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a b s t r a c t

In this paper, the role of vertical component of surface tension of a droplet on the elastic deformation of a
finite-thickness flexible membrane was theoretically analyzed using Hankel transformation. The vertical
displacement at the surface was derived and can be reduced to Lester’s or Rusanov’s solutions when the
thickness is infinite. Moreover, some simulations of the effect of a liquid droplet on a membrane with a
finite thickness were made. The numerical results showed that there exists a saturated membrane
thickness of the order of millimeter, when the thickness of a membrane is larger than such a value,
the membrane can be regarded as a half-infinite body. Further numerical calculations for soft membrane
whose thickness is far below the saturated thickness were made. By comparison between the maximum
vertical displacement of an ultrathin soft membrane and a half-infinite body, we found that Lester’s or
Rusanov’s solutions for a half-infinite body cannot correctly describe such cases. In other words, the
thickness of a soft membrane has great effect on the surface deformation of the ultrathin membrane
induced by a liquid droplet.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Although materials such as silicon and glass have been widely
used in micro/nanoelectromechanical systems (MEMS/NEMS),
their intrinsic stiffness and surface chemistry limited some appli-
cations in areas ranging from microfluidic device technology to
nanofabrication [1]. However, soft materials overcome a lot of
the limitations of silicon. One typical soft material is poly(dimeth-
ylsiloxane) (PDMS), which is an optically transparent, soft elasto-
mer [2]. Besides, it also has some other advantages such as good
biocompatibility, nontoxicity and easy fabrication. Therefore, it
has been widely used as a base material in microfluidic devices
[2–11]. In many microfluidic devices, the thickness of PDMS mem-
brane is only on the order of several tens micrometers or even
smaller. When there is a liquid droplet sessile on the surface, the
membrane may deform due to Laplace pressure acting on the wet-
ting area and the vertical or normal components of liquid–vapor
interface tension – c? [12], which acts on the contact line and can-
not be balanced by the forces on the contact line using classical or
modified Young’s equations considering line tension [13,14].

Since PDMS is a soft material with a Young’s modulus of a few
MPa or lower [15], the maximum height of ridge can be estimated
by Shanahan et al. using dimensional analysis as follows [16]:
ll rights reserved.
hmax � h� ¼ clv sin h
G

¼ c?
G
; ð1Þ

where h is Young’s contact angle, clv is liquid–vapor interface ten-
sion, and G is the shear modulus of the soft membrane. Eq. (1)
was suitable for semi-infinite materials. Then, the maximum verti-
cal displacement may be up to several hundred nanometers or even
larger [17], which is so large that it may affect the performance of
microfluidic devices, therefore, the effect of a liquid droplet on
the deformation of thin soft membrane may not be neglected.
Moreover, such a deformation will induce molecular reorientation
and subsequent intermolecular force change [18].

As to such a question, Lester [19] and Rusanov [20] have studied
the deformation of the surface of a semi-infinite body induced by a
liquid droplet theoretically. They both thought the liquid–vapor
interface has a breadth d and the liquid–vapor interface tension
acts uniformly on the narrow annulus for simplification. Then Les-
ter calculated the vertical displacement in the annulus and gave
the formula for variation of contact angle. Rusanov considered that
there is another force clv(cos h1 � cos h) acting in the horizontal
direction for the actual contact angle h1 might differ from Young’s
contact angle h, and then he gave the vertical displacement at the
surface induced by the three forces. Therefore, Lester’s solution can
be regarded as a special case of Rusanov’s when the difference of
contact angles is zero. However, both Lester and Rusanov only con-
sidered the effect of a liquid droplet on the deformation of a semi-
infinite body rather than a finite-thickness substrate.
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Fig. 2. Schematic diagram of coordinates and distribution of forces.
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Besides, Andrade et al. studied the contact-angle-induced defor-
mation of gels experimentally and pointed out that the deforma-
tion might be relatively large for low-modulus, high-water-
content gels [21]. Some researchers also studied the deformation
of a thin solid due to the droplet [22–24]. Shanahan and Carré
studied the viscoelastic dissipation of wetting ridge induced by a
droplet when the solid is sufficiently soft [25,26]. Shanahan made
theoretical research on the influence of solid micro-deformation on
contact angle equilibrium [27] as well as statics and spreading
dynamics of a liquid drop on thin solid [28–30]. In their latter pa-
pers, a direct evidence for the wetting ridge obtained by using
scanning interferometric microscopy was reported [31], and they
estimated the maximum height of the ridge induced by a droplet
[16]. Moreover, Tomasetti et al. studied viscoelastic energy dissipa-
tion due to solid deformation induced by a liquid during both wet-
ting and dewetting processes [32].

Apart from investigations of such a problem either theoretically
or experimentally, some numerical studies have also been reported
[33–35].

During the latest years, Bonaccurso et al. have made some stud-
ies on the transverse effect of a sessile droplet on the bending of a
flexible microcantilever [36–39]. Recently, they studied the surface
deformation of several tens micrometers-thick PDMS membrane
with very low modulus induced by a sessile droplet using laser
scanning confocal microscopy and estimated that the breadth of
surface layer is approximately 16.0 nm by comparison between
their experimental data and Rusanov’s theoretical solution [17].

Additionally, for the case of a liquid droplet resting or sliding on
an inclined flat surface [40,41], the droplet will also make the sur-
face deform.

In a word, there were some reports on the transverse effect of a
liquid droplet on the deformation of a solid; however, to the best
knowledge of the authors there was no literature on theoretically
analyzing the effect of thickness of the solid on the surface defor-
mation induced by a liquid droplet up till now. The motivation of
our present work is to study such a question. We first theoretically
analyzed the deformation of a finite-thickness flexible membrane
using Hankel transform and then proposed a method to numeri-
cally calculate the vertical displacement at the surface. At last we
made some simulations on surface deformation of PDMS mem-
brane with different thicknesses to demonstrate how membrane’s
thickness affects its surface deformation induced by a liquid
droplet.

2. Theoretical analysis

Now consider a small liquid droplet sitting on a deformable
membrane with finite thickness h on a rigid substrate, as shown
in Fig. 1. The radius of wetting area is R, the breadth of capillary
layer is d. Suppose the contact between the membrane and the
substrate is frictionless for simplicity. Here cylindrical polar coor-
dinates (r, u, z) are used such that the origin coincides with the
center of wetting area, the z-axis is perpendicular to the wetting
Fig. 1. Sketch of deformation of memb
area, r is perpendicular to z, and u is the angular distance between
a reference line and r, as shown in Fig. 2.

Then the components of the displacement vector and of the
stress tensor will all be independent of the angle u. The nonvanish-
ing stresses corresponding to these coordinates (r, u, z) are rr, rzz,
rrz and ru, which satisfy the following equilibrium equations [42]

@rr

@r
þ @rrz

@z
þ rr � ru

r
¼ 0;

@rrz

@r
þ @rzz

@z
þ rrz

r
¼ 0:

8>><
>>: ð2Þ

Similarly, the nonzero displacements corresponding to these
coordinates (r, u, z) are ur and uz. And due to the axisymmetry of
such a problem, the linear elastic constitutive relations between
the components of the stress tensor and the nonzero displace-
ments may be written as following [43]:

rr ¼ kþ 2lð Þ @
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þ k

r

� �
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� �
;

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð3Þ

where k ¼ Em
ð1þmÞð1�2mÞ and l ¼ E

2ð1þmÞ are the Lame constants, E and m
are Young’s modulus and Poisson’s ratio of the membrane,
respectively.

The boundary conditions underneath the droplet and at the free
surface are

rzzðr; 0Þ ¼
�P ¼ � 2c?

R ; r 6 R;

s ¼ c?
d ; R 6 r 6 R1 ¼ Rþ d;

0; r > R1;

8><
>: ð4Þ

and

rrzðr;0Þ ¼ 0: ð5Þ
rane induced by a water droplet.
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The frictionless boundary conditions at the interface between
the membrane and the substrate give

rrzðr; hÞ ¼ 0 and uzðr; hÞ ¼ 0: ð6Þ

As in [19], the boundary conditions (4) were decomposed into
two parts:

rzzðr;0Þ ¼ P1ðrÞ ¼
�ðP þ sÞ; r 6 R;

0; r > R;

�
ð7Þ

and

rzzðr;0Þ ¼ P2ðrÞ ¼
s; r 6 R1;

0; r > R1:

�
ð8Þ

Using Hankel transformation, the displacement and stress fields
in the membrane can be expressed as [44]

uz ¼
R1

0 n
d2G
dz2 �

kþ 2l
l

n2G

 !
J0ðnrÞdn;

ur ¼ kþl
l

Z 1

0
n2 dG

dz
J1ðnrÞdn;

rzz ¼
R1

0 n ðkþ 2lÞd
3G

dz3 � ð3kþ 4lÞn2 dG
dz

" #
J0ðnrÞdn;

rrz ¼
R1

0 n2 k
d2G
dz2 þ ðkþ 2lÞn2G

" #
J1ðnrÞdn;

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

ð9Þ

where J0, J1 are Bessel functions of orders zero and one, respectively,
and G(n, z) = (Ai + Biz) cosh (nz) + (Ci + Diz) sinh (nz), here Ai, Bi, Ci and
Di ði ¼ 1;2Þ are determined from the corresponding boundary con-
ditions (5)–(7) and (5), (6), (8), respectively.

Substituting the boundary conditions (5)–(7) into (9), we can
obtain a set of linear equations for the undetermined constants
A1, B1, C1 and D1:

ðkþ lÞnA1 þ kD1 ¼ 0;
ðkþ lÞnA1 cosh nhþ k sinh nhþ ðkþ lÞnh cosh nh½ �B1;

þðkþ lÞnC1 sinh nhþ k cosh nhþ ðkþ lÞnh sinh nh½ �D1 ¼ 0;
kþl
l nA1 cosh nh� 2 sinh nh� kþl

l nh cosh nh
h i

B1;

þ kþl
l nC1 sinh nh� 2 cosh nh� kþl

l nh sinh nh
h i

D1 ¼ 0;

2ln2B1 � 2ðkþ lÞn3C1 ¼
R1

0 rP1ðrÞJ0ðnrÞdr ¼ � RðPþsÞ
n J1ðRnÞ:

8>>>>>>>>>>><
>>>>>>>>>>>:

ð10Þ

Solving the above equations, we can get the constants with
boundary conditions (5)–(7)

A1 ¼ � kRðPþsÞsinh2nh
n4ðkþlÞ2ð2hnþsinh 2nhÞ

J1ðRnÞ;

B1 ¼ � RðPþsÞ sinh 2nh
2n3ðkþlÞð2hnþsinh 2nhÞ J1ðRnÞ;

C1 ¼ RðPþsÞ½2nhðkþlÞþk sinh 2nh�
2n4ðkþlÞ2ð2hnþsinh 2nhÞ

J1ðRnÞ;

D1 ¼ RðPþsÞsinh2nh
n3ðkþlÞð2hnþsinh 2nhÞ J1ðRnÞ:

8>>>>>>><
>>>>>>>:

ð11Þ

Similarly, for uniform stress s acting over a circle with radius R1,
we can also get the corresponding undetermined constants with
boundary conditions (5), (6), (8)

A2 ¼ kR1ssinh2nh
n4ðkþlÞ2ð2hnþsinh 2nhÞ

J1ðR1nÞ;

B2 ¼ R1s sinhð2hnÞ
2n3ðkþlÞð2hnþsinh 2nhÞ J1ðR1nÞ;

C2 ¼ � R1s½2nhðkþlÞþk sinh 2nh�
2n4ðkþlÞ2ð2hnþsinh 2nhÞ

J1ðR1nÞ;

D2 ¼ � R1ssinh2nh
n3ðkþlÞð2hnþsinh 2nhÞ J1ðR1nÞ:

8>>>>>>><
>>>>>>>:

ð12Þ
Substituting Ai, Bi, Ci and Di (i = 1, 2) into (9), then we can get the
distribution of displacements and stresses in the membrane by
using superposition method. In fact, what is concerned is the ver-
tical displacement at the upper surface of the membrane, and to
make it agree with the actual circumstance, then it can be rewrit-
ten as:

Uzðr;0Þ¼�uzðr;0Þ

¼4ð1�m2Þ
E

Z 1

0
f ðnhÞ J0ðnrÞ

n
½R1sJ1ðnR1Þ�RP1J1ðnRÞ�dn; ð13Þ

where f ðxÞ ¼ sinh2x
2xþsinh 2x and Uz(r, 0) is the vertical displacement at the

surface of a membrane with a finite thickness.
When the thickness of the membrane is infinite, that is h ?1,

then

lim
h ! 1

sinh2nh
2nhþ sinh 2nh

¼ 1
2
; ð14Þ

and the corresponding solution of vertical displacement reduces to

U1z ðr; 0Þ ¼
2ð1� m2Þ

E

Z 1

0

J0ðnrÞ
n

R1sJ1ðnR1Þ � RP1J1ðnRÞ½ �dn; ð15Þ

which is the solution by Lester [19] or a special case of Rusanov’s
solution [20] when h1 = h.

The integral
R1

0
J0ðnrÞJ1ðnRÞ

n dn in (15) may be expressed as [45]:

Z 1

0

J0ðnrÞJ1ðnRÞ
n

dn ¼
2F1

1
2 ;� 1

2 ;1; r2

R2

� �
; r 6 R;

R
2r � 2F1

1
2 ;

1
2 ;2; R2

r2

� �
; r > R;

8><
>: ð16Þ

where 2F1(a, b, c; z) is the hypergeometric function [46], whose gen-
eralized form can be expressed as following:

pFqða1; . . . ; ap; b1; . . . ; bq; xÞ ¼
X1
m¼0

ða1Þm . . . ðapÞm
ðb1Þm . . . ðbqÞm

xm

m!
; ð17Þ

where (a)m = a(a + 1)(a + 2)� � �(a + m - 1), (a)0 = 1.
Therefore, for a deformable solid with infinite thickness, the

total vertical displacement at the free surface can be written as

U1z ðr;0Þ ¼

2ð1�m2Þ
E R1s � 2F1ð12 ;� 1

2 ; 1; r2

R2
1
Þ � RðPþ sÞ � 2F1ð12 ;� 1

2 ; 1; r2

R2Þ
h i

; r 6 R;

2ð1�m2Þ
E R1s � 2F1ð12 ;� 1

2 ; 1; r2

R2
1
Þ � R2

2r ðP þ sÞ � 2F1ð12 ; 1
2 ; 2; R2

r2 Þ
h i

; R 6 r 6 R1;

2ð1�m2Þ
E

R2
1

2r s � 2F1ð12 ; 1
2 ; 2;

R2
1

r2 Þ � R2

2r ðPþ sÞ � 2F1ð12 ; 1
2 ; 2; R2

r2 Þ
h i

; r P R1;

8>>>>>><
>>>>>>:

ð18Þ
Fig. 3. Relation of f ðxÞ ¼ 2xþsinh 2x versus x.



Table 1
Value of f(x) with respect to x.

x 5.0 6.0 7.0 8.0 9.0
f(x) 0.499501 0.49992 0.499988 0.499998 0.5

Fig. 4. Numerical results of dimensionless vertical displacement at the surface of an
elastic membrane when the radius of wetting area and the breadth of capillary layer
are supposed to be 0.5 mm and 10.0 nm.
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or

U1z ðr;0Þ ¼

ð1�mÞc?
G

R1
d � 2F1ð12 ;� 1

2 ; 1; r2

R2
1
Þ � ð2þ R

dÞ � 2F1ð12 ;� 1
2 ; 1; r2

R2Þ
h i

; r 6 R;

ð1�mÞc?
G

R1
d � 2F1ð12 ;� 1

2 ; 1; r2

R2
1
Þ � R

2r ð2þ R
dÞ � 2F1ð12 ; 1

2 ;2; R2

r2 Þ
h i

; R6 r 6 R1;

ð1�mÞc?
G

R2
1

2dr � 2F1ð12 ; 1
2 ; 2;

R2
1

r2 Þ � R
2r ð2þ R

dÞ � 2F1ð12 ; 1
2 ;2; R2

r2 Þ
h i

; r P R1:

8>>>>><
>>>>>:

ð19Þ

Before studying vertical displacement at the free surface of a
membrane with a finite thickness, we first plotted the value of
f ðxÞ ¼ sinh2x

2xþsinh 2x versus x, as shown in Fig. 3 as well as Table 1.
From the figure and table, we found that when x is larger than a

certain value such as 8.0, the corresponding function value is al-
most equal to 1

2, that is to say, for a given thickness h, the vertical
displacement at the upper surface of the membrane can be approx-
imately written as

Uzðr;0Þ ¼ U1z ðr;0Þ þ
4ð1� m2Þ

E

�
Z x0

0
f ðxÞ � 1

2

� �
R1sJ1

R1
h x
	 


� RðP þ sÞJ1
R
h x
	 


x
J0

r
h

x
� �

dx;

ð20Þ

or

~Uzðr;0Þ ¼ ~U1z ðr;0Þ þ 2ð1� mÞ

�
Z x0

0
f ðxÞ � 1

2

� � R1
d J1

R1
h x
	 


� 2þ R
d

	 

J1

R
h x
	 


x
J0

r
h

x
� �

dx;

ð21Þ

where ~Uzðr; 0Þ ¼ Uzðr;0Þ
h� and ~U1z ðr;0Þ ¼

U1z ðr;0Þ
h� are dimensionless verti-

cal displacement at the surface of a finite-thickness membrane and
semi-infinite solid, respectively. The latter part in equations (20),
(21) shows the effect of membrane’s thickness on the vertical dis-
placement of the membrane. Moreover, it is easily found that the
deformation is inversely proportional to Young’s modulus of the
membrane.

When the membrane is ultrathin, that is, h ? 0, then the verti-
cal displacement (Eq. (13)) can be reduced to

Uzðr;0Þ ¼ �uzðr;0Þ

¼ ð1� m2Þh
E

Z 1

0
J0ðnrÞ½R1sJ1ðnR1Þ � RP1J1ðnRÞ�dn: ð22Þ

The integral
R1

0 J0ðnrÞJ1ðnRÞdn in equation (22) can be expressed
as [45]:

Z 1

0
J0ðnrÞJ1ðnRÞdn ¼

1
R ; r < R;
1

2R ; r ¼ R;
0; r > R:

8><
>: ð23Þ

Thus the vertical displacement at the surface of ultrathin mem-
brane can be rewritten as below:

Uzðr; 0Þ ¼
1� m

2
h�

� h
2R � 0; r < R;

h
2d� h

4R � h
2d ; r ¼ R;

h
d ;R < r < R1;

h
2d ; r ¼ R1;

0; r > R1:

8>>>>>><
>>>>>>:

ð24Þ

Therefore, for such a case, the sessile droplet will make the re-
gion where the capillary layer is located deform sharply while the
deformation outside the region is almost zero.
3. Numerical results and discussion

To demonstrate the effect of liquid–vapor interfacial tension on
the deformation of a finite-thickness flexible membrane, we made
some numerical simulations. Suppose the radius of wetting area is
0.2 mm, 0.5 mm and 1.0 mm, respectively (see Supplementary
Material). Because it is difficult to obtain accurate value of capillary
layer’s breadth, we supposed it to be 1.0 nm, 10.0 nm and 40.0 nm,
respectively. And then the corresponding vertical displacements at
the upper surface versus the distance from the center of the droplet
were obtained and here a plot for R = 0.5 mm and d = 10.0 nm was
shown in Fig. 4 as an example. For other circumstances, the plots
were similar.

From Fig. 4, we can find that the surface deforms greater with
increasing thickness of the membrane and when the thickness is
in order of 1.0 mm, the surface deformation varies little, that is
to say, there exists a saturated thickness, when a membrane’s
thickness is larger than such a value, it can be treated as a half-infi-
nite body.

For membranes used in macro structures, membrane’s thick-
ness might usually be larger than several millimeters, so they
can be regarded as a half-infinite body and Lester’s or Rusanov’s
solutions are valid when considering the deformation of the sur-
faces induced by a liquid droplet. However, in micro/nanostruc-
tures, the thicknesses of most common used membranes are
usually smaller than the saturated thickness and might be just sev-
eral micrometers or even smaller, in such a case, the effect of mem-
brane’s thickness should be considered. In order to make clear how
the thickness affects the surface deformation induced by a liquid
droplet, we further made some numerical calculations and ob-
tained the dimensionless vertical displacements at different points
in the surface, as shown in Table 2a–c. The radius of wetting area is
0.2 mm and the thickness of capillary layer is supposed to be 1.0,
10.0 or 40.0 nm. From the three tables, it can be easily found that
for a membrane with a thickness which is far smaller than the sat-
urated one, (1) the maximum of vertical displacement increases
with increasing membrane thickness; (2) the maximum of vertical
displacement decreases when the thickness of capillary layer is lar-
ger; (3) when the thickness of capillary layer changes from 1.0 nm
to 40.0 nm, dimensionless vertical displacements at the points
which are not near the wetting ridge vary little. Additionally, rela-
tive errors between the maximum of dimensionless vertical dis-
placement and corresponding value for a half-infinite body were
calculated as follows:

f ¼
~Uz � ~U1z

~U1z
� 100%; ð25Þ



Table 2
Numerical results of vertical displacements at some points in the surface when the radius of wetting area is 0.2 mm and the breadth of capillary layer is supposed to: (a) 1.0 nm;
(b) 10.0 nm; (c) 40.0 nm.

Membrane thickness (lm) Distance to the center of wetting area (mm)

0.0 0.08 0.16 0.2

(a) R = 0.2 mm and d = 1.0 nm
1.0 �0.003 �0.003 �0.003 1.165

10.0 �0.025 �0.025 �0.025 1.557
40.0 �0.100 �0.101 �0.090 1.741
1 �0.500 �0.437 �0.177 1.796

(b) R = 0.2 mm and d = 10.0 nm
1.0 �0.003 �0.003 �0.003 0.799

10.0 �0.025 �0.025 �0.025 1.190
40.0 �0.100 �0.101 �0.090 1.374
1 �0.500 �0.437 �0.177 1.430

(c) R = 0.2 mm and d = 40.0 nm
1.0 �0.003 �0.003 �0.003 0.578

10.0 �0.025 �0.025 �0.025 0.970
40.0 �0.100 �0.101 �0.090 1.154
1 �0.500 �0.437 �0.177 1.209

Table 3
Relative errors between maximum of dimensionless vertical displacement of finite-
thickness membrane and that by Lester or Rusanov when the breadth of capillary
layer is supposed to be: (a) 1.0 nm; (b) 10.0 nm; (c) 40.0 nm.

Membrane thickness (lm) max(Ũz) (d = 1.0 nm) Relative error (%)

(a)
1.0 1.165 �35.13

10.0 1.557 �13.31
40.0 1.741 �3.06

max(Ũz) (d = 10.0 nm)
(b)

1.0 0.799 �44.13
10.0 1.190 �16.78
40.0 1.374 �3.92

max(Ũz) (d = 40.0 nm)
(c)

1.0 0.578 �52.19
10.0 0.970 �19.77
40.0 1.154 �4.55
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and shown in Table 3. From Table 3, we can find that the absolute
value of relative errors for a 1.0 lm-thick membrane will be larger
than 35%. For a membrane made of hard matter such as silicon
(E = 170 GPa, m = 0.27, h = �0�, clv = 72 mN/m), the maximum verti-
cal displacement induced by a water droplet is in order of 1.0 pico-
meter although the membrane is only 1.0 lm thick, thus the surface
deformation will be neglected in most cases no matter how thick it
is. However, if the membrane is made of soft matter, for example,
PDMS, whose Young’s modulus is very low and usually below
1 MPa, the contact angle is about 120�, then the maximum vertical
displacement might be much larger and in order of several hundred
nanometers, so Lester’s or Rusanov’s solutions may not correctly de-
scribe the surface deformation of a PDMS membrane whose thick-
ness is below tens micrometers or even smaller. And in micro/
nanofluidics such kind of soft membranes are commonly used.
Therefore, the effect of membrane thickness on surface deformation
induced by a liquid droplet should be considered. Moreover, even if
the vertical displacement induced by a liquid droplet is rather small
in the monolayer (though much higher than pico-meter), it is still
important for the molecular reorientation associated with the dis-
placement because this results in change in drop-surface intermo-
lecular forces, which was studied by Tadmor [18].

In fact, as in [20], the actual contact angle might differ from
Young’s contact angle, which will produce a horizontal force and
then induce an excess surface deformation. However, the excess
deformation including the terms of (cos h1 � cos h) and (1–2m)
might be negligible because the difference between the actual con-
tact angles h1 and the Young one h is just only several degrees and
the Poisson’s ratio of the membrane material is nearly 0.5.

4. Summary

Elastic deformation of finite-thickness membrane induced by a
liquid droplet has been studied by using an integral transform
method. And the theoretical solution of vertical displacements at
the surface was derived and could be reduced to Lester’s or Rusa-
nov’s solutions without considering the difference of contact angle.
Moreover, some simulations of elastic deformation of finite-thick-
ness membrane induced by a water droplet were made. The
numerical results showed that there exists a saturated membrane
thickness. When a membrane is thicker than such a thickness, the
membrane can be treated as a half-infinite body. When a mem-
brane is made of a hard matter such as silicon, the surface defor-
mation induced by a liquid droplet can be neglected for most
cases. However, if the membrane is made of a soft material such
as PDMS and its thickness is below tens micrometers or even smal-
ler, the maximum vertical displacement induced by a droplet will
be of hundreds nanometers and the membrane thickness has great
effect on the deformation when the membrane thickness is smaller
than several micrometers. This may not be neglected in the design
and application of micro/nanodevices such as l-TAS and lab-on-a-
chip.
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