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Abstract. This paper presents exact density, velocity and temperature solutions for two problems of 
collisionless gas flows around a flat plate or a spherical object. At any point off the object, the local velocity 
distribution function consists of two pieces of Maxwellian distributions: one for the free stream which is 
characterized by free stream density, temperature and average velocity, n0, T0, U0; and the other is for the wall 
and it is characterized by density at wall and wall temperature, nw,Tw. Directly integrating the distribution 
functions leads to complex but exact flowfield solutions. To validate these solutions, we perform numerical 
simulations with the direct simulation Monte Carlo (DSMC) method. In general, the analytical and numerical 
results are virtually identical. The evaluation of these analytical solutions only requires less than one minute 
while the DSMC simulations require several days. 
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                                                           INTRODUCTION 

Collisionless gas flow field over a flat plate or a sphere have many applications. The corresponding aerodynamic 
coefficients and heat flux rate are important for spacecraft design. Some flow examples include highly rarefied gas 
flows around: 1) a flat cryogenic vacuum pump;  2) a very small pollen or a pollutant particle; 3) a lunar dust particle 
in a moon-landing mission;  4) an aerosol droplet at high altitude; 5) a fine metal powder particle during a thin film 
deposition processing inside a vacuum chamber; 6) a meteoroid traveling in space; 7) a small cold sphere with 
condensation effect; 8) a spacecraft in low earth orbit with out-gassing.     

For such flows, the earliest work may date back to Epstein [1] or Liu [2]; several recent books discussed 
collisionless aerodynamics over a flat plate or a sphere as well. Especially, Bird [3] discussed plate surface properties 
for collisionless flows with both diffuse and specular reflections, and the direct simulation Monte Carlo (DSMC) 
method is one appropriate numerical tool to simulate such kind of gas flows. Recently, Loth [4] reviewed 
compressibility and rarefication effects on drag over a small sphere. Storch [5] provided more detailed discussion on 
the aerodynamic coefficient for different objects.  In the literature, almost all work on collisionless flows over a flat 
plate or a sphere focuses on the wall properties. It seems that the flowfield around a plate or a sphere should be very 
simple without any collision effects, but available research work in the literature concentrates on numerical 
simulations only. This paper aims to provide the exact solutions for the collisionless gas flow over a plate or a sphere, 
and these solutions complement the past studies on aerodynamic coefficients and heat transfer rate. 

In this study, we use a relation between velocity-directions and geometry-locations to investigate free molecular 
flow problems.[6] This treatment is more general than the solid angle treatment by Narasimha [7], which is widely 
used for true collisionless effusion flows with a zero average speed, but it is not applicable to collisionless flows with 
a nonzero average speed.  The object surfaces are assumed to be completely diffuse. 

                COLLISIONLESS GAS FLOWS OVER A FLAT PLATE 

A zero-thickness flat plate AB is set with an inclination angle, ξ, to the free stream, with a length L. The 
coordinate center is at the plate center. Steady free stream collisionless gas flows from the left to the right, with a 
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number density, n0, an average velocity, U0 and a temperature, T0.  We are about to find the flow field around the 
plate. 

We assume the outer boundary as a circle with a large radius. At each point on the circle, particles traveling from 
far field follow a Maxwellian velocity distribution function (VDF) characterized by n0, U0 and T0. Suppose there is 
an arbitrary point P(x, y) off the plate (either in the front or the back side of the plate) and this section aims to obtain 
the exact flow field at P(x,y). The distribution for those reflected molecules is also a Maxwellian VDF characterized 
by the wall temperature, Tw, and a number density characterized by wall, nw. We completely ignore interactions 
among molecules. 

Starting from a point (X,Y) on the large circle, of all particles with a thermal velocity (u,v,w) only those 
satisfying the following relation can reach point  P(x,y) if (X,Y) is “visible'' from point P:  

 (u+U0)/(X-x) = v/(Y-y) (1) 
Here u+U0 is the real X-velocity speed for the particles traveling from the free stream. If on (X,Y) a particle's 
velocity components satisfy the above relation, then this particle cannot miss P(x,y) either, unless it is on the other 
side of the plate. Because all particles traveling towards the plate on the large circle follow the free stream 
Maxwellian VDF, this relation leads to a specific velocity space as  Ω1. With a similar relation,  

 u/(X-x)=v/(Y-y) (2) 
the contribution to the VDF at P(x,y) by those particles diffusely reflected on the plate is described by another 
Maxwellian VDF with a domain Ω2. Here these particles have different velocities from those traveling from the free 
stream. The boundaries of these two domains, Ω1 and Ω2, are determined by point P(x,y), the two specific plate ends, 
A(Ax,Ay), B(Bx,By), and the above Eqns.(1-2). If we denote θ1=arctan(y-Ay, x-Ax) and θ2=arctan(y-By, x-Bx) here 
arctan(y,x) is a special function with a value range of (-π, π), instead of (-π/2, π/2). From Eqn.(1), we conclude that 
point  (-U,0) belongs to domain Ω1. In general, Ω1 overlaps with Ω2; one exception is the case with U0=0 and a 
combination of Ω1 and Ω2 leads to a complete four-quadrant domain. 

The VDF for point P(x,y) consists of two different Maxwellian VDFs:  
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where βi=1/(2RTi), i=0, w, and nw is:   
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where S =U0 β0

1/2 is the speed ratio, and  Sη = -cos η with η the angle between the flow direction and the local surface 
normal. Integrating Eqns.(3,4) with different moments provides the density, velocity and temperature:  
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To validate the above results, we performed a simulation with the direct simulation Monte Carlo (DSMC) method, 
and we turned off the collision function inside the simulation package. Figures 1 and 2 show density, temperature 
and velocity contours for a plate with a plate inclination angle of 30o. The plate surface facing the free stream flow 
has higher density and lower U-velocity due to the blockage effect, and the lee side has lower number density with 
some locations having higher U-velocity. This case provides complex patterns, the analytical and numerical results 
are almost identical except around the two plate tips. Cai [8] recently reported how to determine cryogenic pump 
plate sticking coefficient with measured local properties.  
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FIGURE 1.  Contours of normalized density (left) and temperature (right), for collisionless gas flows around a flat plate, 30o 

inclination angle, S=1, Tw =300 K, T0=200 K. Dashed line: analytical, solid line: DSMC. 

 
FIGURE 2.  Contours of U-velocity (left) and V-velocity (right), for collisionless gas flows around a flat plate, 30o inclination 

angle, S=1, Tw =300 K, T0=200 K. Dashed line: analytical, solid line: DSMC. 
 

 
                 COLLISIONLESS GAS FLOW OVER A SPHERICAL OBJECT  
 

As shown by the left one in Figure 3, suppose inside the X-Z plane, there is a point P(X,0,Z) off the sphere, with 
a given collisionless free stream flowing along the X-axis direction, and the parameters are n0, U0, and T0, we are 
about to compute the flow field at point P. If we suppose α=POX∠ , then probably a more convenient way to 
compute the flow field is to rotate the axis counterclockwise with a value of π/2-α. After the computation of the local 

property at )(0,0, 22 ZXP +′ , we rotate back to the original coordinate system. In the rotated system, for point P’, the 
local velocity distribution function consists of two parts:  
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where Ω1 and Ω2 represent the velocity space for free stream and the wall shadow regions respectively; nw in the 
above equation is not constant, and its computation is illustrated with Fig. 3 (right). Ω2 can be illustrated by the top 
conical region above point P’, there is one point q with coordinates r=R’, θ=θ’, and ε=ε’ in the spherical coordinate (r, 
θ, ε) where 0<θ<θ0 and 0<ε<2π, then the function nw there can trace backwards through a ray passing point P’, and 
intersect the bottom sphere at point q’. With simple geometry relations we can obtain the coordinates for point 

),,( πεθ +′′ qoq : θ=Opq ′′∠ , 0
22 )/(sin=)/(sin RZXOqP θ+′′∠ , and OpqqOp ′′∠−−′′∠ θπ= . Based on these fixed 
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coordinates, we can compute the normal components (nx, ny, nz) on the sphere for point p’. In the new coordinate 
system, the flow direction is (cos(π/2-α), 0, sin(π/2-α) ), and we can compute the angle ζ between the free stream and 
the sphere normal at q’:  cosζ = nxsinα+nzcosα. Then the density at wall is, if Sζ = -cos ζ:  

 )]],()[1()(exp[/= 22
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FIGURE 3. Illustration of the sphere problem:orginal position(left); rotated postion & part of velocity space(right). 

 
Integrating the above two velocity distribution functions, Eqns. (9) and (10), over 1, u, v, (u2+v2+w2)/2, leads to 

the macroscopic number density, velocity components and temperature distributions for the new coordinates:  
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Similary  we can obtain  W(X’, 0, Z’).  The temperature field is:  
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We performed one DSMC simulation and compared the results with analytical results. Figures 4 and 5 show the 
contours of normalized number density, U-velocity components and temperature for the sphere case. In general, the 
analytical and numerical results are essentially identical. It is also noticeable that at the same location as the cylinder 
case[9], the number density value for sphere is smaller. This is because gas is much easier to flow around a sphere 
while a cylinder is more effective to block gas molecules. 
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FIGURE 4. Normalized density contours and streamline (left), and U-velocity contours (right), for collisionless gas flows around 

a sphere.  S=0.5, T0=200 K, Tw=300K. 
 

It is also meaningful to compare some past results of centerline density distribution in the literature, because of its 
important applications in space engineering. For the back and ram sides of a spherical spacecraft, there are some 
simple formulae [10] for the center line density distributions: for cases with hyper-velocity free stream, and 
reflections on the spherical object are completely reflective. However, for locations close to the sphere, the past 
results are not accurate. Figure 5 (right) shows a comparison with larger discrepancy; the equation in [10] provides 
negative density value at the back stagnation point. Even though the equation in [10] provides a very concise format, 
we need to keep in mind that it is an approximation only valid at locations far from the object. For the ram side, in 
general, at different locations along the centerline, the density is a function of the free stream mean velocity U0 but 
the equation in [10] does not include any factor of free-stream velocity. Also, the past equation predicts that on the 
front stagnation point of the sphere, the normalized density ratio is a fixed value of 2.0 regardless of free stream 
velocity. This is not accurate because of two reasons which are clearly shown by Eqn.(11). First, if the free stream 
mean velocity is not large enough, then only a fraction of, rather than all of,  the free stream particles can reach the 
front stagnation point. Secondly, for completely diffuse wall reflections, the temperature ratio Tw/T0 is a key factor in 
determining nw. These two factors result in different normalized number density values at the stagnation point. The 
density formula from this study can lead to more accurate centerline density distributions[9], no matter the location is 
far from or close to the object.    

CONCLUSIONS 

We have reported our progress on collisionless gas flows over a plate or a spherical object. By integrating the 
VDFs with different moments, we obtained complex but accurate solutions for density, velocity components, and 
temperature. The DSMC simulations yield almost identical results, indicating the approaches and results for this 
study are valid. The sphere case yield very satisfactory agreement as well. 

We want to emphasize several significant points here to conclude this paper: 1) these solutions are applicable to 
to many problems described in the introduction part; 2) The evaluation of these exact solutions, requires less than 
one minute for each case; by comparison, the DSMC simulations require several days; 3) it seems there is no 
previous exact analytical solution for the same problems in the literature, even though there are numerical results in 
textbooks. The past numerical results cannot explicitly illustrate the effects of different physical and geometrical 
factors. By comparison, the exact solutions from this study overcome those defects. The exact solutions from this 
study complement those exact solutions in the literature about surface properties. 4) These exact solutions can serve 
as benchmark cases for simulation methodology development, or serve as base solutions to study less rarefied flow 
situations, for example, with a linearized Boltzmann equation method. 
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FIGURE 5.  Collisionless gas flows around a sphere.  Left: temperature contours, S=0.5, T0=200 K, Tw=300K; Right: density 

distributions along the front and back sides of the centerline. S=2.0, T0=200 K, Tw=300K. 
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