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Abstract  

In this work, a level set method is developed for simulating the motion of a fluid particle rising in 

non-Newtonian fluids described by generalized Newtonian as well as viscoelastic model fluids. As the 

shear-thinning model we use a Carreau-Yasuda model, and the viscoelastic effect can be modeled with 

Oldroyd-B constitutive equations. The control volume formulation with the SIMPLEC algorithm incorporated is 

used to solve the governing equations on a staggered Eulerian grid. The level set method is implemented to 

compute the motion of a bubble in a Newtonian fluid as one of typical examples for validation, and the 

computational results are in good agreement with the reported experimental data．The level set method is also 

applied for simulating a Newtonian drop rising in Carreau-Yasuda and Oldroyd-B fluids．Numerical results 

including noticeably negative wake behind the drop and viscosity field are obtained, and compare satisfactorily 

with the known literature data. 
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1. Introduction  

As is well known, a large number of investigations concerning various aspects of the bubble or drop motion in 

non-Newtonian fluids have been reported theoretically and experimentally in the past. The most important 

results have been well summarized and reviewed by Chhabra [1,2]. Nevertheless, in comparison to the study of 

bubble or drop motion in Newtonian fluids, various unanswered questions and problems still remain to be 

considered in non-Newtonian fluid systems due to their inherently complex nature. The studies quoted above are 

mostly based on experiments, but numerical analysis has become a powerful and useful tool for comprehending 

and revealing detailed flow structure and mechanism. This is because some essential physical information 

peculiar to non-Newtonian fluids can be locally obtained and evaluated in detail, which are hard to be estimated 

using experimental techniques, such as the local effects of shear-thinning on the drop motion. 

In this study, we compute the motion of fluid particles freely rising through non-Newtonian fluids. We 

perform axisymmetric computations using the level set method for tracking the interface. We will also study the 

local viscosity field formed around a drop and the negative wake behind the drop. 

 

2. Basic equations and simulation methods  
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In this study, the motion of a single bubble/drop rising driven by buoyancy in an immiscible quiescent liquid is 

considered with following assumptions: (1) the fluids in both phases are viscous and incompressible; (2) the 

two-phase flow is axisymmetric and laminar. 

 

2.1. Governing equations 
In the level set formulation, the transient motion of a bubble/drop can be expressed by the continuity and 

Navier-Stokes equations as follows: 
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where  is the velocity, u p is the pressure, ρ is the density, σ  is the surface tension and 

 is the rate-of-deformation tensor. The viscosity can be described by the Carreau-Yasuda 

model

( 2T= ∇ + ∇D u u /)
 [3]: 

( ) ( ) ( )
1

0 1
n

N

ββμ γ μ μ μ λγ
−

∞ ∞
⎡ ⎤= + − +⎣ ⎦& &                            (3) 

where λ  is the inelastic time constant,  is a parameter between 0 and 1 for shear-thinning fluids, n 0μ  is the 

zero shear viscosity, μ∞  is the minimum viscosity achieved as shear rate approaches infinity. To describe the 

viscoelastic properties of the fluid, the constitutive equation is by the Oldroyd-B model. The evolution of the 
configuration tensor  is given as followsA  [4]: 
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Here 1λ  is the characteristic relaxation for a viscoelastic fluid.  

2.2. Level set approach of fluid flow 

A smooth scalar function denoted as φ  is introduced into the formulation of the two phase flow system to 

define and capture the interface between two fluids, which is identified as the zero level set of the level set 

function defined on the entire computational domain. The function is chosen as the signed algebraic distance to 

the interface, being positive in the continuous fluid phase and negative in the bubble or drop. The following 

Hamilton-Jacobi type evolution equation [5] can be used to advance the level set function exactly as the bubble 

moves 
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After introducing the level set formulation, the motion of two separate domains for immiscible two-phase fluids 

may easily be formulated as a single one.  

The curvature of free surface, )(φκ  is expressed as 
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The regularized delta function )(ε φδ  is defined as 
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In Eq. (2), )(ε φH  is a smoothed Heaviside function introduced for avoiding the sharp change in pressure 

and diffusion terms at the interface due to large density and/or viscosity ratios. This is given by 
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where )(hΟ≡ε  prescribes the finite “thickness” of the interface. In this computation, we take h=ε  

generally, where h is equal to the dimensionless uniform mesh size near the interface. 
Density and viscosity are written as 
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( ) ( ) ( )G L G Hεη φ η η η φ= + −                           (10) 

The fluid relaxation time is assumed to jump across the interface 
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Here 1Gλ  and 1Lλ  are the relaxation time of the fluids inside and outside the bubble, respectively. If the fluid 

inside (or outside) the bubble is Newtonian, its relaxation time is set to zero. A relaxation time of zero ensures 

that the fluid relaxes instantaneously and thus behaves like a Newtonian fluid. This allows us to use the same 

equations for both Newtonian and viscoelastic liquids. 

In addition, after certain iteration steps φ will no longer remain a distance function (i.e., 1≠∇φ ) generally, 

even if Eq. (5) advances the interface at correct velocities. Maintaining φ  as a distance function is very essential 

for accurate evaluation of  and n )(φκ . Therefore, a reinitialization procedure for resetting φ as an exact 

distance function should be adopted to keep the interface thickness finite and preserve mass conservation. A 

reinitialization method proposed by Sussman et al.[6] is often used, which is accomplished by iterating the 

following equation to steady state: 
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where 0φ  is a level set function at any computational time, i.e., 0 ( ) ( , 0)φ φ τ= =X X , τ is the virtual time in 
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a reinitialization step and )sgn( 0φ  denotes the smoothed sign function with appropriate numerical smearing to 

avoid any numerical difficulties. The formulation of fluid flow and the procedure of numerical solution have 

been presented previously by the authors in detail [7], in which another area-preserving reinitialization procedure 

for φ was coupled with Eq. (12) to guarantee the mass conservation by solving a perturbed Hamilton-Jacobi 

equation proposed by Zhang et al. [8] to pseudo-steady state in each time step. The improved reinitialization 

procedure can maintain the level set function as a distance function and guarantee the fluid particle mass 

conservation. 

 
2.3 Computational scheme 

The control volume formulation with the power-law scheme and the SIMPLEC algorithm are used to solve 

the governing equations and the level set evolution equations. A staggered grid is used and the different 

dependent variables are approximated at different mesh points. In order to ensure variables more accurately 

interpolated and revolved, a double fine grid is also applied. The detailed numerical method and technique are 

described in [7]. A 5th order weighted ENO scheme for discretization of the constitutive equations is applied to 

achieve higher order accuracy in space, and a third-order Runge-Kutta scheme in time is used to avoid any 

instability and divergence in temporal integration of configuration tensor evolution equations. 
In the initial set-up, the spherical bubble with radius R is set in the middle of the z-axis and the 

computational domain { }( , ) 0 40 , 0 15x y x R y RΩ = ≤ ≤ ≤ ≤  is widely enough to avoid wall effect. Regarding 

the boundary conditions, the outflow boundary is set at the top wall and the no-slip condition is applied for side 

wall. The configuration tensor for the Oldroyd-B model on the solid wall is expressed in terms of the velocity 

gradient through solving the momentum and constitutive equations: 
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The initial value of A is taken as I, implying the Oldroyd-B fluid is in a relaxed state. 

 
3. Numerical results and discussion 

3.1 Bubble rising in Newtonian fluids 
In order to test the accuracy of our fluid flow solver, in particular the numerical treatment of the free-surface 

boundary conditions. We conducted three case studies and compare the results of the present method with those 

published literature.  

The first validation case is to simulate a bubble rising in Newtonian fluids. The physical properties of air 

bubbles are 3
g 1.2  kg mρ =  and . 5

g 1.8 10  Pa sη −= × ⋅

The comparisons of steady-state cases in Figure 1, and Figure 2 indicate good agreement between 

computational and experimental results. These simulations suggest that our method is effective for investigating 

the motion of a bubble with very steep gradients in density and viscosity across interface under the laminar flow 
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conditions using an Eulerian grid. The method provides the basis for further investigation of non-Newtonian 

fluids. 

 

 
 

a) calculated shape b) measured shape [Bhaga和Weber, Fig.3(b)][ 9]

Fig.1. Comparison of the shape of a 9.3 cm3 bubble in a sugar solution with high viscosity at steady 

state (E=116, M=266, Re=3.57) 

 

  

a) simulation b) experiment [Bhaga和Weber, Fig.3(e)][9]

Fig.2. Comparison of the shape of a 9.3 cm3 bubble in a sugar solution with low viscosity at steady 

state (E=116, M=1.31, Re=20.4) 

 

3.2 Drop rising in a shear-thinning non-Newtonian fluid 

The second validation case is to simulate a Newtonian drop rising in shear-thinning non-Newtonian fluids. 

Ohta et al. [10] investigated the Newtonian drop (silicone oil) flow in a shear-thinning fluid (sodium acrylate 

polymer, SAP) with the Carreau-Yasuda model and the VOF (Volume-of-Fluid) method. In this work the level 

set method for tracking the interface is used to simulate the motion of a drop in non-Newtonian liquids and the 

predictions are compared with the results of Ohta et al. [10]. Figure 3 compares the predicted viscosity 

distributions with those in [10] for a drop rising in a SAP solution. It can be verified that the computed viscosity 

distributions by VOF and the present level set method agree well qualitatively with each other. 
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(a) VOF[10]  (b) Level set  

Fig. 3. Comparison of the viscosity distribution (in unit of Pa·s) and shape of a drop rising in Carreau-Yasuda 

shear-thinning solution (n=0.25, 0.89 sλ = , 0 0.05 Pa sη = ⋅ , 0.006 Pa sdη = ⋅  and de=10.7 mm) 

Scrutinizing the VOF results in Figure 3, some flow structures of minor scale are observed around the drop 

surface. It is some kind of so-called "parasite" flows [11], probably arising from inaccurate account for the 

interfacial force. However, neat flow structure is obtained from our simulation without any interfacial 

disturbance. In our method, the “parasitic” surface flow is suppressed by adopting a double fine grid for 

simulating the motion of drops and bubbles and advancing the deformable interface for each time step starting 

from the interface instead of the boundary of computational domain [7].  

 

3.3 drop rising in a shear-thinning viscoelastic non-Newtonian fluid 

The third validation case is to simulate a Newtonian drop rising in a shear-thinning viscoelastic 

non-Newtonian fluid. An adequate understanding of the flow pattern around a single drop in a non-Newtonian 

fluid is a prerequisite to studying further phenomena like interaction and coalescence between drops or bubbles. 

In Figure 4, the flow fields around an individual drop in these fluids has very peculiar features: the flow in the 

front of the drop is very similar to that in Newtonian case; in the central downstream wake, the motion of the 

fluid is surprisingly downward; finally, a hollow coneic zone of upward flow begins on the sides of the drop. The 

real shape of the drop is also plotted in Figure 4. Li et al. [12]. gave the new insights into the flows of 

shear-thinning viscoelastic non-Newtonian fluids around bubbles (or drops) by means of the PIV measurements 

in Figure 5. The complete flow field around bubbles shows three distinct zones: a central downward flow behind 

the bubble, a conical upward flow surrounding the negative zone, and an upward flow zone in front of the bubble. 

The numerical result of the negative wake is in good agreement with experiments.  
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Fig. 4. Simulation results: flow field and shape of a drop rising in shear-thinning viscoelastic solution 

( , 0.25n = 0.89 sλ = , 0 0.05 Pa sη = ⋅ , 1 3.0 sλ = , 8.0c = , 0.012 Pa sdη = ⋅  and )  3.06 mmed =

 

 
Fig. 5. Schematic representation of the flow field around a drop (or bubble) rising in a shear-thinning 

viscoelastic fluid. The θ  angle is defined as the opening angle of the upward cone[12]

 

4. Concluding remarks 

In this work, an improved level set method based on a staggered Eulerian grid is used to simulate the motion 

of deformable fluid particles. The proposed method is applied to simulate the rising of a single fluid particle in 
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viscous Newtonian and non-Newtonian liquids. For the motion of bubbles in purely viscous liquids, the current 

computational scheme shows good numerical stability in simulation of realistic gas/liquid systems. The 

comparison of simulation with the present and literature experiments shows satisfactory agreements. The newly 

proposed algorithm is applied to simulate the rising Newtonian drop in shear-thinning non-Newtonian solutions. 

The comparison of simulation with the available literature results shows satisfactory agreements. The numerical 

scheme is then used to compute the Newtonian drop rising in shear-thinning viscoelastic non-Newtonian fluids 

within the framework of an Oldroyd-B model to take into account the viscoelasticity of the fluid. Theoretical 

flow fields are numerically obtained and compare satisfactorily with experimental measurements for the main 

features such as the negative wake. 

Further theoretical and experimental investigations should be conducted in order to gain new insights into the 

relationship between the negative wake and the fluid’s viscoelasticity. It will also be interesting to couple the 

level set method with other viscoelsticity models for numerical experiments for studying the bubble’s or drop’s 

shape evolution. This is the avenue we are currently exploring. 
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