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Abstract A new numerical procedure is proposed to inves-
tigate cracking behaviors induced by mismatch between the
matrix phase and aggregates due to matrix shrinkage in
cement-based composites. This kind of failure processes is
simplified in this investigation as a purely spontaneous
mechanical problem, therefore, one main difficulty during
simulating the phenomenon lies that no explicit external load
serves as the drive to propel development of this physical
process. As a result, it is different from classical mechani-
cal problems and seems hard to be solved by using directly
the classical finite element method (FEM), a typical kind of
“load → medium → response” procedures. As a solution, the
actual mismatch deformation field is decomposed into two
virtual fields, both of which can be obtained by the classical
FEM. Then the actual response is obtained by adding toge-
ther the two virtual displacement fields based on the principle
of superposition. Then, critical elements are detected succes-
sively by the event-by-event technique. The micro-structure
of composites is implemented by employing the generalized
beam (GB) lattice model. Numerical examples are given to
show the effectiveness of the method, and detailed discus-
sions are conducted on influences of material properties.
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1 Introduction

Fracture mechanics has mainly focused on materials’
failures under external mechanical loads. Failures, however,
sometimes happen without explicit mechanical loads. For
example, many shrinkage-induced micro- or even macro-
level cracks can be found in an unloaded and unstrained
concrete. Because shrinkage is not completely evitable, most
concrete specimens for experimental use in laboratories are
actually systems filled with pre-existing shrinkage-induced
cracks (see for instance [12,15,26,29]). Although these
cracks are also micro-level entities as well as aggregates,
influences of shrinkage-induced cracks on macro-properties
have been rarely considered directly in the existing
micro-mechanical models. Usually, this kind of influences is
represented by some “black-box” material properties, such
as softening curves of matrix and interface zones [13]. Never-
theless, an alternative opinion also seems interesting: to inves-
tigate the growth processes of shrinkage-induced cracks,
especially when considering the difficulties of detecting these
micro-cracks in real physics experiments until now [15].

Although there is a need for understanding the forma-
tion and propagation of these pre-existing cracks, advances
in this area have been limited greatly by the complex of the
problem. On one hand, the complexity lies that factors cau-
sing shrinkage deformation include temperature, moisture
transport and so on, leading to a multi-physics problem even
coupling chemical reactions [8]. On the other hand, shrin-
kage processes are nearly stochastic due to irregular charac-
teristics of environmental changes and mankind activities.
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Furthermore, the time scale for drying of cement-based
composites is at least ∼month [3], leading to a substan-
tial increase in computational effort. As a result, a direct
simulation becomes extremely time-consuming and com-
plex. Bolander and Berton [3] coupled the random lattice
modeling of moisture movement with the rigid-body-spring
networks (RBSN), and took it as a time-dependent process,
therefore, a substantial increase in computational effort
occurs.

However, the problem may get simple and solvable from a
different viewpoint. From the above analyses, the shrinkage-
inducing factors complicate the investigated problem very
much. Nevertheless, cracks are related directly to mismatch
deformation due to shrinkage. Therefore, when our aim is
to analyze the crack patterns instead of thermal and moist
processes, it seems reasonable that shrinkage-induced cra-
cking can be simulated by introducing directly matrix shrin-
kage into the paste-aggregate system, without account of the
shrinkage-inducing factors.

Mismatch deformation seems not to be a classical mecha-
nical problem in some sense. In classical mechanical ana-
lyses, medium’s response can be solved if external loads are
applied. When mismatch deformation happens, however, it
is hard to say how much the external load is. Therefore, the
simplified shrinkage-induced cracking can be regarded as a
spontaneous process without external mechanical loads. This
feather makes difficult the direct use of the finite element
method (FEM), based on the idea of classical mechanical
analysis, i.e. “load → medium → response” procedure.

In this paper, a simple method is proposed to solve the
mismatch deformation problem. The basic idea is to decom-
pose the problem into two classical mechanical ones, which
can be easily solved by the classical FEM procedure. In each
of these two elementary problems, no failure is permitted
even though failure will happen in equivalent real physics
experiments. In this sense, both of the elementary problems
are virtual.

Here, the micro-structure model of concrete is described
by the GB lattice model, a kind of lattice-type model propo-
sed recently by Liu et al. [18–20]. Lattice-type models have
a history of several decades. These models are based on the
atomic lattice models of materials in principle [22,23]. This
kind of models has been successfully used for solving clas-
sical problems of elasticity [10]. More recently, it has been
employed for simulating the progressive failure in hetero-
geneous brittle media, especially by theoretical physicists
[1,9]. To investigate fracture processes in concrete, many
different types of lattice models have been developed in the
past. As has been generally accepted, it is necessary to pro-
ject the material structure directly on to the lattice in order to
obtain more realistic results [13,30]. Schorn and Rode [28]
and Bazant et al. [1] used truss elements, which require some
numerical measures to exclude numerical instability during

fracture propagation. The virtual internal bond (VIB) model
proposed by Gao and Klein [7] also seems similar to the
truss-type lattice from the viewpoint of numerical simulation.
Schlangen and van Mier [27] adopted Euler–Bernoulli beams
of Hughes et al. [11]. Bolander and Saito [2] developed a kind
of spring element, which is equivalent to the Euler–Bernoulli
beam element in a special parameter setting. Generally, the
Timoshenko beam is more proper than the Euler–Bernoulli
beam as each beam in the lattice is short and deep [13]. Truss
network corresponds to the classical continuum, while beam
lattice corresponds to the micro-polar continuum.

On the other hand, lattice models work best if the mate-
rial may be represented naturally by a system of discrete
units interacting through truss, beams or other kinds of two-
node elements. Spatial trusses and frameworks have been
the primary material systems thus modeled. Currently, there
is mounting interest in the potential offered by materials
with internal lattice-construction for use in high-performance
load-bearing applications. A typical aim is to develop light-
weight structures that are adequately stiff and strong.
Deshpande et al. [5] indicated the attracting effective pro-
perties of the octet-truss lattice material. McKown et al. [21]
conducted compression experiments on lattice structures by
applying quasi-static and blast loading.

Fracture processes in heterogeneous materials such as rock
and concrete are very difficult to interpret without appealing
to their micro-structures. The beam lattice model allows for
a straightforward implementation of the heterogeneity of the
three-phase system: aggregate, matrix and interface between
them [13,20]. The interfacial phase is the weakest among
the three phases. One important reason for the degradation
in strength of interfacial phase is that shrinkage causes many
micro-level failures around aggregates [4]. In this paper, the
aim is to study the shrinkage-induced cracking, in other words
the producing process of the weakest interfacial phase. The-
refore, it is reasonable to assign a bigger strength value to the
matrix surrounding aggregates, which was taken as interface
zones in former lattice type modeling [30], and is also regar-
ded as matrix in this study without special announcement.

The two-dimensional GB lattice model is employed in this
paper. Of course, the 3D model is a more realistic approxi-
mation of materials because the micro-structure in concrete
is 3D in nature. However, the calibration of elemental para-
meters remains a crucial difficulty even though the difficulty
in computational effort can be overcome with the rapid deve-
lopment of computer hardware. In fact, we are investigating
the 3D modeling which will be a future topic. Furthermore,
the main aim in this study is to propose a new method to
simulate the simplified shrinkage cracking process, whose
basic idea is independent of the chosen model.

To solve the problem of computational effort, the genera-
lized beam (GB) lattice model was developed by Liu et al.
[18]. The key idea of GB lattice is the proposal of a kind of
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two-node and three-segment element. In this paper, in order
to obtain more detailed crack growth, numerical simulations
are all conducted based on the GB lattice model proposed
by Liu et al. [20] where every big aggregate is simulated by
dozens of nodes, which is very similar to the classical beam
lattices.

The paper is structured as follows. The basic theory of the
GB lattice model is recalled in Sect. 2. The new method to
simulate mismatch deformation is introduced in Sect. 3. In
Sect. 4, the global numerical procedure is given, then Mohr–
Coulumn criterion and event-by-event algorithm are recalled.
In Sect. 5, several numerical examples are given to verify
the effectiveness of the procedure and to analyze influences
of different factors on the shrinkage-induced cracking. The
paper ends with conclusions in Sect. 6.

2 GB lattice model

In this model proposed by Liu et al. [18–20], a kind of two-
node and three-phase elements has been developed. Every
element is composed of three beams, which can be aggregate-
phase, matrix-phase or interface-phase independently
(Fig. 1). As a result, an aggregate can be simulated in prin-
ciple by a single node in the GB lattice, instead of 10–100
nodes in other beam lattices. Therefore, the computational
effort is reduced greatly.

In the three-fragment GB element, every fragment is regar-
ded as a beam. These beams can be taken as Euler–Bernoulli
beams, Timoshenko beams or beams proposed by Bolander
and Saito [2]. No matter which beam theory is adopted, the
beam stiffness matrices have the following common expres-
sion (Fig. 2):
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where, F12 = {Q1 N1 M1 Q2 N2 M2}T and u12 =
{u1 v1ϕ1u2v2 ϕ2}T are the generalized force vector and the
generalized displacement vector, respectively.

Fig. 1 A GB lattice: a projection of particle structure onto the lattice,
b sketch-map of composition of an aggregate–interface–matrix element

Fig. 2 Kinematics and statics of a beam

For the Euler–Bernoulli beam [13]:

M11 = 12E (b) I

h3 , M34 = 6E (b) I

h2 , M22 = E (b) A

h
,

M33 = 4E (b) I

h
, M36 = 2E (b) I

h
(2)

For the Timoshenko beam [31]:

M11 = 12E (b) I

(1 + b)h3 , M34 = 6E (b) I
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h
,

M33 = E (b) I (4 + b)

h(1 + b)
, M36 = E (b) I (2 − b)
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(3)
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where, E (b) is the Young’s Modulus; t (b), h and l are,
respectively, the thickness, the span and the height of the
Timoshenko beam; A = t (b)l is the cross-section area; I =
t (b)l3/12 is the moment of inertia; b = aE (b)l2/G(b)h2 is
the dimensionless parameter in Timoshenko beam theory;
G(b) = E (b)/2(1 + ν(b)) is the modulus of rigidity, where
ν(b) is the Poisson’s ratio.

For the beam studied in Bolander and Saito [2]:

M11 = G(b) A

h
, M34 = G(b) A

2
, M22 = E (b)′ A

h
,

M33 = G(b) Ah

4
+ E (b)′ I

h
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4
− E (b)′ I

h
(4)

where, E (b)′ = E (b)/[1 − (ν(b))2].
The relationship between the lattice and its continuum

equivalent is obtained based on the equivalence of strain
energy stored in a unit cell of a lattice with its continuum
counterpart. The calibration results for a triangular GB lat-
tice are listed as follows.

For the Euler–Bernoulli beam:
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Note that the Poisson’s ratio for Euler–Bernoulli beams is
always zero.

For the Timoshenko beam:
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For the beam studied in Bolander and Saito [2]:

E (b) = E, ν(b) = ν (7)

The stiffness matrix of a GB element is expressed as
functions of material and geometry parameters of its three
beams. Take the element shown in Fig. 3 as an example,
let R be the matrix relating the displacement vector ui j =
{ ui vi ϕi u j v j ϕ j }T and uI J = { uI vI ϕI u J vJ ϕJ }T:

uI J = Rui j . (8)

Then the stiffness matrix of the GB element K can be
expressed in the form

Fig. 3 A GB element composed of an aggregate beam, an interface
beam and a matrix beam: a the GB element, b the aggregate beam,
c the interface beam, d the matrix beam

K =
[

Ma
I + Ma

IIRI Ma
IIRII
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(
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)T RIII + Mm
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]

(9)

where, the superscript of M declares the material property. In
other words, Mm, Ma and Mi are, respectively, the stiffness
matrix of matrix, aggregate and interface beams. Ma

I , Ma
II

and Ma
III denote the top-left, top-right and bottom-right 3×3

sub-matrix of Ma, respectively, and the same notation rule
is also used to Mi and Mm. RI, RII and RIII, respectively,
denote the top-left, top-right, bottom-right 3×3 sub-matrix
of R.

It can be proved that the matrix K generally has the follo-
wing distribution of non-zero elements:
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It can be found that K in Eq. (10) has more independent
elements than M in Eq. (1). For the sake of convenience, the
following matrix KN is defined as
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As discussed in the introduction, shrinkage-induced cra-
cking is dominantly responsible for the occurrence of the
weakest interfacial phase. Therefore, it is more reasonable to
take the investigated composites as composites with a much
higher interface strength than the value used by van Mier et
al. [30] and Liu et al. [20], and we do not distinguish interface
from matrix any more in the current investigation. Further-
more, any multi-phase element shown as Fig. 3 is excluded
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Fig. 4 Sketch map of shrinkage-induced mismatch: a initial state
before shrinkage, b size change of matrix lattice due to its shrinkage

in order to simplify the programming task. As a result, the
lattice used in the current investigation is shown as Fig. 4a
instead of Fig. 1a. Obviously, the classical beam-lattice used
by Karihaloo et al. [13] or van Mier et al. [30] is an alternative
equivalent to the GB lattice in that case.

3 New method to simulate mismatch deformation due
to matrix uniform shrinkage

Nearly every numerical technique for simulating failure beha-
vior in heterogeneous brittle media can be divided into two
kinds of operations: one is solution of a proper linear elastic
problem, and the other is detection of critical elements. When
it comes to shrinkage failure processes, the corresponding
linear elastic problem, i.e. the mismatch deformation can-
not be solved by directly using the classical finite element
method, because no obvious external mechanical loads exist
as discussed in the introduction.

As a solution, several simplifications and assumptions are
firstly made and then a new method is proposed here to obtain
the mismatch displacement field.

In principle, drying of cement-based composites is mul-
tiphysics and even coupled with chemical reactions. The

characteristic time is usually ∼month. Therefore, a direct
simulation seems to be a very hard task. However, different
physical phenomena such as moisture transport and tem-
perature change always play there influences in shrinkage-
induced cracking by increasing the mismatch degree between
deformations of matrix and aggregates. In other words, cra-
cking is induced directly by mismatch deformation instead
of moisture and temperature. As a result, when the main
research interest is shrinkage-induced spontaneous cracking,
it seems acceptable to take the shrinkage-induced cracking as
a pure mechanical problem, i.e. progressive cracking driven
by development of mismatch deformation.

To further simplify the analysis, the following approxima-
tions are adopted:

1. Small mismatch deformation. The change of the element
size due to shrinkage is infinitely small when compared
with the size before shrinkage.

2. Constant material properties. In principle, mechanical
properties of matrix-phase change with shrinkage, which
is neglected in the current study.

3. Uniform shrinkage is assumed in the matrix, while no
shrinkage happens in aggregates.

Under assumption 1, the element stiffness matrix can be
calculated based on the initial non-shrinkage configuration
throughout the shrinkage process. Therefore, with the help
of assumption 2, the stiffness matrix keeps unchanged unless
the element fails.

At last, the problem becomes a pure linear elastic one.
Then a numerical algorithm is introduced to solve it. Without
loss of generality, we take the specimen shown in Fig. 4 as
an example. A aggregate is embedded in the matrix. Before
shrinkage, both the aggregate-phase element and the matrix-
phase element has the common length L , therefore, there
is no interaction between the aggregate and matrix (Fig. 4a).
After shrinkage, as shown in Fig. 4b, the length of the matrix-
phase element becomes (1 − ε)L(0 < ε << 1), while the
aggregate-phase element keeps the length of L . Here, ε is cal-
led the shrinkage rate. When the aggregate lattice-structure is
embedded into the shrunken matrix lattice, non-zero interac-
tion appears between them because the matrix “hole” cannot
accommodate the aggregate bigger than it without defor-
ming. At the same time, mismatch deformation arises. The
source of the mismatch phenomenon is being discussed in
more detail later in this section.

The mismatch deformation seems hard to solved by
directly using the classical finite element method. This dif-
ficulty is overcome by a new method as follows: the actual
mismatch deformation field is decomposed into two virtual
fields, both of which can be obtained by the classical FEM.
Then the actual response is obtained by adding together the
two virtual displacement fields.
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Fig. 5 Sketch map of calculating the two virtual displacement fields
a Dα, b Dβ

Just before explaining the two virtual displacement fields,
a naming assumpsit is made: the matrix part of the specimen
shown as Fig. 4b is called “matrix specimen”. The distributed
nodes on the boundary between matrix and aggregate are
denoted as {Bi |i = 1, 2, . . . , 10}.
• The first virtual displacement field Dα . The aim is to pro-

duce a displacement field in which the aggregate is in a
non-stressed state. The investigated object is the matrix
specimen. On its internal boundary {Bi |i = 1, 2, . . . , 10},
the following boundary conditions are applied (Fig. 5a)

u Bi = εxBi , vBi = εyBi , ϕBi
= 0,

Bi ∈ {Bi |i = 1, 2, . . . , 10} (12)

where (xBi , yBi ) is the coordinate of node Bi .
And at some matrix node n, both translation and

rotation are not permitted, which will be explained later:

un = vn = ϕn = 0. (13)

How to choose the proper node n will be discussed later.

Then solve the above boundary value problem, and obtain
the displacement field of the matrix specimen. On the boun-

dary {Bi |i =1, 2, . . . , 10}, constraint reactions are calculated
node by node, and denote the distributed constraint reaction
system as {{ Q Bi NBi MBi }T|i = 1, 2, . . . , 10}. Obviously,
displacement boundary conditions in Eq. (12) are totally
equivalent to the force boundary condition as follows:

Q Bi
= −Q Bi , N Bi = −NBi ,

M Bi = −MBi Bi ∈ {Bi |i = 1, 2, . . . , 10} . (14)

Namely applying the force system {{−Q Bi −NBi −MBi }T

|i = 1, 2, . . . , 10} on to the internal boundary nodes.
It is notable that the internal boundary of the matrix spe-

cimen is extended under conditions in Eq. (12) to a degree
that the aggregate can just be embedded into the matrix hole
without interacting with the deformed matrix specimen. Then
put the non-stressed aggregate into the deformed matrix hole,
and note the displacement field of the total specimen as Dα .

The displacement field Dα has a mismatch characteristic:
the aggregate is in a non-stressed state, but the matrix speci-
men is deformed under the boundary conditions in Eqs. (12)
and (13). The source of the mismatch lies in the difference
between non-stressed reference configurations of the matrix
specimen and the aggregate: the displacement of the matrix
specimen is measured referring to the shrunken matrix lat-
tice with element length (1 − ε)L , but that of the aggregate
is measured referring to the aggregate lattice with element
length L .

As a direct result of this kind of mismatch in Dα (Fig. 5a),
the displacement of each node in {Bi |i = 1, 2, . . . , 10} has
two values at the same time. When considering the deforma-
tion in some matrix element including node Bi , for example
element e1 in Fig. 5a, the displacement of Bi should be set
to u Bi = εxBi , vBi = εyBi , ϕBi

= 0, i.e. the same value as
Eq. (12). However, when considering the deformation of an
aggregate element including Bi , for example element e2 in
Fig. 5a, the displacement should be zero at node Bi . In fact,
the whole aggregate does not deform and displace in dis-
placement Dα . Both of the two sets of displacement values
for {Bi |i = 1, 2, . . . , 10} should be noted down for further
analysis.

• The second virtual displacement field Dβ . The investiga-
ted object is the specimen shown in Fig. 5b. At the matrix
node n, un = vn = ϕn = 0 [Eq. (13)]. On the boundary
between matrix and aggregate, i.e. {Bi |i = 1, 2, . . . , 10},
apply the force system {{ Q Bi NBi MBi }T|i = 1, 2, . . . ,

10} mentioned above on to the corresponding nodes

Q Bi
= Q Bi , N Bi = NBi ,

M Bi = MBi Bi ∈ {Bi |i = 1, 2, . . . , 10.} (15)

Under this condition, both matrix and aggregate will
deform together. The corresponding displacement field is
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obtained by conducting a linear elastic analysis and called
Dβ . Note that Dβ is an ordinary field without mismatch.

At last, the mismatch displacement field D can be expres-
sed in the form

D = Dα + Dβ (16)

which can be explained as follows: Dα can be taken as the
displacement field by applying the external force system
{{−Q Bi −NBi −MBi }T|i = 1, 2, . . . , 10}, and Dβ is the
displacement under action of the external force system
{{ Q Bi NBi MBi }T|i = 1, 2, . . . , 10}. Therefore, D = Dα +
Dβ is the displacement field when the external load is zero
with the help of the superposition principle [6]. The diffe-
rence between non-stressed reference configurations which
is the resource of mismatch has been considered when mea-
suring displacements of matrix and aggregate in Dα . In other
words, Dα is a mismatch field. So this mismatch should
not be considered again when calculating Dβ , resulting
that Dβ is continuous (non-mismatched). Again, nodes in
{Bi |i = 1, 2, . . . , 10} also have two sets of displacement
values in D = Dα + Dβ , like that in Dα discussed above.

By the way, boundary conditions in Eq. (13) at node n are
necessary for calculating Dα and Dβ (Fig. 5). Otherwise, Dβ

cannot be calculated correctly because the problem shown in
Fig. 5b becomes statically indeterminate. Nevertheless, the
final actual displacement field D = Dα + Dβ is independent
of the position of node n because there is only a rigid dis-
placement delta between fields by choosing different node
n. Therefore, boundary conditions in Eq. (13) can be applied
on an arbitrary node in the matrix region except the internal
boundary nodes {Bi |i = 1, 2, . . . , 10}.

In a word, Eq. (16) represents the basic idea of the current
investigation to simulate mismatch deformation due to matrix
shrinkage in cement-based composites.

4 Global numerical procedure

Fracture processes under external loads are usually simu-
lated by successive appearances of critical elements. So is
the shrinkage-induced fracture, except that external loads are
replaced by the shrinkage rate. A complete failure process can
be obtained by carrying out the following steps sequentially:

Step 1: Add the shrinkage rate as a trial value ε.
Step 2: Perform an analysis by means of the method intro-

duced in Sect. 3, and obtain the mismatch displace-
ment field D = Dα + Dβ .

Step 3: Extract the critical element from the results by using
the “event-by-event” algorithm which will be intro-
duced in the following Sect. 4.2.

Step 4: Calculate the critical shrinkage rate as the trial value
times the current strength divided by the correspon-

ding stress of the critical element. Note down the
critical displacement field.

Step 5: Adjust the stiffness and strength of the critical ele-
ment.

Step 6: Keep the critical shrinkage rate unchanged, release
the corresponding internal forces of the critical ele-
ment(s), and perform a new linear elastic analysis
to check if another element will fail.

Step 7: Repeat Step 6 until no more element fails, then note
down the final displacement field.

Step 8: Repeat Steps 1–7 until the complete failure of the
specimen.

Step 9: Observe and analyze the result.

To make the above chart more clear, it is necessary to
introduce the failure criterion and the algorithm to detect
critical element(s), both of which have been discussed in
more detail in Liu et al. [20].

4.1 Mohr–Coulomb criterion

Mohr–Coulomb theory is a mathematical model describing
the response of materials such as rock, rubble piles or concrete
to shear stress as well as normal stress. Most of the classical
engineering materials somehow follow this rule in at least a
portion of their shear failure envelope. The criterion can be
expressed in the form

|τ | < c − σ tan φ (17)

where, c is the cohesive strength and φ is the friction angle; τ
and σ are the shear stress and the normal stress, respectively.

Because materials such as concrete/rock have a very low
tensile strength ft as compared with their compressive
strength and shear strength, the Mohr–Coulomb strength sur-
face with tension cut-off [2] is adopted here (Fig. 6).
Concrete’s compressive strength fc is generally 10–20 times
the value of its tensile strength, so fc = 10 ft is used in this
paper. Furthermore, the failure surface can be expressed by
the following three inequations:

σ < ft (18a)

|τ | < c − σ tan φ (18b)

σ > − fc. (18c)

Then the implementation of the Mohr–Coulomb criterion
shown in Fig. 6 is introduced. It is notable that we find out
the critical element by checking the stresses in beams of GB
elements. The normal stress can be expressed in the form [30]

σ = N

A
+ α

(|Mi |, |M j |)max

W
(19)

where, N is the normal force in the considered beam, Mi and
M j are the bending moments at the nodes i and j of the beam,
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Fig. 6 Mohr–Coulomb strength surface with tension cut-off

and W = t (b)l2/6 is the section modulus. The coefficient α

regulates what part of the bending moment is considered.
Lilliu and van Mier [17] have shown that simulation results
are also satisfactory in the case of α = 0 though α is usually
set to 0.005 [13,18]. Therefore, α is also set to zero in this
paper. Another advantage of α being zero lies in that three
beams in every GB element have the uniform normal stress
because both N and A are uniform throughout every GB
element.

From Eq. (1), the shear force can be expressed in the form

Q1 = −Q2 = M11(u1 − u2) − M34(ϕ1 + ϕ2). (20)

In consideration of the equilibrium conditions at I and J
(Fig. 3), it can be found that the shear force is also uniform
throughout the GB element. Therefore, the shear stress can
be calculated as

|τ | = |Q1|
A

= 1

A
|M11(u1 − u2) − M34(ϕ1 + ϕ2)| . (21)

Actually, in order to judge if a GB element becomes cri-
tical, it is not necessary to check all its three beams. Only
its middle beam needs to be checked instead mainly because
both σ and τ are uniform in every GB element, which has
been discussed above. Furthermore, it makes the following
assumption reasonable: when some GB element becomes cri-
tical, it cracks into two fragments of the same span, i.e. L/2,
where L is the length of the GB element. Therefore, if all
six GB elements starting from node i have failed, the isola-
ted material domain around node i , called influence zone of
node i has the geometry shown as Fig. 7a. The GB lattice
can be also taken as a network by gluing a large amount of
this kind of material domains, shown as Fig. 7b, where the
short line-segment crossing the middle of every GB element
indicates the potential crack path.

Fig. 7 A GB lattice with circular nodal influence zones: a a single
nodal influence zone isolated be surrounding failures, b potential failure
positions of the lattice, c comparison of circular and hexagon influence
zones, d sketch-map of contact

Then an important approximation is made: the material
domain around every node is circular and its diameter is
L , which is the same as the bonded-particle model (BPM)
[24]. When calibrating the GB lattice [18], it is assumed
that the influence zone (unit cell) is hexagonal, which is
π/2

√
3 times the area of the circle (Fig. 7c). This difference

can be avoided easily when using the equivalence of strain
energy between the GB lattice and its continuum counter-
part. But this difference is neglected in this paper. On one
hand, it doesn’t influence the results seriously. On the other
hand, even though the model is a very rough approximation
of reality, this appears throughout all kinds of lattice-type
approaches.

When the two crack surfaces of the former cracked ele-
ment contact each other, the contact analysis between crack
surfaces becomes necessary. In this paper, we only study the
simplest case—smooth contact. Therefore, the contact ele-
ment can only bear compressive actions along the direction
of element i j , and the stiffness matrix can be expressed in
the form

Kcontact = (1 − D) KN (22)

where, D is the damage factor due to the deformation his-
tory. Of course, the concept of the damage factor here is
extremely rough as compared with the one in the classical
damage mechanics which increases gradually with external
loads [16]. However, D in Eq. (22) also indicates the degrada-
tion of material properties, so basically has the same physical
meaning of the classical damage factor [14].

In this paper, it is assumed that the failure modes violating
different inequations in Ineqs. (18) may generally produce
different damage factors. In the following of this section, the
non-linear algorithm is introduced for that general case.

4.2 Event-by-event algorithm

Fracture is simulated by successive occurrences of “events”,
which may be failure of critical intact or partly failed elements,
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or contact/separation of former cracked elements. Then, the
essential of numerical simulation is to detect new event(s)
correctly. The event-by-event method is adopted here [2,25].
The magnitude of deformation change of the specimen in
every step depends on the appearance of new critical ele-
ment(s). After the current displacement field has changed,
the normal stress σ and the shear stress τ acting in each
beam are compared with the fracture surface, the criterion
for fracture is

R = r

r f
> 1 (23)

where r = (σ 2 + τ 2)0.5 and r f is as defined in Fig. 6. Ana-
logously, the criterion for separation/contact of cracked ele-
ments is

R =
√

(
u)2 + (L + 
v)2

L
> 1(contact → separation)

(24)

R = L
√

(
u)2 + (L + 
v)2
> 1(separation → contact)

(25)

where, 
u = u j − ui and 
v = v j − vi are relative dis-
placements between nodes i and j in element i j shown in
Fig. 7.

Only one event is permitted per computational cycle. If
several elements have R > 1, the element with the highest
R > 1 undergoes new event. As for the critical element, the
update of stiffness matrix and the release of internal forces
are introduced as follows:

(1) If Ineq. (18a) is violated, {Qi Ni Mi Q j N j M j }T

is released, and the element stiffness matrix K is set to
zero. It is notable that this element is definitely under
tensile state in the current step. However, this element
is possible to recur due to contact in the following steps.
Once contact happens, the recurred stiffness matrix is

T
K = (1 − T

D)KN (26)

where, the superscript “T” in
T
K and

T
D represents “Ten-

sion”. Thus,
T
D denotes the damage factor due to the

failure by violating Ineq. (18a), i.e. maximum tensile
stress criterion. KN has been defined in Eq. (11).

(2) If Ineq. (18b) is violated, there are two possible cases.
In one case, the normal stress σ acting in the critical
element is positive, i.e. tensile stress, so the element is
not possible to become contact at the very beginning
of stress redistribution. As a result, {Qi Ni Mi Q j

N j M j }T is released, and the element stiffness matrix
K is set to zero. In the other case, σ is negative, i.e.

compressive stress, so the critical element becomes con-

tacting once violation happens. Then, {Qi
MC
D Ni Mi

Q j
MC
D N j M j }T is released, and the stiffness matrix

is updated as

MC
K = (1 − MC

D )KN (27)

where, the superscript “MC” stands for “Mohr–

Coulomb”.
MC
D denotes the damage factor due to the

failure under the actions of both the shear stress and the
normal stress, defined as Mohr–Coulomb criterion in
Ineq. (18b).

(3) Three kinds of elements are possible to violate
Ineq. (18c): intact elements, elements damaged by vio-
lating Ineq. (18a) previously, and elements damaged by
violating Ineq. (18b) previously. As for intact elements,

{Qi
C
D Ni Mi Q j

C
D N j M j }T is released, and

the stiffness matrix is updated as

C
K = (1 − C

D)KN (28)

where, the superscript “C” represents “Compression”.

As for the second kind of elements, {Qi (
C
D − T

D)Ni/

(1 − T
D) Mi Q j (

C
D − T

D)N j/(1 − T
D) M j }T is

released, and the stiffness matrix is set to
C
K. As for

the third kind of elements, {Qi (
C
D − MC

D )Ni/(1 − MC
D )

Mi Q j (
C
D − MC

D )N j/(1 − MC
D ) M j }T is released,

and the stiffness matrix is also set to
C
K.

5 Examples of shrinkage-induced cracking

Four cases are sequentially studied, called Cases 1–4. Tests
are performed on a GB lattice with a rectangular geome-
try of 9 by 66

√
3/5 cm. The GB lattice employed has a

total of 8,082 nodes and 23,861 elements. In Case 1, the
micro-level material properties are shown in Table 1, where
the difference from former parameter setting used [20,30]
is that a bigger interface strength 2.5 MPa instead of for-
mer 1.25 MPa is adopted in order to exclude influence of the
shrinkage-induced cracking on the interface strength. About
17 hexagon aggregates with side length 6L are randomly
distributed, where L is the element length. All elements are√

3/10 cm long. The depth-to-span ratio is set to 1.0 for all
beams. Uniform shrinkage is assumed in the matrix region,
and aggregates do not shrinkage or expand spontaneously.
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Table 1 The micro-elastic and
strength properties of phases

In the table, D = T
D = MC

D = C
D

E (MPa) ft (MPa) fc (MPa) c (MPa) φ (◦) D

Aggregate 70,000 10.0 100.0 15.0 45 0.95

Interface 25,000 2.5 25.0 1.875 45 0.95

Matrix 25,000 5.0 50.0 7.5 45 0.95

Case 2 is the same as Case 1 except that Young’s modulus
of aggregates is 1/4 of the value in Case 1, which represents
a specimen including softer aggregates.

Case 3 is the same as Case 1 except that the side-length
of hexagon aggregates is 2L instead of 6L in Case 1, i.e.
specimen with smaller aggregates.

Case 4 includes more aggregates than Case 1: 22 aggre-
gates with side length 6L and 7 ones of 2L .

5.1 Case 1: analyses of a typical shrinkage case

All the cases have many common features even though their
settings are different from each other. Therefore, Case 1,
whose result is shown in Fig. 8, is chosen as a representative
and analyzed in detail.

1. Differences can be found between shrinkage-induced
cracking and failures under external loads such as uni-
axial tensile experiment shown in Fig. 9. The process has
a typical multi-crack characteristic. Shrinkage-induced
cracks form a network-like shape all over the specimen.
No obvious main crack passing through the specimen
appears as generally happening in compressive/tensile
experiments [13,20,30]. This is due to the difference
between external load and “shrinkage load”: The exter-
nal load is usually applied in a fixed direction, and the
internal force of the cracking element cannot be born
by itself any more due to descending or vanishing of
its carrying capacity. Therefore, this extra force is redis-
tributed among the rest elements. In other words, the
external load is endured by less and less elements, and
failed elements put the nearby intact elements, especially
ones on the tip of cracks, into a stress level easier to fail,
but meanwhile unload the other regions of the specimen.
While “shrinkage load” has not a fixed loading direc-
tion, leading to a more scattered crack pattern. A locali-
zed crack at one position cannot prevent appearance of
cracks at other positions because no unloading mecha-
nism in a fixed direction exists in the shrinkage process.
In fact, surrounding neighborhood of every aggregate
is potentially active to fail due to shrinkage-induced
mismatch. Under the uniform shrinkage condition
studied here, if the matrix specimen is taken as the

investigated object, every aggregate acts as an “object
applying force”. From this viewpoint, loads are applied
on two opposite edges in the tensile test, but “shrinkage
load” is applied throughout the specimen and mismatch
interactions arise around all internal boundaries between
matrix and aggregates.

As a result of absence of main crack(s), no steep
change of failed element number exists in the curve of
Fig. 8a. In tensile/compression tests, a steep drop of load
occurs usually directly following the peak load [17,18],
corresponding to formation of main crack(s) and steep
increase of failed elements, shown as Fig. 9.

Compared Fig. 8a with Fig. 9a, the magnitude of
failure number in shrinkage is ∼1,000, while that is only
∼100 in tensile tests, which indicating deformation in
tensile failure is much more localized than the shrinkage
process.

2. Cracking happens most easily in narrow matrix regions
between the specimen boundary and aggregates, shown
as Fig. 8b–d. Figure 10a gives a typical example of such
boundary cracking. The mismatch deformation around
these aggregates is greatly influenced by the near free
boundary, which makes the narrow regions mentioned
above deform much more greatly than other regions
around the same aggregate. In the mismatch deformation
field, the aggregate close to specimen boundary has a ten-
dency of being squeezed out of the specimen by breaking
the narrow matrix region. During the shrinkage process,
free surfaces of the internal crack that has appeared in the
early stage also act as “free boundary” (Fig. 10b), there-
fore, the nearby aggregate seems to be squeezed towards
the crack surface and one or more new cracks from the
aggregate to the free crack surface will occur. This is
also very different from failure experiment under exter-
nal loads where the crack appearing previously usually
unloads the neighborhood of its two crack, leading this
region does not fail any more.

From Figs. 8b–d and 10a, it can be found that these
localized cracks near specimen boundary do not propa-
gate further into inside once stopping at the aggregate
surface. Obviously, this phenomenon must be reasonable
because most concrete buildings whose surface covered
with micro- and even macro-shrinkage induced cracks
are still safe instead of collapse.
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Fig. 8 In case 1, a the
cumulative number of cracked
elements versus displacement;
and crack patterns at three
levels: b level a; c level b;
d level c

3. Elemental failures happen frequently around aggregates.
These failures together with aggregates look like snow-
flakes. Majority of localized cracks start from aggre-
gate surfaces, and center aggregates, resulting that matrix
regions around aggregates are most damaged. Mismatch
in displacement field arises in the boundary between
matrix and aggregates, where deformation is much grea-
ter than other regions, therefore, elemental failures in
matrix regions around aggregates happen much more
easily.

4. Localized cracks have several common feathers. These
cracks start from aggregates and stop propagating in
matrix, specimen boundary or when blocked by ano-
ther aggregate. Aggregates would not be split by the

arriving localized matrix cracks with the following
reason: Aggregates are in a state of compression. The
compressive action applied on aggregates is from matrix.
The weaker matrix cannot of course compress the stron-
ger aggregates into failure. Two opposite surface of every
localized crack connecting two adjacent aggregates have
arc-like shape caused by both matrix shrinkage and com-
pressive actions from the two aggregates.

5.2 Case 2: influence of aggregate Young’s modulus

Aggregates have a Young’s modulus equal to 1/4 of that in
Case 1, indicating that aggregates in Case 2 are much softer.
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Fig. 9 A typical tensile result:
a the dimensionless P–δ curve
where load and displacement are
divided by the values at the
peak; b the cumulative number
of cracked elements versus
displacement; c crack pattern at
level a

Fig. 10 Development of local crack patterns in case 1: a cracks (in
green) appears in the narrow matrix region between aggregate and spe-
cimen boundaries; b the gray crack arises when aggregate i A is squeezed
towards the green crack (color available only in online publication)

Therefore, when the shrinkage rate is fixed, matrix has a smal-
ler deformation in Case 2 than Case 1. In other words, fai-
lures happen less easily in Case 2. Figure 11b corresponding
to ε = 24.87 × 10−4 contains 579 failures, less than 712 in
Fig. 8b where the shrinkage is weaker, i.e. ε = 16.23×10−4.
This trend can be also found easily from Fig. 11a. When the
total of failures is fixed as 2,100, the shrinkage rate ε has a
value of 55.95 × 10−4, much larger than ε = 39.2 × 10−4 in
Case 1. On the other hand, level b in Case 1 shown as Fig. 8c
and level b in Case 2 shown as Fig. 11c have obviously dis-
tinguished crack patterns, even though exactly equal totals
of failures and the same particle distribution. This suggests
change of aggregate Young’s modulus leads to a difference
failure process. Figure 11d shows the crack pattern of late
stage, where the specimen boundaries have been destroyed
into separated sections and become obviously warped.

5.3 Case 3: influence of aggregate size

Each aggregate has the same center position as the corres-
pondence in Case 1, but is much smaller. As mentioned in
Sect. 3, all mismatch in deformation, i.e. the displacement
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Fig. 11 In case 2, a the
cumulative number of cracked
elements versus displacement;
and crack patterns at three
levels: b level a; c level b;
d level c

discontinuity happens on boundaries between matrix and
aggregates. Additionally, the total length of these boundaries
in a specimen is equal to the sum of all aggregates’ perime-
ters. Therefore, the total length of mismatch lines in Case
3 is much smaller than Case 1. Furthermore, as mentioned
in Case 1, as for the aggregate near to specimen boundary,
matrix region in its neighborhood closest to boundary is very
active to fail (Fig. 10a). Boundary of each aggregate is farer
from the specimen free boundary in Case 3, leading to a
lower failure possibility in the matrix regions between speci-
men boundary and aggregates. These reasons lead to a more
gentle increase of failure total with shrinkage rate (Fig. 12a)

Due to these reasons, shrinkage-induced cracking hap-
pens less possibly than Case 1 when shrinkage rate is fixed.
The shrinkage rate when the first elemental failure occurs
is 14.66 × 10−4, much larger than the corresponding value
6.40 × 10−4 in Case 1. In micro-mechanics simulations of
concrete, it is of course not very realistic to model every
aggregate of any given size, and therefore, normally a lower
cut-off is needed. Below the cut-off threshold aggregates
are assumed to be part of matrix, where it is assumed that
the matrix behaves like a continuum [30]. Obviously, the
above trend of shrinkage-induced cracking with aggregate
size observed can be taken as a positive evidence

123



490 Comput Mech (2009) 43:477–492

Fig. 12 In case 3, a the
cumulative number of cracked
elements versus displacement;
and crack patterns at three
levels: b level a; c level b;
d level c

supporting this kind of cutting-off operation in aggregate
size.

Deformation around smaller aggregate is influenced less
seriously by specimen boundaries and other aggregates, lea-
ding to a more homogeneous deformation in different
directions. Therefore, from Fig. 12b, a more obviously radia-
ting feather of failure distribution can be found around every
aggregate when compared with Fig. 8b.

There is a turning at level b in Fig. 12a: total of failures
increases less steeply with shrinkage rate after level b than
before it. After level c, the increase becomes even more
slowly. This can be explained as follows. As the shrinkage
rate increases, more and more elements linking aggregates

to matrix fail, resulting that aggregates become more isolated.
Therefore, interactions between matrix and aggregates
become weaker, or in other words the drive of cracking
decreases with shrinkage rate. Obviously, the smaller aggre-
gate becomes isolated more easily, and new localized cracks
appear less possibly. Therefore, crack patterns shown in
Fig. 12c, d looks less smashed than Fig. 8d.

5.4 Case 4: influence of aggregate content

Majority of local cracks except those between aggregates
and specimen free boundaries start from one aggregate and
end when arriving surface of another adjacent aggregate, as
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Fig. 13 In case 4, a the cumulative number of cracked elements versus
displacement; and crack patterns at two levels: b level a; c level b

mentioned in Case 1. Therefore, average distance between
adjacent aggregates in concrete can be taken as a characte-
ristic length of shrinkage-induced cracks inside specimen.
When comparing Fig. 13b, c with Fig. 8b–d, it can be found
that the crack pattern in Case 4 is more smashed than Case
1. The reason is that the higher aggregate content in Case
4 decreases the average distance of adjacent aggregates. In
Case 3, decrease of aggregate size increases this average dis-
tance, leading to longer shrinkage-induced cracks (Fig. 12d).

From Fig. 13a, the total of failures in Case 4 increases
more quickly with shrinkage rate than in Case 1. This can be
explained as follows. As mentioned in Case 3, the total length

of “mismatch lines” corresponds to the sum of aggregates’
perimeters, therefore, a higher aggregate content increases
this total length. Because the mismatch line is the dominant
source of failures, the bigger their total length becomes, the
easier and more frequently shrinkage-induced cracking hap-
pens.

6 Conclusions

A numerical method to simulate shrinkage-induced cracking
in cement-based composites was proposed. Regardless of
moisture transport, temperature and so on, the problem is
simplified to a pure mechanical process. No obvious exter-
nal load serves as the drive to propel the shrinkage-induced
deformation, therefore, it is hard to simulate by classical finite
element method. As a solution, the mismatch displacement
field is calculated by constructing two virtual displacement
fields under the assumption of uniform matrix shrinkage.
Then, numerical examples were given. Influences of different
factors on failure processes were analyzed.

From the numerical results, shrinkage-induced cracks dis-
tribute all over the specimen as well as aggregates. Many of
these cracks are as long as or even longer than the charac-
teristic aggregate size under the current parameter setting.
Furthermore, shrinkage leads to a non-zero stress field in spe-
cimen. Shrinkage-induced cracks and the pre-existing stress
field can also play an important role in macro-level properties
as well as particle structure, which will be a future topic.
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