2=2R
comes from the parabolic assumption for the surface profile of the
rigid cylinder (Johnson, 1985).

The other parameters in Eq. (2) are given by

Ik ¼ pCð3þkÞ
2kþ2ð2þkÞC 3þkþb

2ð ÞC 3þk�b
2ð Þ ;

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ kÞð1� km

1�mÞ
q

; E� ¼ E0
1�m2

8><
>: ; ð4Þ

while C is the Gamma function, and m is the Poisson’s ratio of the
graded half-space.

Following Johnson (1985) and Maugis (1992), the adhesive con-
tact pressure pðxÞ can be decomposed into two normal tractions,
p1ðxÞ and p2ðxÞ,

pðxÞ ¼ p1ðxÞ � p2ðxÞ; ð5Þ

where p1ðxÞ denotes the indentation pressure between a rigid cylin-
drical punch and a graded half-space, and p2ðxÞ is the indentation
pressure between a flat punch and a graded half-space.

The total external force P corresponding to the adhesive pres-
sure pðxÞ can also be decomposed into two parts as

P ¼ P1 � P2;

Z a

�a
p1ðxÞdx ¼ P1;

Z a

�a
p2ðxÞdx ¼ P2; ð6Þ

where P1 and P2 are the normal forces associated with the pres-
sures p1ðxÞ and p2ðxÞ, which have been given by Giannakopoulos
and Pallot (2000) in the indentation problems as

p1ðxÞ ¼ f1ðkÞ
P1

2a
1� x

a

� �2
� �1þk

2

; p2ðxÞ ¼ f2ðkÞ
P2

a
1� x

a

� �2
� �k�1

2

; ð7Þ

with functions f1ðkÞ and f 2ðkÞ

f1ðkÞ ¼
Cð3þ kÞ

2ð1þkÞC2 3þk
2

� � ; f 2ðkÞ ¼
Cð1þ kÞ
2kC2 1þk

2

� � ; ð8Þ

and

P1 ¼ a2þk E�

ck
0

p
4R

f3ðk; bÞ; P2 ¼
pE�akdy2

2�hck
0

; ð9Þ

f3ðk;bÞ ¼ 2ð1þ kÞ2
bðkþ 2Þ sin bp=2ð Þ

C 1þk
2

� �
C 3þkþb

2

� �
C 3þk�b

2

� �
C 1�k

2

� � ;
�hðk; mÞ ¼ 2

kðkþ 2Þf3ðk;bÞ
;

8>>><
>>>:

ð10Þ

in which dy2 denotes the normal displacement of the flat punch gi-
ven in Eq. (13) in the following text.

Substituting Eq. (7) into Eq. (5) yields the adhesive contact
pressure

pðxÞ ¼ f1ðkÞ
P1

2a
1� x

a

� �2
� �1þk

2

� f2ðkÞ
P2

a
1� x

a

� �2
� �k�1

2

; 0 < k < 1:

ð11Þ

The above equation shows that the singularity of the normal trac-
tion in the contact region is ðk� 1Þ=2. Compared to the singularity
of �1=2 in the classical JKR model, the conclusion can be drawn that
the interface cracking in the adhesive contact model for power-law
graded materials is suppressed.

The translation dy in the present adhesive contact model can
also be decomposed into two parts: dy1, corresponding to the
indentation case with a cylindrical punch, and dy2, corresponding
to the case with a flat punch (Giannakopoulos and Pallot, 2000),
i.e.,

dy ¼ dy1 � dy2; 0 < k < 1 ð12Þ

and

dy1 ¼
a2

2Rk
; dy2 ¼ �hðk; mÞ ck

0

E�
2P2

pak
: ð13Þ

Substituting Eqs. (3), (11) and (12) into the following expression for
the total elastic strain energy stored in the power-law graded half
space,

UE ¼
1
2

Z a

�a
pðxÞ�uyðxÞdx ¼

Z a

0
pðxÞ�uyðxÞdx; ð14Þ
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Fig. 1. Schematic of a rigid cylinder of radius R subject to a normal load P in contact
with an elastic graded half space with a Young’s modulus varying with depth y
according to EðyÞ ¼ E0ðy=c0Þk .
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Fig. 2. The power law variation of the elastic modulus EðyÞ with depth y.
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and utilizing the definition of the Gamma function C, we obtain

UE ¼
dy

2
ðP1 � P2Þ � f1ðkÞ

P1a2
ffiffiffiffi
p
p

16R
C 3þk

2

� �
C 3þ k

2

� �þ f2ðkÞ
P2a2

ffiffiffiffi
p
p

8R
C 1þk

2

� �
C 2þ k

2

� � :
ð15Þ

Assuming no energy is dissipated in the adhesion process, the sur-
face energy Us in this plane strain model can be expressed as

Us ¼ �2aDc; ð16Þ

where Dc is the work of adhesion.
The total energy, which is the sum of the elastic strain energy

and the surface energy, can be written as

UT ¼ UE þ US: ð17Þ

Equilibrium can be achieved when

oUT

oa

				
dy

¼ 0 ð18Þ

for a desired dy.
Substituting Eqs. (15)–(17) into Eq. (18) yields

2Dc¼ dy

2
oP1

oa

				
dy

�oP2

oa

				
dy

 !
� f1ðkÞ

ffiffiffiffi
p
p

16R
C 3þk

2

� �
C 3þ k

2

� � 2aP1þa2 oP1

oa

				
dy

 !

þ f2ðkÞ
ffiffiffiffi
p
p

8R
C 1þk

2

� �
C 2þ k

2

� � 2aP2þa2 oP2

oa

				
dy

 !
; ð19Þ

where we have

oP1

oa
¼ E�

ck
0

pf3ðk; bÞð2þ kÞa1þk

4R
;

oP2

oa
¼ ðkþ 2ÞE�pakþ1

4ck
0
�h k; mð ÞRk

� kE�pak�1dy

2ck
0
�hðk; mÞ

: ð20Þ

Substituting Eqs. (9), (12) and (20) into (19) yields

�hk
p

a
R

� ��ðkþ1Þ
ðaÞ�k Dc

E�R


 �
P
Dc


 �2

� 1
2

f3
�h

3k
2
þ 1


 �
� 1

k

� �
a
R

P
Dc

þ pf 2
3

�hðkþ 1Þ
8

� p
4k2�hðkþ 2Þ

" #
a
R

� �kþ3
ðaÞk E�R

Dc
� 2 ¼ 0;

0 < k < 1; ð21Þ

which establishes the relation between the normalized external
force P=Dc and the normalized contact half-width a=R as a function
of parameters k; Dc=ðE�RÞ; b and a, where a is called modulus var-
iation rate,

a ¼ R
c0
: ð22Þ

For a determined radius R, the larger the value of c0, the smaller the
modulus variation rate a will be.

In contrast to the three-dimensional case (Chen et al., submitted
for publication), simple closed-form solutions to Eq. (21) cannot be
obtained easily. Numerical calculation must be carried out to ana-
lyze the interfacial adhesion behavior. However, it can be easily
solved for a special case, i.e., a Gibson solid.

In the case of a Gibson half-space, we have

k ¼ 1 and m ¼ 0:5: ð23Þ
Eq. (21) can be simplified as

3P2c0

8a2E0
� aP

3R
þ 2a4E0

27R2c0
� 2Dc ¼ 0; ð24Þ

which yields an explicit solution,

P ¼ 4a3E0

9Rc0
� 4a

ffiffiffiffiffiffiffiffiffiffiffi
DcE0

3c0

s
: ð25Þ

Then, the critical contact half-width acr at pull-off can be obtained
as

acr ¼
3R2Dcc0

E0

 !1
4

; ð26Þ

and the pull-off force Pcr is

Pcr ¼ �
8
3

R2E0Dc3

3c0

 !1
4

: ð27Þ

3. Plane strain model with both normal and tangential loads

The non-slipping model is considered in this section, as shown
in Fig. 3. The rigid cylinder is first subjected to a normal load P and
then a tangential force Q. The contact region is assumed to be
asymmetric with right and left contact lengths a and b, which will
be later found to be equal. In addition, the normal contact tractions
are not affected by the tangential force due to the negligible effect
(Johnson, 1985), and the tangential load is assumed to be properly
added without introducing any moments at the contact interface.
Thus, according to Giannakopoulos and Pallot (2000), the normal
and tangential tractions, pðxÞ and qðxÞ, satisfy the following
formula:

ck
0

E�
kþ1
b

sinðbp=2Þ
2Ik

R a
�b

qðxÞ
kjx�sjk

¼ dx¼ const:;

bck
0 sinðpb=2Þ

2ð1þkÞIkE�
R a
�b

pðsÞ
k x�sj jk

ds¼ �uyðxÞ¼ dy� x2

2R ;

8><
>: �b6 x6 a; 0< k<1:

ð28Þ

The adhesive normal traction, after solving the second equation of
(28), can be obtained as

pðxÞ ¼ p1ðxÞ � p2ðxÞ; �b < x < a; ð29Þ

where

p1ðxÞ ¼
P1

aþ b
Cð3þ kÞ

21þkC2 3þk
2

� � 4ab

ðaþ bÞ2

" #1þk
2

1� x
a

� �
1þ x

b

� �h i1þk
2
; ð30Þ

p2ðxÞ ¼
P2

2k

2
aþ b

aþ bð Þ2

4ab

" #1�k
2 Cð1þ kÞ

C2 1þk
2

� � 1� x
a

� �
1þ x

b

� �h ik�1
2
: ð31Þ

In nature, P1 is the load due to the cylindrical punch stress distribu-
tion, and P2 is the load due to the flat punch solution, i.e.,

y

0
0

( ) ( )ky
E y E

c
=

P

Q

R

ab

x

rigid cylinder

0 1k< <

Fig. 3. Schematic of a rigid cylinder of radius R, subject to a tangential force Q after
a normal force P, in contact with an elastic graded half space with a Young’s
modulus varying with depth y as EðyÞ ¼ E0ðy=c0Þk , where 0 < k < 1. The right and
left contact lengths are a and b, respectively.
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Z a

�b
p1ðxÞdx ¼ P1;

Z a

�b
p2ðxÞdx ¼ P2; ð32Þ

The total load P in the adhesive model can be obtained as
P ¼ P1 � P2.

The corresponding total depth, dy, can also be expressed in the
same manner as Eq. (12), while

dy1 ¼
4a2 þ ðk� 1Þða� bÞ2

8Rk
ð33Þ

and

dy2 ¼
ck

0

E�
2kþ1P2

pðaþ bÞk
�hðk; mÞ: ð34Þ

The relation between the load P1 and the contact lengths a and b is
found from the second equation of (28),

P1 ¼
pE�ðaþ bÞk½4a2 � ða� bÞ2�

2kþ4ck
0R

f3ðk;bÞ: ð35Þ

Now, focusing on the effect of the tangential force, we can obtain
the tangential traction in the contact region from the first equation
of (28) as

qðxÞ ¼ 2Q
ðaþ bÞ

aþ bð Þ2

4ab

" #1�k
2

1� x
a

� �
1þ x

b

� �h ik�1
2

f2ðkÞ; �b < x < a

ð36Þ

and the relative tangential displacement dx in the form,

dx ¼
2kþ1ck

0Q

pE�ðaþ bÞk
�d; ð37Þ

where

�d ¼
sinðbp=2ÞC 1�k

2

� �
kbC 1þk

2

� � C
3þ kþ b

2


 �
C

3þ k� b
2


 �
: ð38Þ

The total elastic strain energy stored in the power-law graded half
space is

UEða; bÞ ¼ UEpða; bÞ þ UEqða; bÞ

¼ 1
2

Z a

�b
pðxÞ�uyðxÞdxþ 1

2

Z a

�b
qðxÞdx dx: ð39Þ

Assuming there is no energy dissipation in the adhesion process, the
surface energy Us is linked to the work of adhesion, Dc, by

Us ¼ �ðaþ bÞDc: ð40Þ

Then, equilibrium can be achieved when

oUTða; bÞ
oa

				
dy ;dx

¼ oUTða; bÞ
ob

				
dy ;dx

¼ 0; ð41Þ

for a desired dy due to the normal loading and dx due to the tangen-
tial loading, where UT is the total energy as expressed in Eq. (17).

Eq. (41) leads to

a ¼ b: ð42Þ

The above identity can also be obtained from a simple analysis: for
the case with tangential traction alone, the energy release rates
should be identical at both contact edges (similar to an external
interface crack problem), both of which are equal to the work of
adhesion Dc at equilibrium from the fracture mechanics point of
view. Then, we can find that a ¼ b. The same result should be ob-
tained for the case with the normal traction alone. In the present
model, due to the uncoupling effects of the normal and tangential

tractions, the neglect of effects of any moments at the contact inter-
face, a ¼ b, should be satisfied.

Thus, the normal traction pðxÞ and the relation between the nor-
mal loading P and the contact half-width a are simplified as the
counterparts in Section 3. The tangential traction qðxÞ in Eq. (36)
is also reduced to

qðxÞ ¼ f2ðkÞ
Q
a

1� x
a

� �2
� �k�1

2

; ð43Þ

and the relative tangential displacement dx in Eq. (37) becomes

dx ¼
ck

0

E�
2Q
pak

�d: ð44Þ

The elastic strain energy produced by the tangential traction alone
can be obtained as

UEq ¼
1
2

Z a

�a
qðxÞdx dx ¼ 1

2
Qdx ð45Þ

and

oUEq

oa

					
dx

¼ Cð1þ kÞk�dQ2ck
0

2kC 1þk
2

� �
C 1þ k

2

� � ffiffiffiffi
p
p

E�
a�ðkþ1Þ ð46Þ

for a desired dx.
At equilibrium of the adhesive system, it is required that

oUT

oa

				
dy ;dx

¼ oUEp

oa

				
dy

þ oUEq

oa

				
dx

� 2Dc ¼ 0 ð47Þ

for desired dy, dx.
It is straightforward, if one follows the same procedure outlined

in Section 2, to obtain the following relation:

�hk sin2 h
p

þ k�d cos2 h
p

" #
a
R

� ��ðkþ1Þ
ðaÞ�k Dc

E�R


 �
F
Dc


 �2

� 1
2

f3
�h

3k
2
þ 1


 �
� 1

k

� �
a
R

F sin h
Dc

þ pf 2
3

�hðkþ 1Þ
8

� p
4k2�hðkþ 2Þ

" #
a
R

� �kþ3
ðaÞk E�R

Dc
� 2 ¼ 0; ð48Þ

The above equation gives the apparent resultant force F as a func-
tion of the apparent pulling angle h, where

F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þ Q 2

q
; h ¼ arcsinðP=FÞ: ð49Þ

Numerical analysis for Eq. (48) will be used to find the effects of the
apparent angle h on the pull-off process, which is given in the fol-
lowing section.

4. Numerical analysis

A numerical method is used in this section to solve the govern-
ing equations (21) and (48). Our interest is focused on the adhesion
behavior of the power-law graded material; the effects of the gra-
dient exponent k, the modulus variation rate a and the apparent
pulling angle h on the pull-off force and the critical contact width
at pull-off.

4.1. Plane strain model under a normal force

We first study the effects of the gradient exponent k and the
modulus variation rate a for the plane strain model under a normal
force. The relation between the normalized contact width a=R and
the dimensionless normal force P=Dc is shown in Fig. 4 for different
values of k and a, while the other parameters of the system are
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constant. For comparison purposes, the corresponding plane strain
JKR solution (Chaudhury et al., 1996) when k ¼ 0 is also included in
Fig. 4.

The effects of the gradient exponent k and the modulus varia-
tion rate a on the pull-off force, i.e., the critical force needed to sep-
arate the contact, are shown in Fig. 5. Apparently, both parameters
can affect the pull-off force significantly. For the prescribed values
of E�R=Dc and m, the pull-off force seems to decrease monotoni-
cally with an increase in the gradient exponent k for small or mod-
erate values of a (e.g., a ¼ 1). For large values of a, the pull-off force
increases initially with k, reaches a maximum value and then de-
creases with further increase in k. For a given value of k, the
pull-off force increases with a monotonically.

The critical contact width at pull-off is also influenced by k and
a, as shown in Fig. 6, where it can be observed that the variation
trend of the critical contact width is opposite to that of the pull-
off force. For large values of a, the critical contact width decreases
initially with k, reaches a minimum value and then increases with
further increase in k. For small or moderate values of a (e.g. a ¼ 1),
the critical contact width increases with k monotonically. For a gi-
ven value of k, the critical contact width decreases with a
monotonically.

The effects of E�R=Dc on the pull-off force are shown in Fig. 7. It
is observed that E�R=Dc does not show a significant effect on the
pull-off force, especially for small or moderate values of a.

4.2. Plane strain model under both normal and tangential loads

The results for the plane strain contact model under both nor-
mal and tangential loads are discussed in this section.

Fig. 8(a)–(d) shows the normalized pull-off force Fpull-off=F JKR as
functions of the apparent pulling angle h for different values of the
gradient exponent k and of the gradient variation rate a when
E�R=Dc is set. It is observed that the pull-off force is affected signif-
icantly by h, k and a. For large values of a, the homogeneous case
ðk ¼ 0Þ seems to yield generally smaller pull-off forces compared
to the graded cases; for small or moderate values of a, the homo-
geneous case can give pull-off forces higher than the graded cases.
For a given value of a, there also exists a critical value of k, beyond
which the elastic graded materials may actually give lower pull-off
forces than the homogenous case. For a sufficiently small value of
a, no elastic graded material provides better adhesion than the
homogeneous material.
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5. Summary

The present paper has aimed to develop adhesive contact mod-
els for general power-law graded materials and to compare the
adhesion behavior of these materials to that of homogeneous iso-
tropic materials. The analysis indicates that there exists a critical
gradient exponent k, at which the pull-off force exhibits a maxi-
mum value. The gradient variation rate controls the magnitude
of the pull-off force: for an elastic graded material with a larger va-
lue of a, the pull-off force is larger than that for the corresponding
isotropic material. If the value of a is smaller, the pull-off force for
the graded material is smaller than that for the corresponding iso-
tropic case.

Closed-form analytical solutions for the critical contact area and
the critical force at pull-off were obtained for the limit case, a Gib-
son material.

In the case with both normal and tangential loads, the pull-
off force is mainly controlled by the values of the gradient expo-
nent k, the gradient variation rate a and the apparent pulling an-
gle h.

The finding in the present paper that gradient elasticity leads
to gradient-sensing adhesion provides one possible way to
understand the elasticity gradient in some biological adhesive
tissues and provides a rational assessment of the possible advan-
tages and disadvantages of graded surfaces in tribological
applications.
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