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Numerical study on heavy rigid particle motion in a plane wake
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SUMMARY

Experimental particle dispersion patterns in a plane wake flow at a high Reynolds number have been
predicted numerically by discrete vortex method (Phys. Fluids A 1992; 4:2244–2251; Int. J. Multiphase
Flow 2000; 26:1583–1607). To address the particle motion at a moderate Reynolds number, spectral
element method is employed to provide an instantaneous wake flow field for particle dynamics equations,
which are solved to make a detail classification of the patterns in relation to the Stokes and Froude
numbers. It is found that particle motion features only depend on the Stokes number at a high Froude
number and depend on both numbers at a low Froude number. A ratio of the Stokes number to squared
Froude number is introduced and threshold values of this parameter are evaluated that delineate the
different regions of particle behavior. The parameter describes approximately the gravitational settling
velocity divided by the characteristic velocity of wake flow. In order to present effects of particle density
but preserve rigid sphere, hollow sphere particle dynamics in the plane wake flow is investigated. The
evolution of hollow particle motion patterns for the increase of equivalent particle density corresponds to
that of solid particle motion patterns for the decrease of particle size. Although the thresholds change a
little, the parameter can still make a good qualitative classification of particle motion patterns as the inner
diameter changes. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The motion of particles in a nonuniform flow has wide technological applications, such as to
increase combustion efficiency and forecast environmental pollution [1, 2]. To understand flow
mechanism, some theoretical models and computational methods are developed in the particulate
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two-phase flow research. Owing to particle motion in the low Reynolds number category, the
motion equation for a small rigid sphere in a nonuniform flow field is proposed [3, 4]. Related
studies show that even when the background flow fields are very simple, the motion can have
abundant phenomena: suspended particles accumulate along simple isolated curves for a cellular
flow field [5] and periodic, quasiperiodic or chaotic trajectories for a periodic Stuart vortex flow [6].
In particular, for a von Kármán vortex flow field, the suspended particle trajectories are determined
as chaotic by calculating the maximal Lyapunov exponent [7]. A route of bifurcation process to a
chaotic trajectory and more attractors in a bifurcation diagram related to particle parameters are
reported [8].

In both a plane mixing layer and wake flow, influences of large-scale vortices on the particle
dispersion process are observed experimentally and simulated by discrete vortex method [9]. In
a plane mixing layer, the particles are found to concentrate near the outer edges of the vortex
structures. It can be described by the particle sheet stretching and folding mechanisms in vortex
pairing interactions [10]. For the particle dispersion in a plane wake flow at a high Reynolds
number (104), highly organized patterns of particle concentrations are produced in a correlation
with the Stokes number. The particles at intermediate Stokes number are focused into sheet-like
regions near the boundaries of the large-scale vortex structures [11, 12].

To investigate numerically the particle trajectories in the plane wake flow behind a circular
cylinder at a moderate Reynolds number (102), Navier–Stokes equations will be solved by direct
numerical simulation method. In the direct numerical simulation for the Navier–Stokes equations,
high-order splitting schemes [13] and spectral element method [14–16], which combine accuracy
in time and space and flexibility in geometry, provide a very efficient algorithm. The combined
algorithm has been employed successfully in studying nonlinear dynamics and transition to turbu-
lence in the wake of a circular cylinder [17, 18]. In this paper, we will consider the solid and
hollow particle dynamics in a plane wake flow behind a circular cylinder at Re=100 and make a
detail classification of the patterns in relation to the Stokes and Froude numbers.

2. GOVERNING EQUATIONS

The motion of a small hollow spherical particle in a nonuniform flow field u is governed by the
momentum equation [3, 4, 6]
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where �=dv/dp is a ratio of inner diameter dv of the particle to outer diameter dp, V is the velocity
of the particle, � is the density, g is the gravitational acceleration, �f is the fluid kinematic viscosity,
�z is the vorticity of the flow fluid and the subscripts f and p refer to the fluid and particle,
respectively. �p/(1−�3) reflects an equivalent particle density. The derivatives D/Dt and d/dt are
used to denote a time derivative following a fluid element and the moving sphere, respectively.
The parameter fd relating to the Reynolds number of the particle(

Rep= |u−V|dp
�f

)
is described [19] as

fd =1+0.1315Re
0.82−0.05 log

Rep
10

p , 0.01<Rep�20 (2)

Introducing the dimensionless quantities � = �p/�f(1−�3),	 = 1/(0.5+�),x∗ = x/L , t∗ = t/(L/

U∞),u∗ =u/U∞,V∗ =V/U∞ and g∗ =g/g, we nondimensionlize Equation (1) and describe as
follows:
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where the Froude number Fr =U∞/
√
gL (U∞ and L are the free-stream velocity and the

diameter of circular cylinder, respectively), the Stokes number St=U∞T/L (T is the particle
viscous relaxation time d2p/18	�f) and the asterisks ‘∗’ for the dimensionless quantities are omitted
for convenience. Moreover, the Reynolds number of the particle is written as Rep=�p|u−V|
(�p=U∞dp/�f).

The flow field u is chosen as a plane wake flow. The incompressible plane wake flow is governed
by the Navier–Stokes equations in the form

∇ ·u = 0 in �

�u
�t

= −∇ p+N (u)+ 1

Re
L(u) in �

(4)

subject to boundary condition of the form

u=u0 on � (5)

where u is the fluid velocity and p is the fluid pressure divided by fluid density. The parameter
Re=U∞L/�f is the Reynolds number of the plane wake flow. The linear diffusion and nonlinear
advection terms are described by

L(u) = ∇2u

N (u) = − 1
2 [u·∇u+∇ ·uu]

(6)

where N (u) is written in a skew-symmetric form to minimize aliasing errors [20].
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As air is chosen as the fluid media in the flow, the properties of fluid in Equation (3) are described
as �f=1.225kg/m3 and �f=1.45×10−5m2/s [21]. The free-stream velocity is taken as U∞ =
O(1)m/s. The particle density is kept as �p=2.4×103 kg/m3 from [11]. In order to understand
the dilute particle dynamics, we analyze orders of magnitude of parameters in Equation (3). For
giving physical coefficients in the calculation, the parameters fd and Fr2 appear to be on the
order 1 and 102.

(1) For solid sphere (�=0): Since the � is fixed as the order 103, the parameter 	 appears to be
on the order 10−3. When dp is taken as the order 10−6–10−4m, the parameters T and St
appear to be on the order 10−5–10−1 s and 10−2–102, respectively. In this case, the stress
tensor term of fluid (3	/2)Du/Dt , the Basset history term

3
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∫ t

0
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du
d�

− dV
d�

)
d�

and lift force term 	/2(u−V)×�zk has smaller orders than the drag term fd/St (u−V) and
gravity term (1−1.5	)/Fr2g in Equation (3). Thus, Equation (3) is dominated by the drag
term and gravity term. The particle motion is described by a four-dimensional dynamical
system of the form

dr
dt

= V

dV
dt

= 1−1.5	

Fr2
g+ fd

St
(u−V)

(7)

(2) For hollow sphere (1>�>0): Since the � can be changed in a range of 0−O(103), the
parameter 	 appears to be in the range 2−O(10−3). When the particle outer diameter dp
is fixed as O(10−5)m, the parameters T and St appear to be on the order 10−6–10−3 s
and 10−1–102, respectively. In this case, we only reduce the Basset history term and keep
other four terms in Equation (3). The particle motion is described by a four-dimensional
dynamical system of the form

dr
dt

= V

dV
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= (1−1.5	)

Fr2
g+ 3	

2
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Dt
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St
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2
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(8)

3. NUMERICAL METHODS

In the particle dynamical equations, instantaneous flow field u(xn, tn) is provided by solving
Navier–Stokes equation (4). The time discretization of the Navier–Stokes equations employs a
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high-order splitting algorithm. The semi-discrete formulation [13] is written as

û−∑J−1
q=0 
qun−q
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�t

= −∇ pn+1, ∇ · ˆ̂u=0
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(9)

Here û, ˆ̂u are intermediate velocity fields and the constants 
q , �q and �0 are integration coefficients
for a mixed explicit/implicit stiffly stable scheme of order J =3. In this calculation, the parameters

q(q=1,2,3),�q(q=1,2,3) and �0 are chosen as (3,− 3

2 ,
1
3 ), (3,−3,1), 116 , respectively. The

boundary condition for the pressure is given by
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�q∇×(∇×un−q)
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(10)

where n is a normal vector to the boundary. The advantage of this scheme is that the stability
properties remain almost constant as the accuracy of the integration increases.

The spatial discretization of Equation (9) is obtained by using the spectral element method
[14–16]. The spatial discretization proceeds by first covering the domain � with general quadran-
gles. Each quadrangle is mapped from the physical space (x, y) into the local co-ordinate system
(r,s) by an isoparametric tensor-product mapping

(x, y)kN =
N∑
i=0

N∑
j=0

(X,Y )ki j hi (r)h j (s) (11)

where hi (r) are the N th-order local Lagrange interpolants and defined as hi (r j )=�i j . �i j is the
Kronecker-delta symbol. For the physical mesh (X,Y )ki j , we first specify their elemental boundary
nodes according to a Chebyshev distribution in arclength. Then, we determine their internal
elemental nodes from the elemental boundary nodes by an algebraic mapping [22, 23]
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where �i (i=1,2,3,4) is a mapping from the four quadrilateral �̂i to �i . For the ri , we choose
the Gauss–Lobatto Chebyshev points ri =−cos�i/N . The interpolants hi (r) can be written as

hi (r) = i j T (r)

i j = 2

N

1

ci c j
Tj (ri )

(13)
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Here the Ti are the Chebyshev polynomials Ti (cos�)=cos i� and

ci = 1 if i �=0,N

ci = 2 if i=0,N
(14)

In each isoparametric element, the velocity and pressure are interpolated in the same manner, that is,

(u, p)kN =
N∑
i=0

N∑
j=0

(U, P)ki j hi (r)h j (s) (15)

Thus, the first equation in Equation (9) is an explicit scheme, so that û can be obtained imme-
diately. As the second and third equations in Equation (9) are implicit schemes, two-dimensional
Helmholtz equations can be deduced. Using the spectral element methods for the Helmholtz equa-
tions, we obtain linear equation groups. To solve the linear equation groups, we apply the standard
static condensation technique for the total stiffness matrix, and the classical conjugate gradient
method to get the solutions un [24, 25].

When the flow field u(xn, tn) at the point xn =(x, y) is obtained, we use a fourth-order Runge–
Kutta algorithm to integrate Equation (7) for solid sphere motion and Equation (8) for hollow
sphere motion with a time size �. In the fourth-order Runge–Kutta algorithm, solutions of the
equations are determined with flow fields at times tn and tn+�/2. Hence, the time size �t for
solving the Navier–Stokes equations is a half of �. For a given point in the flow field xn , its position
and corresponding physical quantities in element k can be determined by the algebraic mapping
(12) and the isoparametric tensor-product mapping (15), respectively.

4. RESULTS

The calculation parameters used are: the element number is 116, the order of interpolation function
is N =8, the streamwise length is 38 and the transverse width is 11. A spectral element mesh is
shown in Figure 1. Boundary conditions required for the velocity field are: at the surface of the
cylinder the fluid velocity satisfies the nonslip condition: u=(0,0). Far away from the cylinder
and outside the wake, it matches the free-stream velocity u=(1,0) along the left boundary and
�ux/�n=0,uy =0 along the upper and lower boundaries. The right boundary condition across
downstream is �u(x, t)/�x=(0,0) for the velocity and p=0 for pressure [26]. Boundary conditions
for the pressure field, other than above one, require to satisfy the high-order Neumann boundary
condition (10). The background flow field is obtained by integrating Equation (9) up to total time
t=270 with a time size �t=0.01.

Figure 2(a) displays instantaneous streamlines of the wake flow field behind a circular cylinder.
A wave structure is developed in the wake along with time. The correspondent contour plot of
vorticity is drawn in Figure 2(b). A regular von Kármán vortex street flow field appears in the
wake, where pairs of vortices with different signs appear. The drag coefficient Cd is determined
as 1.5, which is close to a previous calculation [27, 28].

From three points near the circular cylinder, particle injection rates in the x direction are kept at
a low value of 0.01m/s to reduce the wake-flow particle coupling. Using a fourth-order Runge–
Kutta algorithm, we integrate Equation (7) for solid sphere and Equation (8) for hollow sphere
with a time size �=2�t , where �t is 0.002. At each time step 20�, a particle is injected into
the flow field. In order to avoid complex treatment for the interaction between particles and the
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Figure 1. A spectral element mesh with eighth-order local Lagrange interpolates.
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Figure 2. (a) Instantaneous streamlines and (b) vorticity counter plot for the plane wake flow at Re=100.
Positive and negative vorticities are denoted by solid and dash lines, respectively.

circular cylinder, we take a numerical boundary r0=0.6 for the particles. When a particle moves
into the boundary, a repelling potential 1/r will be added to the particle. At the same time, in order
to reduce effects of repelling potential on particle inertia, absolute values of velocity are fixed at
0.01 in the numerical boundary region. For some parameters of particles, �t and r0 will decrease
and increase, respectively, so that particles can be always separated from the circular cylinder.

To quantify features of particle trajectories in the wake, we divide the range 4–20 in the
streamwise direction for the intermediate and far wake flow field by 100. Particle number density
in a strip [xi , xi +�x) is defined as

�mxi+�x/2= mxi ,xi+�x

M
(16)

where mxi ,xi+�x is the particle number in the strip and M is the total number of particles in the
range 4–20. Meanwhile, average relative velocity of V to u in the strip is defined as

vmxi+�x/2=
∑mxi ,xi+�x

j=1

√
(Vjx −u jx )2+(Vjy−u jy)2

mxi ,xi+�x
(17)

In special, if mxi ,xi+�x is zero in the strip, vmxi+�x/2 is defined as zero.
(1) For solid sphere: In Equation (7), St affects the particle motion in both the x and y directions.

However, Fr can only make changes of particle motion in the y direction. A different combination
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of St and Fr determines the particle motion in the plane wake flow. For a given Re, the Stokes
and Froude numbers can be deduced as follows:

St= U 2∞d2p
18	�2f Re

(18)

and

Fr2= U 3∞
g�fRe

(19)

First, we investigate the effects of St on the particle motion at a fixed Fr . As U∞ is taken as
1m/s, Fr2 is fixed at 70.3 in Equation (19). As the increase in particle size or the Stokes number
in Equation (18), organized structures of particles in the interaction with von Kármán vortex street
are evaluated. Some basic features of particle trajectories are drawn in Figure 3. The particles
follow the von Kármán vortex street downstream and interact with the vortices. For dp in the range
1×10−6–3×10−6m (St=5.2×10−3– 4.7×10−2), the particles mainly fill the cores of vortices
as drawn in Figure 3(a). For dp in the range 5×10−6–8×10−6m (St=0.13–0.33), the particles
move from the cores of vortices to outside of the cores as drawn in Figure 3(b)–(c). For dp in the
range 1×10−5–2×10−5m (St=0.52–2.1), the particles concentrate at the edge of vortex street as
drawn in Figure 3(d). For dp in the range 3×10−5– 4×10−5m (St=4.7–8.3), the particles, which
concentrate at the edge of vortex street, have a main distribution in the lower region as drawn in
Figure 3(e). For dp in the range 5×10−5–7×10−5m (St=12.9–24.3), the particles escape from
the vortex street central region as drawn in Figure 3(f). Thus, at a fixed Fr , the particle motion
features change from a centralized distribution to a global distribution in the vortex street central
region as St increases. Then, the solid particles accompany the vortices to move downstream
and have larger transverse velocities than the fluid elements. In final, the transverse velocities of
particles are large enough, so that they escape from the vortex street central region.

The above basic features of particle trajectories can be further quantitatively represented by the
particle number density �mxi+�x/2 and average relative velocity vmxi+�x/2. For St=5.2×10−3, in
Figure 4(a), �mxi+�x/2 has several high values with a constant downstream distance. The constant
distance presents the streamwise distance of two nearby vortices in the von Kármán vortex street.
In Figure 4(b), vmxi+�x/2 is almost zero in the intermediate and far wake field. It is shown that
the solid particle motion may display the fluid element one on both positions and velocities. For
larger St=0.13, 0.33 and 1.2, �mxi+�x/2 has only several high values with the constant distance
in the intermediate wake field, but has not in the far wake field. Meanwhile, vmxi+�x/2 increases
monotonously. It is shown that the solid particle velocities deviate from the fluid element ones. So,
the solid particles may display the features of vortices in the intermediate wake, but have different
velocities from fluid element ones. For large enough St (St=8.3 and 18.6), �mxi+�x/2 has only
finite values in the intermediate wake field, but has not regular characters. vmxi+�x/2 has very large
values. It is shown that the solid particle motion deviates seriously from the fluid element one on
both positions and velocities.

Second, we investigate effects of Fr on the particle motion at fixed St and Re. As Fr only
depends on U∞ in Equation (19), to preserve a fixed St in Equation (18), dp will be changed in
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Figure 3. Instantaneous solid particle distribution and vorticity counter plot in the plane wake flow with
a different particle size (Stokes number) and a fixed Fr2=70.3: (a) dp=1×10−6m (St=5.2×10−3);
(b) dp=5×10−6m (St=0.13); (c) dp=8×10−6m (St=0.33); (d) dp=1.5×10−5m (St=1.2); (e) dp=4×

10−5m (St=8.3); and (f) dp=7×10−5m (St=18.6).

the fluctuation of U∞. At the same time, to keep Re of the plane wake flow as a constant, L (the
diameter of circular cylinder) will be changed in the fluctuation ofU∞. As we are only interested in
the non-dimensional equations (3)(4), the variation of L is not reflected in the following analysis.
For the fixed St=0.13, we take some different Fr to display particle motion features. When
Fr2=4.5×103,5.6×102,70.3, and 8.8, the particles remain at the cores of vortices as drawn in
Figure 5(a), which is similar to the phenomenon described in Figure 3(a). However, when Fr2=1.1
in Figure 5(b) and 0.56 in Figure 5(c), the particle motion has different features described in
Figure 3(a). Many particles move from the upper level vortices in the vortex street to the lower
level ones. At the same time, the particles move from the cores of vortices to outside of the cores
and the edge of vortex street. When Fr2=0.41,0.24 and 0.14, all particles concentrate in the
lower-level vortices and the lower edge of the vortex street as drawn in Figure 5(d). As downstream
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Figure 4. (a) Particle number density �mxi+�x/2 and (b) average relative velocity vmxi+�x/2 versus the
streamwise distance for the intermediate and far wake field. The correspondent physical coefficients given
in Figure 3(a)–(f) have a fixed Fr2=70.3 and different St , which are shown in Figure 4(b) and denoted
by solid, dash, dash-dot, dot, long dash and dash-dot-dot lines, respectively. For each St , an integral
multiple of 0.1 is added to both �mxi+�x/2 and vmxi+�x/2, so that the correspondent lines can be in sight.

distance increases, the particles escape from the vortex street central region. We also investigate
the particle motion features at fixed St=4.7×10−2 and 2.1, the global phenomena are similar to
those described above, but have different thresholds for Fr .

In Equation (7), both St and Fr govern the transverse velocity Vy of particles and present
coefficients of viscous force and gravity terms, respectively. In order to display the effects of Fr
on the particle motion, we introduce a parameter

�=(Fr2)−1/St−1= St/Fr2= gd2p
18	�fU∞

= gT

U∞
≈ uT
U∞

(20)

where uT =gd2p�/18�f is the gravitational settling velocity. � presents a ratio of the particle trans-
verse velocity under the acceleration of gravity in the particle relaxation time to the characteristic
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Figure 5. Instantaneous solid particle distribution and vorticity counter plot in the plane wake flow
with a different Froude and a fixed St=0.13: (a) Fr2=70.3 (�=1.8×10−3); (b) Fr2=1.1 (�=0.12);

(c) Fr2=0.56 (�=0.23); and (d) Fr2=0.41 (�=0.32).

velocity of wake flow. The particle transverse velocity equals approximately to the gravitational
settling velocity. When ��0.05, the particle motion patterns only depend on St and the main
distribution of particles is in the vortex street central region. The Stokes drag term is a major
term in Equation (7) and the gravity term can be neglected. When 0.05<��0.25, the particles
concentrate in the vortex street lower region and have only a few of the particles in the vortex
street upper region. The gravity term is a major term in Equation (7), but the Stokes term cannot be
neglected. When 0.25<�, the particles escape from the vortex street central region as downstream
distance increases. The Stokes term in Equation (7) can be neglected. As the particle motion
features change continuously, the thresholds 0.05 and 0.25 are only approximate ones. However,
they can still provide a qualitative criterion for Fr .

(2) For hollow sphere: In Equation (8), the fluid stress term, the viscous drag term and the
lift force term increase as � or equivalent particle density �p/(1−�3) increases. Their orders are
approachable; hence, we choose the viscous drag term in Equation (8) and compare with the gravity
term to classify particle motion patterns . For a given �, Fr is fixed, particle motion patterns for
the hollow sphere evaluated with St , i.e. dp are similar to those for the solid sphere. So we only
consider changes of � for a fixed dp=7×10−5m.

First, we choose U∞ as 1m/s to get Fr2=70.3. � is changed from 0 to 0.999 and some basic
features of particle trajectories are drawn in Figure 6. In order to check thresholds of �, we also
give its values in the caption of Figure 6. When �=0 (St=25.4), the sphere is solid, the particles
escape from the vortex street central region as drawn in Figure 6(a). When �=0.3 (St=24.7), the
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Figure 6. Instantaneous hollow particle distribution and vorticity counter plot in the plane wake flow with a
different ratio � of inner diameter of particle to outer diameter and a fixed Fr2=70.3: (a) �=0 (St=25.4
and �=0.36); (b) �=0.3 (St=24.7 and �=0.35); (c) �=0.7 (St=16.7 and �=0.24); (d) �=0.9 (St=6.9
and �=0.10); (e) �=0.99 (St=0.76 and �=1.7×10−2); and (f) �=0.999 (St=0.08 and �=1.0×10−3).

particle motion patterns in Figure 6(b) are similar to those in Figure 6(a). When �=0.7 (St=16.7),
the particles, which concentrate at the edge of vortex street, have a main distribution in the lower
region as drawn in Figure 6(c). When �=0.9 (St=6.9), the particle motion patterns in Figure 6(d)
are similar to those in Figure 6(c). When �=0.99 (St=0.76), the particles concentrate at the edge
of vortex street as drawn in Figure 6(e). When �=0.999 (St=0.08), the particles mainly fill the
cores of vortices as drawn in Figure 6(f). Hence, the evolution of hollow particle motion patterns
for the increase of � or �p/(1−�3) corresponds to that of solid particle motion patterns for the
decrease of dp.

The above basic features of particle trajectories can be quantitatively represented by the particle
number density and average relative velocity. For large enough St (St=25.4,24.7,16.7 and 6.9),
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Figure 7. (a) particle number density �mxi+�x/2 and (b) average relative velocity vmxi+�x/2 versus the
streamwise distance for the intermediate and far wake field. The correspondent physical coefficients
given in Figure 6(a)–(f) have a fixed Fr2=70.3 and different St , which are shown in Figure 7(b)
and denoted by solid, dash, dash-dot, dot, long dash and dash-dot-dot lines, respectively. For each
St , respectively. For each St , an integral multiple of 0.1 is added to both �mxi+�x/2 and vmxi+�x/2, so

that the correspondent lines can be in sight.

in Figure 7(a), �mxi+�x/2 has only finite values in the intermediate wake field, but has not regular
characters. In Figure 7(b), vmxi+�x/2 has very large values. It is shown that the hollow particle
motion deviates seriously from the fluid element one on both positions and velocities. For the
lower St=0.76,�mxi+�x/2 has only several high values with a constant downstream distance in
the intermediate wake field, but has not in the far wake field. Meanwhile, vmxi+�x/2 has also finite
values. It is shown that the hollow particle velocities deviate from the fluid element ones. So, the
hollow particles may display the features of vortices in the intermediate wake, but have different
velocities from fluid elements. For the lowest St=0.08,�mxi+�x/2 has several high values with the
constant distance. The constant distance presents the streamwise one between two nearby vortices
in the von Kármán vortex street. vmxi+�x/2 is almost zero in the intermediate and far wake field.
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It is shown that the hollow particle motion displays the fluid element one on both positions and
velocities.

Second, we take U∞ as 0.5m/s to get Fr2=8.8. The evolution of particle motion patterns
is very similar to that for Fr2=70.3. The gravitational term in Equation (8) increases as Fr
decreases, so that many of the particles escape from the vortex street central region. However, to
compare with the case for Fr2=70.3, St decreases when � increases from 0 to 0.999. The viscous
drag term increases that can reduce the effect of gravity term on particle motion.

It is clear that the particle motion patterns depend on both St and Fr . When � is introduced,
the evolution of patterns for the hollow sphere conforms with the qualitative criterion for the solid
sphere. Although the thresholds have a little moving from 0.05 and 0.25, � can still provide a good
qualitative classification for the particle motion patterns during the changes of � or �p/(1−�3).

5. CONCLUSION AND DISCUSSIONS

In this paper, dilute particle dynamics in a plane wake flow at a moderate Reynolds number is
studied by using the spectral element method. With an instantaneous wake flow field, particle
dynamics equations are solved to make a detail classification of the patterns in relation to the
Stokes and Froude numbers. It is found that particle motion features only depend on the Stokes
number at a high Froude number and depend on both numbers at a low Froude number. A ratio �
of the Stokes number to squared Froude number is proposed to make thresholds of the different
effects on the particle motion. When ��0.05, the particle motion patterns only depend on the
Stokes number and the main distribution of particles is in the vortex street central region. When
0.05<��0.25, the particles concentrate in the vortex street lower region and has only a few of
the particles in the vortex street upper region. When 0.25<�, the particles escape from the vortex
street central region as the downstream distance increases. The parameter describes approximately
the gravitational settling velocity divided by the characteristic velocity of wake flow. In order
to present effects of particle density but preserve rigid sphere, hollow sphere particle dynamics
in the plane wake flow is investigated. The evolution of hollow particle motion patterns for the
increase of equivalent particle density corresponds to that of solid particle motion patterns for the
decrease particle size. Although the thresholds change a little, the parameter can still make a good
qualitative classification of particle motion patterns as the inner diameter changes.

We emphasize that the current research is to develop the numerical method for particle motion
at a moderate Reynolds number and the above result for the thresholds pertains to the special
Re=100. Whether the dependence of the thresholds on Re is simple remains to be deter-
mined. Moreover, for our investigation of particle interaction with vortices, a practical applica-
tion is to provide some criteria of particle distribution patterns for particle image velocimetry
technique.
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