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ABSTRACT: A vortex-induced vibration (VIV) model is presented for predicting the nonlinear dynamic 
response of submerged floating tunnel (SFT) tethers which are subjected to wave, current and tunnel 
oscillatory displacements at their upper end in horizontal and vertical directions. A nonlinear fluid force 
formula is introduced in this model, and the effect of the nonlinearity of tether is investigated. First, the 
tunnel is stationary and the tether vibrates due to the vortices shedding. The calculated results show that the 
cross-flow amplitude of VIV decreases compared with the linear model. However the in-line amplitude of 
VIV increases. Next, the periodical oscillation of tunnel is considered. The oscillation caused by wave forces 
plays the roles of parametric exciter and forcing exciter to the VIV of tether. The time history of 
displacement of the tether mid-span is obtained by the proposed model. It is shown that the in-line amplitude 
increases obviously and the corresponding frequency is changed. The cross-flow amplitude exhibits a 
periodic behavior. 
 
 
1 INTRODUCTION 

A submerged floating tunnel (SFT) can be an 
alternative structure to rock tunnels below the sea 
bottom or long span bridges above the surface. The 
SFT technique offers the opportunity to plan 
crossings where they have never before been thought 
possible. In other cases, SFT may be an alternative 
to another type of fixed crossings, such as bridge, 
floating bridge, bored tunnel, or immersed tunnel. 
One of the advantages of SFT is that the crossing 
may be invisible from the surface, making it 
attractive from an environmental standpoint. In 
addition, the surface waterway traffic is not 
obstructed (Ahrens 1997). However, up to now, 
there is not a real SFT being constructed in the 
world. One of the most essential obstacles in the 
realization of SFT is its dynamic behaviour in water 
environment, which is not well understood (Huang 
et al. 2002). 

If the weight of SFT is smaller than its buoyancy, 
the tunnel is necessary to be moored to the waterbed 
by tethers just shown as Figure 1. In an ocean 
environment, the tethers are subjected to wave, 
current and tunnel oscillations at their upper ends. 
The stability of the tether is crucial to the safety of 

entire tunnel, but the tether may fail due to relevant 
vortex-induced vibration. 

 
 

Figure 1. Schematic diagram and coordinate system. 
 

Brancaleoni et al.(1989) developed an 
engineering analysis program for the behaviour of 
SFT under wave or seismic condition. Remseth et al. 
(1999) investigated the dynamic response of SFT 
using finite element method. The hydrodynamic 
analysis was based on Navier-Stokes equation. 
Kunisu et al.(1994) presented the response of SFT 
due to wave forces through model tests. Mai et al. 
(2004) considered the influence of tether tension on 
the VIV of  tether. Most of the literature available is 



 

on the VIV of tether in cross-flow direction and the 
influence of the oscillation of tunnel has never been 
considered. The present study attempt to investigate 
the VIV of tether in the presence of external 
excitations which include the parametric excitation 
and forcing excitation induced by the oscillation of 
tunnel. 
 
 
2 MODEL FORMULATION 

A Cartesian right-hand coordinate system is defined 
with x and y in the horizontal plane and z vertically 
upwards(Figure 1). Considering a tether with 
uniform material properties and constant diameter 
D , which follows the z axis and is pinned at two 
ends, the dynamic equations can be expressed as 
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where m  is the total mass per unit length including 
added mass, C  is the damping coefficient, C′  is the 
linearized fluid damping coefficient which is 
relevant to the vortex shedding frequency sω  and is 
given by Facchinetti et al.(2004) 
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where, γ  is a parameter determined through 
experiment and is equal to 0.8, ρ is fluid density and 
D  is the outer diameter of tether. In Equation (1), 

is the bending stiffness, T is the axial tension in 
the tether. and  are the external hydrodynamic 
forces due to the wake dynamics. 
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For a stationary tether, the drag and lift forces 
coincide with the x and y axis, respectively, as 
shown in Figure 2(a). However, when the tether is 
vibrating as a result of vortex shedding, the drag and 
lift forces do not coincide with the x and y axis any 
more, which is shown in Figure 2(b) (Wang et al. 
2003). The corresponding forces exerted on the 
tether can thus be expressed as 
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where Df  is the average drag force, Df ′ , Lf  is the 
vortex induced drag and lift force, respectivly, and 
θ  is the angle between x axis and the instantaneous 
velocity of the tether, which is given by 
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where the dot denotes differentiation with respect to 
time, ,X Y  is the dimensionless velocity in x  and 

 direction, respectively. Since, in general, y X and 
are smaller than 1, the angle Y θ  is very small and 
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Substituting Equation (5) into Equation (3), we 
get the formulation of the right-hand side for 
Equation (1). 
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Figure 2. Illustration of the cross-section of tether in a cross 
flow and the fluid forces exerted on it: (a) stationary tether, (b) 
vibrating tether. 
 

When lock-in occurs, the lift and drag forces per 
unit length can be simplified to be sinusoidal at the 
vortex shedding frequency sω and at s2ω , respectively, 
thus, they can be written as 
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where DC is the average drag force coefficient, DC′ is 
the pulsatory drag force coefficient, is the lift LC



 

force coefficient, Dφ and Lφ are phase angles by 
which drag and lift forces lead the cross-flow 
displacement of the tether. Their values are 
determeined through experiment and when the 
reduced velocity  (rV Cr=V U fD , f  is the natural 
frequency of tether) is equal to 6.0, Dφ and Lφ is  
and respectively (Srapkaya 2004). The influence 
of the average drag force
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Df is ignored because it 
changes the equilibrium position of the tether but 
does not alter the amplitude of VIV. In the present 
study the coefficient and are assumed to be 
constants, i.e.  and (Ge et al. 
2007). 

DC′ LC

D 0.2C′ = L 1.2C =

The changes in tether tension consists of two-
fold. First, the tunnel oscillation changes the axial 
tension in the tether, which is defined as parametric 
excitation and the change can be given by cosT tω′− , 
where is the time-varying tension force 
amplitude,

T ′
ω  is the angular frequency of the 

oscillation of tunnel. Second, the deflection of tether 
also changes the axial tension force. Therefore, the 
total tension force T can be written as 

 
2 2

0 0

1cos dz
2

LEA x yT T T t
L z z

ω
⎡ ⎤∂ ∂⎛ ⎞ ⎛ ⎞′= − + +⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

∫  (8) 

where is the initial tension in the tether. 0T
The boundary conditions are specified as follows 
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Here, the prime denotes a derivative with respect 
to z. The tether is pin-jointed at two ends. In addition, 
the tip of tether is taken to move together with 
tunnel and the term 0 sinx tω  in Equation (9) 
represents the corresponding boundary condition 
which is the forcing excitation for the tether 
vibration just shown as Figure 3. 
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Figure 3. Boundary conditions of a vibrating tether. 
 
3 RESLUTS AND DISCUSSION 

Equation (1) is discretized using a second-order 
central difference method. The length of discretized 
element zΔ  is equal to 0.1m. Meanwhile, if the time 
step tΔ is smaller than s, the solution is 
convergent. Numerical results are illustrated using 
the tether with the basic data as presented in Table 1 
(Pigorini 1988). 

510−

 
Table 1. Characteristics of  tether 

Length  100 m
Outer diameter  1.1176 m
Thickness  0.038 m
Dry mass  1000 kg/m
Added mass  1006 kg/m
Bending stiffness  93.854 10×  N.m2

Pre-tension  14186 kN
 

 
3.1 Natural frequency of the tether 

Initially, an attempt was made to determine the 
vibration frequency of tether without the external 
fluid force. For this, Equation (1) is rewritten as 
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Here displacement vector is x iy= +r . In the 
derivation of Equation (10), r  is written as 
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where ( )j zφ  is the mode-shape function satisfying 
the tether boundary conditions. For a tether with 
pinned ends, the mode-shape function is hence given 
by 
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where  is the length of tether. Substituting 
Equations 

L
(11) and (12) into Equation (10) and using 

orthogonality of the mode-shape function, we have 
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where iω  is the ith natural frequency of tether and 
can be expressed by 
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Some features of tether dynamics can be 
illustrated by inspecting its natural frequencies and 
mode-shapes. The natural frequency as a function of 
mode number i for the tether is shown in Figure 4. 
Values for a tensioned string and an untensioned 
beam with equal length L and mass per unit length 



 

sm  are also shown. The tensioned string and 
untensioned beam both have the pinned ends, which 
are the same with the tether. Therefore the 
formulations of their natural frequencies are written 
as 
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   In this case the natural frequency of tether is seen 
to follow an untensioned beam with pinned ends. It 
means that the bending stiffness is dominant for the 
tether deflection comparing with the axial tension 
force.  
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Figure 4. Estimates of natural frequencies for tether, string and 
beam. 

 
3.2 Dynamic responses of the tether 

First, linear model is used to determine the effect of 
the nonlinearity on the dynamic response of tether. 
The dynamic formulation for linear model is the 
same as Equation (1), but the expressions of tension 
force T and external fluid force F are different. For 
simplicity, it is assumed that the tunnel is stationary 
and  the axial tension force in the tether is constant. 
The coupling effect of hydrodynamic forces between 
in-line and cross-flow vibrations is also omitted and 
the right hand side of Equation (1) is expressed as  
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frequency are investigated and compared. The 
current velocity  is determined with the Strouhal 
law 
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where the vortex-shedding frequency is equal to the 
chosen natural frequency of the tether iω . Thus, the 

lock-in condition can be imposed automatically. The 
Strouhal number is chosen to be 0.2 and is the same 
for both models. 

Figure 5(a) presents the two-dimensional motion 
of the tether mid-span. It is clear that the cross-flow 
vibration is dominant compared with the in-line 
vibration. For nonlinear model, shown as Figure 5(b), 
the trajectory of the tether mid-span is in the shape 
of ‘8’ that bends towards the upstream direction. 
Moreover it is seen that the cross-flow amplitude 
decreases while the in-line amplitude increases. It 
means that the nonlinearity of tether plays an 
important role when the vibrations occur due to the 
current.  

 

 

 
Figure 5. Two-dimensional motion of tether mid-span for 

r 6.0V = : (a) Linear model, and (b) Nonlinear model. 
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Figure 6. Measured two-dimensional motion of a spring 
supported cylinder for r 5.69V = (Wu, 1989). 

 
For verification of  the above numerical results, 



 

Figure 6 presents the experimental measurement for 
a spring supported cylinder (Wu 1989). Comparing 
with Figure 5(b), one may see that the trajectories of 
the tether and spring supported cylinder are similar. 
In experiment, due to the existing of fluid drag force 

Df , the equilibrium position of VIV moves towards 
the downstream direction. 

Next, in order to analyse the effect of tunnel 
oscillation on VIV of the tether, it is assumed that 
the tunnel periodcally oscillates under the linear 
wave forces. The period of oscillation equals to the 
surface wave period with the value of 15s. The 
amplitude of the oscillation of tunnel 0x  can reach 5 
meters corresponding to the maximum wave height 
being 18m (Kanie et al. 1994). Therefore, 

0 4.47x D =  and 0 0.60T T′ =  are used here as the 
strengths of forcing excitation and parametric 
excitation, respectively. Under such conditions, the 
response of tether is obtained at mid-span as shown 
in Figure 7. 

 
Figure 7. Time history of vibration at tether mid-span with 
tunnel being vibration, where solid line representing in-line 
vibration and dotted line representing cross-flow vibration. 

 
Figure 8. Time history of vibration at tether mid-span with 
tunnel being stationary, where solid line representing in-line 
vibration and dotted line representing cross-flow vibration. 
 
   If the tunnel is stationary i.e.  and 0 0x = 0T ′ = , 
the response of the tether mid-span is presented in 
Figure 8. Comparing with Figure 7, One can see that 

under the condition of the tunnel oscillation, the 
amplitude of in-line vibration increases obviously 
and the corresponding frequency changes from the 
double vortex-shedding frequency s2ω  to the 
surface wave frequency, which is shown as Figures 
9(a) and 9(c). In cross-flow, although the maximum 
amplitude is similar in both cases, the vibration 
frequency changes, as shown in Figures 9(b) and 
9(d), from single peak to multi-peaks. This also 
leads to the periodical variation of the amplitude for 
cross-flow vibration. 
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Figure 9. Frequency of vibration obtained at tether mid-span, 
(a)(b) for tunnel being stationary, and (c)(d) for tunnel being 
vibration. 
 
4 CONCLUDING REMARKS 

A VIV model is presented for predicting the 
nonlinear dynamic response of submerged floating 
tunnel tethers which are subjected to current. The 
nonlinearity of tether plays an important role during 
the vibration and leads to the increasment of the in-
line amplitude while the cross-flow amplitude 
decreases compared with the linear model. The 
trajectory of the tether cross-section is in the shape 
of ‘8’ bending towards the upstream direction, 
which is similar to the experimental results. The 
influence of the tunnel oscillation is also considered 
by introducing the forcing and parametric 
excitations into the tether model. The amplitudes 
and frequencies are changed for both in-line and 
cross-flow vibrations, which means that the 
influence of tunnel oscillation must be considered in 
the study of tether VIV. 
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