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ABSTRACT This paper aims at investigating the size-dependent self-buckling and bending be-
haviors of nano plates through incorporating surface elasticity into the elasticity with residual
stress fields. In the absence of external loading, positive surface tension induces a compressive
residual stress field in the bulk of the nano plate and there may be self-equilibrium states cor-
responding to the plate self-buckling. The self-instability of nano plates is investigated and the
critical self-instability size of simply supported rectangular nano plates is determined. In addition,
the residual stress field in the bulk of the nano plate is usually neglected in the existing litera-
tures, where the elastic response of the bulk is often described by the classical Hooke’s law. The
present paper considered the effect of the residual stress in the bulk induced by surface tension
and adopted the elasticity with residual stress fields to study the bending behaviors of nano plates
without buckling. The present results show that the surface effects only modify the coefficients
in corresponding equations of the classical Kirchhoff plate theory.
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I. INTRODUCTION
Nano plates have been widely used as the building blocks for ultra-sensitive and ultrafine resolu-

tion applications in the field of nanoelectromechanical systems (NEMS)[1,2], due to their potentially
remarkable mechanical properties, which deviate from macroscopic counterparts and depend on their
characteristic size[3,4]. The accurate analysis of mechanical behaviors is currently of particular interest
in the function design and reliability analysis of those nano devices. Due to the large surface-to-bulk ratio
of nanostructures, the size effects of mechanical responses are generally attributed to surface effects.
Besides the numerical simulations[5–7], three-dimensional (3D) lattice model with the relaxation on the
surface[4,8–11] and nonlocal elasticity theory[12], the surface elasticity theory[13–19] has attracted consid-
erable attention and is used to model the size dependence of the elastic behaviors of nano plates[3,20–28].
In the theory of surface elasticity, the surface regions are modeled, as done by Gibbs[29], as mathematical
surfaces; that is, the boundaries of the plate are regarded as two-dimensional continuous body, endowed
with surface energy, surface tension and surface stress which reflect the behaviors of the surface regions.
Since it is not convenient to work in the current configuration, the surface elasticity models except
Shuttleworth’s relations are proposed in the Lagrangian descriptions[14–18]. The existence of the surface
tension in nano structures results in a difference between the Lagrangian and the Eulerian descriptions
of the surface elasticity at infinitesimal strains[18]. However, the size-dependent mechanical behavior
analyses of nano structures are often modeled by continuum mechanics including the Eulerian surface
elasticity, where the current configuration is assumed to be the same as the configuration without
external loading and the out-of-plane terms associated with the surface tension are omitted[22,27,30,31].
In the present paper, the complete form of surface elasticity will be considered.

In addition, according to the equilibrium conditions, surface tension induces a residual stress field
in the bulk nano structures in the absence of external loadings[17,18,32]. The residual stress in the bulk
can be calculated by the equilibrium conditions and is inversely proportional to the characteristic size
of the nano structure[18,32]. When the plate will be very thin, the residual stress can be high. When
the surface tension is stress, the bulk of the nano plate will be subjected to compressive stress and
there may be self-equilibrium states which correspond to the plate buckling without external loadings.
For the bending analyses of nano plates without buckling, the self-equilibrium state (without external
loadings) is usually regarded as the reference configuration, from which nano plates deform elastically.
However, the classical Hooke’s law is often adopted to describe the elastic behavior of the bulk of nano
plates[22,23,25–28], where effect of the residual stress field in the bulk is neglected. Therefore, in this
paper, the surface tension and the residual stress in the bulk induced by surface tension is considered
to study the self-instability and the bending behaviors of nano plates.

The paper is organized as follows. The basic equations for isotropic, homogeneous and linear elastic
surfaces and bulk are presented in §II. The self-instability of nano plates under the action of surface
tension is investigated in §III; the critical self-instability size of the plate is determined. Based on the
variational method of strain energy function, the governing equations and the boundary conditions
for bending problems are obtained in §IV. It can be found that the surface effects only modify the
coefficients in corresponding equations of the classical Kirchhoff plate theory.

II. BASIC EQUATIONS
Consider a nano plate whose physical properties in the neighborhood of its surfaces are sensibly

different from its interior as shown in Fig.1. These surface regions are often modeled as mathematical
layers of zero thickness with relevant elastic properties and residual surface tension. In the absence of
external loading, the surface tension induces an elastic field in the bulk of the plate. Thus, the existence
of surface effects makes nano plates behave elastically from a residual stressed reference configuration
(as shown in Fig.2). The basic equations for the surface and the bulk of the nano plates are given in
this section.

2.1. Surface Elasticity

After the pioneering work of Shuttleworth[13] on the relations between surface stress and surface
strain for small deformations, Gurtin and Murdoch[14,15] established a general theoretical model for
the surface elasticity under the classical theory of membrane. Steigmann and Ogden[16] generalized the
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Fig. 1. Simply supported rectangular nano plates with
length a, width b and thickness h. Fig. 2. The choice of the reference configuration: the resid-

ual stressed state induced by surface tension.

Gurtin-Murdoch theory to incorporate flexural stiffness of the free surface directly into the constitutive
relations. Dingreville and Qu[19] investigated the influence of the Poisson’s ratio on the surface properties
under general loading conditions. Considering the stationary condition of energy function, Huang et
al.[17] proposed a hyperelastic surface model within the framework of finite deformations. Wang et
al.[18] investigated the surface elasticity of infinitesimal strains and pointed out that even in the case
of small strains the Lagrangian and the Eulerian descriptions should be discriminated. Next, we briefly
introduce the surface elasticity.

Assuming the surface to be isotropic, homogeneous and linearly elastic, the constitutive relations
of the surface in the Lagrangian description can be written as[18]

Ss = γ∗

0I0 + (γ∗

0 + γ∗

1 ) (trEs) I0 − γ∗

0 (∇̄0su0) + γ1Es + γ∗

0F
(o)
s (1)

where Ss is the first kind Piola-Kirchhoff stress of the surface, I0 is the identity tensor on the tangent
planes of the surface in the reference configuration; the constants γ∗

0 , γ∗

1 and γ1 are the surface tension

and the surface Lame moduli; Es, ∇̄0su0 and F
(o)
s denote, respectively, the surface strain tensor, the in-

plane component of the surface displacement gradient and the out-of-plane term of surface deformation
gradient. Detailed expressions of these notations are explained in Appendix A. It should be noted that
Ss is a ‘two-point’ tensor with base vectors both on the tangent planes of the surfaces before and
after deformations; if it is expressed in the the reference configuration, there should be an out-of-plane
term, the contribution of which is often omitted[22,27,30]. The importance of the out-of-plane term was
numerically examined[33]. Equation (1) is the complete form of the first kind Piola-Kirchhoff stress of
the surface.

In many problems of interest, it is not convenient to work in the current configuration, since the
deformed configuration is not known a priori. Thus, the surface Cauchy stress σs can be expressed, in
the reference configuration, as in[18]

σs = γ∗

0I0 + γ∗

1 (trEs) I0 + γ1Es + γ∗

0

(
F

(o)
s + F

(o)T
s

)
(2)

where the last symmetrized term denotes the surface rotation contribution to the surface Cauchy stress.
It is shown that since the surface Cauchy stress tensor is defined in the current tangent plane of the
surface and is a 2D quantity in current configuration, there are out-of-plane terms when surface Cauchy
stress is expressed in the frame of the reference configuration. Hence, even in the case of small strains,
it is needed to discriminate the reference and the current configurations of the surface. If identifying
the different configurations at small strains, the out-of-plane terms in Eq.(2) are neglected[27,30], which
are related to the rotation of the surface.

Comparing Eqs.(1) and (2), we can also find that even in the case of infinitesimal strains, the surface
stress tensors Ss and σs are not the same due to the existence of the residual stress γ∗

0 . In the reference
configuration, consider a Cartesian coordinate system (x1, x2, x3). The component forms of surface
stress are

Ss
αβ = γ∗

0δαβ + (γ∗

0 + γ∗

1 ) εs
κκδαβ − γ∗

0uβ,α + γ1ε
s
αβ , Ss

3α = γ∗

0u3,α (3)

and
σs

αβ = γ∗

0δαβ + γ∗

1εs
κκδαβ + γ1ε

s
αβ , σs

3α = σs
α3 = γ∗

0 (u3,α + uα,3) (4)
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in which α, β and κ range over the integers 1 and 2, summation convention is used, δαβ designates the
Kronecker delta, εs

αβ are components of surface strain, and a subscript preceded by a comma indicates
differentiation with respect to the corresponding coordinate.

It should be pointed out that besides the surface constitutive relations mentioned-above, the Young-
Laplace equations is needed to describe the discontinuity conditions of the traction across the surface,
which can be found in Appendix B.

2.2. Constitutive Relations for Bulk

In the absence of external loading, surface tension induces a residual stress field in the bulk nano
plates[17,18,32]. Thus, the bulk materials deform elastically from a residual stressed state (as shown in
Fig.2). It should be pointed out that, in the prediction of mechanical behaviors of nano plates, the
classical Hooke’s law is often used to describe the elastic response of the bulk, where the residual stress
is neglected. However, the constitutive relations of linearly elastic materials with residual stress are
quite different from the classical Hooke’s law[10,34].

In view of the importance of the linearization of the general constitutive relations, we present the
linear elastic constitutive relations of the bulk with residual stresses as follows[10,34]:

S = T̂ + H · T̂ −
1

2

(
E · T̂ + T̂ · E

)
+ λ (trE)1 + 2μE (5)

where S is the first Piola-Kirchhoff stress, T̂ is the residual stress in the reference configuration, H is
the displacement gradient calculated from the reference configuration, E is the infinitesimal strain, 1

is the identity tensor on 3D Euclidean space, λ and μ are material elastic constants.
Next, we formulate an approximate theory for the thin plate with residual stress. Under the Kirchhoff

hypothesis, the linear filaments of the plate in the reference configuration perpendicular to the middle
surface remain straight and perpendicular to the deformed middle surface and bear no extensions during
bending. Hence, the stress-strain relations in Eq.(5) for the thin plate reduce to

Sαβ = T̂αβ + uα,κT̂κβ −
1

2

(
εακT̂κβ + T̂ακεκβ

)
+

Y

1 − ν2
[(1 − ν) εαβ + νεκκδαβ ]

S3α = u3,κT̂κα

(6)

in which εαβ are the strain components, Y and ν designate Young’s modulus and the Poisson’s ratio
of the bulk, respectively. The terms S3α should not be neglected. This is not contrary to Kirchhoff
hypothesis, since they are the components of the first kind of Piola-Kirchhoff stress and related to the
residual stress in the bulk.

Correspondingly, the displacement components of a pointwith coordinates (x1, x2, x3) in the reference
configuration can be denoted by

uα = u0
α − x3u3,α, u3 = u0

3, (7)

where u0
i (x1, x2) (i = 1, 2, 3) is the displacement components of a point on the middle neutral surface

Sm. Then, the strains of von Karman type are

εαβ = ε0
αβ − x3u3,αβ (8)

where

ε0
αβ =

1

2

(
u0

α,β + u0
β,α + u0

3,αu0
3,β

)
(9)

are the strain components of the middle surface.
Assume the two surfaces of the plate are identical. Therefore, the membrane forces do not change

during the small deflection of nano plates. Hence, we can neglect the stretching in the middle plane
during bending, we conclude from Eqs.(8) and (9) that

εαβ = −x3u3,αβ (10)

u0
α,β + u0

β,α = −u0
3,αu0

3,β (11)
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2.3. Residual Stress in Bulk Induced by Surface Tension

For nano scale structures, according to the equilibrium conditions, the presence of surface tension
results in a non-classical boundary condition which gives the traction on the bulk in terms of surface
tension. This boundary condition together with the equations of classical elasticity (to be satisfied within
the bulk) form a coupled system of field equations to determine the residual stress in the bulk[17,18]. In
this paper, the variational method is used to determine the residual stress in the bulk. To obtain the
residual stress, we assume a deformation model with respect to the reference configuration. Through
the variation of the plate strain energy, we can obtain the equilibrium relations. Let the deformation
approach zero. Then, the obtained equilibrium relations reduce to those in the reference configuration,
from which we can get the residual stress induced by surface tension in the bulk.

Consider a simply supported rectangular nano plates with two identical surfaces, which is under self-
balanced state without buckling (as shown in Fig.1). From the symmetry of nano plates, we can assume
that the bulk is under a uniformly distributed stress field T̂x1

= T̂x2
in the reference configuration.

For simplicity, we assume that there is a uniform extension λ1 along x1 direction from the reference
configuration, namely, u1 = λ1x1, u2 = 0, u3 = 0. Although this assumed deformation model may be
difficult to perform for actual plates, it is effective to theoretically solve the residual stress field in the
bulk. Then, from Eq.(6), the corresponding variation of strain energy for the bulk can be expressed as

δUB =
1

2

∫ ∫
Sm

(∫ h/2

−h/2

Siβδui,βdx3

)
dx1dx2 = Sh

(
T̂x +

Y

1 − ν2
λ1

)
δλ1 (12)

where S and h designate the surface area in the reference configuration and the thickness of the plate,
respectively; the summation convention over repeated indices is implied in the present paper. Then,
the surface contribution to the variation of the free energy of the plate is

δUS =

∫ ∫
S+

(
Ss

iβδui,β

)
dx1dx2 +

∫ ∫
S−

(
Ss

iβδui,β

)
dx1dx2 = 2S [γ∗

0 + (γ∗

1 + γ1)λ1] δλ1 (13)

where S+ and S− denote the upper and lower surfaces of the plate, respectively. The principle of virtual
work requires that

δUs + δUB = 2S [γ∗

0 + (γ∗

1 + γ1)λ1] δλ1 + Sh

(
T̂x +

Y

1 − ν2
λ1

)
δλ1 = 0 (14)

When λ1 = 0, we can obtain residual stress in the bulk under the self-balanced state as

T̂x1
= T̂x2

= −
2γ∗

0

h
(15)

The above equation shows that residual stresses in the bulk are inversely proportional to the thickness
of the nano plate.

III. SELF-INSTABILITIES OF NANO PLATES
Lin et al.[28] considered the effects of the surface on the wrinkling of thin films. However, in the

absence of external loading, surface tension induces a compressive residual stress field in the bulk plate
and there may be self-equilibrium states which correspond to the plate self-buckling. We shall now
formulate a self-buckling problem for the flat nano plates. The residual stress field before buckling in
the bulk of the nano plate is treated as initial stresses, which satisfy the equations of equilibrium and
boundary conditions[17,18,32].

Since we are interested only in the configuration and critical size for the buckling, we consider the
small deflection theory of thin plates in the following discussion of self-instability. The displacement
components of an arbitrary point of a plate are measured from the state prior to the onset of buckling.

The governing equations for instabilities of nano plates can be obtained from the principle of virtual
work, which is written for the present problem as follows

δUB + δUS − δW = 0 (16)
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where

δW =

∮
C

Mn
∂δu0

3

∂n
ds +

∮
C

(
Qn +

∂Mns

∂s

)
δu0

3ds (17)

is the virtual work of external forces; s and n are the local coordinates along and normal to the boundary
C; Qn, Mn and Mns denote the corresponding shear force, bending and twisting moments per unit
length on the boundary, respectively.

The variation of strain energy for the bulk δUB is given by

δUB =

∫ ∫
Sm

(∫ h/2

−h/2

Siαδui,αdx3

)
dx1dx2 (18)

By substituting Eqs.(5), (7), (10) and (11) into Eq.(18) and neglecting higher order terms, we obtain

δUB =
Y h3

12 (1 + ν)

∫ ∫
Sm

[
u0

3,αβδu0
3,αβ +

ν

(1 − ν)
u0

3,ααδu0
3,ββ

]
dx1dx2 (19)

It can be found that due to the no stretching assumption of middle plane, Eq.(19) for the virtual strain
energy of the bulk with initial stress is the same as that for the bending of a plate[35,36].

The variation of surface strain energy is calculated by

δUS =

∫ ∫
S+

Ss
iαδui,αdx1dx2 +

∫ ∫
S−

Ss
iαδui,αdx1dx2 (20)

in which Ss = γ∗

0I0. From Eqs.(1) and (7), we can get

δUS = −2γ∗

0

∫ ∫
Sm

u0
3,αδu0

3,αdx1dx2 (21)

Substituting Eqs.(19) and (21) into Eq.(16) and using integrationsby parts and the Gaussian theorem,
we may reduce the principle to the following form∫ ∫

Sm

(
Du0

3,ααββ + 2γ∗

0u0
3,αα

)
δu0

3dx1dx2 +

∮
C

[
Dνu0

3,αα + D (1 − ν) η1 + Mn

] ∂
(
δu0

3

)
∂n

ds

+

∮
C

[
D (1 − ν)

∂η2

∂s
− Dη3 − 2γ∗

0η4 −

(
Qn +

∂Mns

∂s

)]
δu0

3ds = 0 (22)

where D = Y h3
/[

12
(
1 − ν2

)]
is flexural stiffness and

η1 = u0
3,11 cos2 θ + 2u0

3,12 sin θ cos θ + u0
3,22 sin2 θ

η2 =
(
u0

3,11 − u0
3,22

)
sin θ cos θ + u0

3,12

(
sin2 θ − cos2 θ

)
η3 =

(
u0

3,111 + u0
3,122

)
cos θ +

(
u0

3,222 + u0
3,112

)
sin θ

η4 = u0
3,1 cos θ + u0

3,2 sin θ

(23)

in which θ is the angle between the tangent to periphery and the x1-axis. Since δu0
3 are chosen arbitrarily

on surface Sm, the corresponding coefficients are required to vanish, and we obtain

Du0
3,ααββ + 2γ∗

0u0
3,αα = 0 (24)

For simply supported plates, δu0
3 = 0 and Mn = 0 on the boundary C. Hence, the third contour

integral in Eq.(22) vanishes. But, ∂
(
δu0

3

)/
∂n �= 0, and its coefficient in Eq.(22) must be zero, so that

Dνu0
3,αα + D (1 − ν) η1 = 0. (25)
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If two edges of the rectangular plate are parallel to x2-axis and θ = 0, Eq. (25) is reduced to

u0
3,11 + νu0

3,22 = 0 (26)

This is the boundary condition for bending moment vanishing.
If the edges of plates are free, δu0

3 and ∂
(
δu0

3

)/
∂n are chosen arbitrarily on the boundary C. Equation

(22) implies that
Dνu0

3,αα + D (1 − ν) η1 = 0, (27)

and

D (1 − ν)
∂η2

∂s
− Dη3 − 2γ∗

0η4 = 0 (28)

If edges of the rectangular plate parallel to x2-axis and θ = 0, Eqs.(27) and (28) can be simplified as

u0
3,11 + νu0

3,22 = 0 (29)

and

u0
3,111 + (2 − ν)u0

3,122 + 2
γ∗

0

D
u0

3,1 = 0 (30)

To demonstrate the self-buckling of nano plates induced by surface tension, critical size for the
instability of simply supported rectangular nano plates (as shown in Fig.1) are given. Since all four
edges of the plate are simply supported, the lateral deflection as well as the bending moment vanishes
along each edge. The deflection of the buckled plate can be represented by the double series

u0
3 =

∞∑
m̄=1

∞∑
n̄=1

Am̄n̄ sin
m̄πx1

a
sin

n̄πx2

b
(m̄, n̄ = 1, 2, 3...) (31)

which satisfies the boundary conditions. The remaining task is to ensure that it also satisfies the
differential equation as in Eq.(24). Substitution of the appropriate derivatives of u0

3 into Eq.(24) leads
to

∞∑
m̄=1

∞∑
n̄=1

Am̄n̄

{
Dπ2

[(m̄

a

)2

+
( n̄

b

)2
]
− 2γ∗

0

}
sin

m̄πx1

a
sin

n̄πx2

b
= 0 (32)

This expression can be satisfied in one of two ways, either Am̄n̄ = 0 or the term in the curly brackets
vanishes. The first situation corresponds to the case that a and b are very small. This is the equilibrium
state of the plate which remains perfectly straight under the action of surface tension. If the values of a
and b increase, the expression in the curly brackets may equal to zero. This corresponds to the buckled
state of nano plates. Thus

b = πh

√
m̄2α−2

A + n̄2

24 (1 − ν2)

√
Y h

γ∗

0

(33)

where αA = a/b is the aspect ratio. According to Eq.(33), the critical self-instability size b depends on
the aspect ratio αA and the physical properties of the plate and on m̄ and n̄, the numbers of half-waves
that plate buckles into. Therefore, the critical size for self-buckling is obtained, by setting m̄ = n̄ = 1,
as

b = πh

√
α−2

A + 1

24 (1 − ν2)

√
Y h

γ∗

0

(34)

The relations between the critical self-instability size of Si nano plates and the thickness of the plates

are plotted in Fig.3, where material parameters ν = 0.3 and γ∗

0/Y = 0.05 (
◦

A) are obtained by modular
dynamic simulation in Ref.[3]. It can be seen that for the simply supported square plates with the
thickness 5 nm (or 8 nm), when the corresponding width is 150 nm (or 304 nm), the surface tensions
induce the self-instability even without the external forces. This indicates that thin plates can easily
become self-buckled. For nano plates with the same thickness, the change of the aspect ratio has an
obvious effect on the critical self-instability size when the aspect ratio is not very large.

It should be pointed out that when the size of the nano plates exceeds the critical self-instability
size, the nano plates can bear loadings continually after instabilities and come into the post-buckling
state, which is outside the scope of this article.
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Fig. 3. The relations between self-instability critical size b and the thickness h of Si nano plates for different aspect ratios
αA.

IV. BENDING OF NANO PLATES
The self-instability of the nano plates, due to the existence of the surface tension, is proposed in

the previous section. This section considers the bending behaviors of the nano plates without the self-
instability. Here, we also adopt the Kirchhoff plate theory, use geometrical descriptions in Eqs.(7)-(11)
and chose the self-equilibrium state without external loadings as the reference configuration.

The governing equations for nano plates in bending could be determined by the variations of total
potential energy, which can be represented as the same form as in Eq.(16). Since the bulk of nano
plates deforms elastically in the same manner of self-buckling, the Eq.(19) is also applicable to the
bending problem. But the surfaces of nano plates are in tension in the convex side or compression in
the concave side during bending, hence surface elasticity expressed in Eq.(1) should be considered in
Eq.(20). Correspondingly, the expression for δUS is

δUS =
h2

2

∫ ∫
Sm

[
(γ1 − γ∗

0 )u0
3,αβδu0

3,αβ + (γ∗

1 + γ∗

0 )u0
3,ααδu0

3,ββ

]
dx1dx2 (35)

Furthermore, the lateral load p (x, y) in the direction of the x3-axis has contributions to the virtual
work of external forces. Then, δW becomes

δW =

∫ ∫
Sm

pδu0
3dx1dx2 +

∮
C

Mn
∂δu0

3

∂n
ds +

∮
C

(
Qn +

∂Mns

∂s

)
δu0

3ds (36)

Substituting Eqs.(19), (35) and (36) into Eq.(16), we obtain the condition for minimum energy,
through the use of integrations by parts and the Gaussian theorem,∫ ∫

Sm

{[
D + (γ∗

1 + γ1)
h2

2

]
u0

3,ααββ − p

}
δu0

3dx1dx2

+

∮
C

{[
Dν + (γ∗

0 + γ∗

1)
h2

2

]
u0

3,αα +

[
D (1 − ν) + (γ1 − γ∗

0 )
h2

2

]
η1 + Mn

}
∂

(
δu0

3

)
∂n

ds

+

∮
C

{[
D (1 − ν) + (γ1 − γ∗

0 )
h2

2

]
∂η2

∂s
−

[
D + (γ∗

1 + γ1)
h2

2

]
η3 −

(
Qn +

∂Mns

∂s

)}
δu0

3ds = 0 (37)

Since δu0
3 are arbitrary on surface Sm, we obtain the equation of equilibrium in bending

Deu
0
3,ααββ − p = 0 (38)

in which De = D

[
1 + 6

(
1 − ν2

) γ∗

1 + γ1

Y h

]
and the boundary conditions which are the second and the

third contour integrals in Eq.(37).
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For clamped nano plates, the last two contour integrals along the boundary C in Eq.(37) vanish
automatically.

For simply supported nano plates, δu0
3 = 0 and Mn = 0 on the boundary C. Hence, the third contour

integral in Eq.(37) vanishes. But, ∂
(
δu0

3

)/
∂n �= 0, its coefficient in Eq.(37) must be zero. For the cases

that two edges of the rectangular plate parallel to x2-axis and θ = 0, it becomes

u0
3,11 + ζu0

3,22 = 0 (39)

in which ζ =

[
ν + 6

(
1 − ν2

) γ∗

0 + γ∗

1

Y h

]/[
1 + 6

(
1 − ν2

) γ∗

1 + γ1

Y h

]
. This is the boundary condition for

bending moment vanishing.
If the edges of plates are free, Qn = Mns = 0; δu0

3 and ∂
(
δu0

3

)/
∂n are chosen arbitrarily on the

boundary C. Their coefficients in Eq.(37) must be zero. When two edges of the rectangular plate parallel
to x2-axis and θ = 0, the coefficients can be simplified as

u0
3,11 + ζu0

3,22 = 0 (40)

and
u0

3,111 + ξu0
3,122 = 0, (41)

where ξ =

[
(2 − ν) + 6

(
1 − ν2

) γ∗

0 + γ∗

1

Y h

]/[
1 + 6

(
1 − ν2

) γ∗

1 + γ1

Y h

]
.

From the governing equations in Eq.(38) and boundary conditions in Eqs.(39)-(41), it can be found
that the surface parameters only modify the coefficients in corresponding equations of the classical
Kirchhoff plate theory. Hence, the mechanical analysis of nano plates can be obtained through changing
the parameters De, ζ and ξ in corresponding results of classical plate. When the surface effects are not
considered, or the thickness h of plates becomes large enough, Eqs.(38)-(41) reduce to classical plate
results. The aforementioned surface elasticity theory assumes that the surface does not slip relative to
the body and imposes no further restrictions on the surface parameters. Some researchers[3] assume
that the Poisson’s ratio of the surface is equal to that of the bulk in the mechanical analyses of nano
structures. This assumption is the most accurate for the case that bulk behavior dominates the surface
effects, and less accurate as the plate becomes smaller. Based on this simplification, we can obtain that

γ∗

1 + γ1 =
Ys

1 − ν2
(42)

and

γ∗

0 + γ∗

1 =
Ysν

1 − ν2
(43)

in which Ys is the surface Young’s modulus. Then, the flexural stiffness De of nano plates can be
represented as

De = D

(
1 + 6

Ys

Y h

)
(44)

which is the same as the results of Ref.[3]. Correspondingly, ζ and ξ may be written as

ζ = ν, ξ =

[
2 − ν

(
1 − 6

Ys

Y h

)] [
1 + 6

Ys

Y h

]
−1

(45)

The first equation of Eq.(45) indicates that under the same Poisson’s ratio assumption, the boundary
conditions of simply supported nano plates is the same as those of classical plate theory.

V. CONCLUSIONS AND DISCUSSIONS
The present paper has the following contributions to the nano plate theory:
1. In the absence of external loadings, nano plates may become self-buckled due to the action of

surface tension. The critical self-instability size of nano plates is determined.
2. In the bending analysis of nano plate, the residual stress field induced by surface tension is

considered. The elastic response of the bulk is modeled as the elasticity with residual stress fields.
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Under the assumption that the Poisson’s ratio of the surface is equal to that of the bulk, the present
expression for the flexural stiffness De reduces to the results of Ref.[3].

In addition, the present paper introduces the surface elasticity in the Lagrangian description and
points out that even in the case of infinitesimal strains the reference and the current configurations
should be discriminated; otherwise the out-of-plane surface displacement gradient, associated with the
surface tension, may sometimes be overlooked, particularly for rotated surfaces.

References
[1] Craighead,H.G., Nanoelectromechanical systems. Science, 2000, 290: 1532-1535.
[2] Li,M., Tang,H.X. and Roukes,M.L., Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and

very high-frequency applications. Nature Nanotechnology, 2007, 2: 114-120.
[3] Miller,R.E. and Shenoy,V.B., Size-dependent elastic properties of nanosized structural elements. Nanotech-

nology, 2000, 11: 139-147.
[4] Guo,J.G. and Zhao,Y.P., The size-dependent elastic properties of nanofilms with surface effects. Journal

of Applied Physics, 2005, 98: 074306.
[5] Shim,H.W., Zhou,L.G., Huang, H. and Cale, T.S., Nanoplate elasticity under surface reconstruction. Applied

Physics Letters, 2005, 86: 151912.
[6] Zhang,L. and Huang,H., Young’s moduli of ZnO nanoplates: ab initio determinations. Applied Physics

Letters, 2006, 89: 183111.
[7] Cao,G. and Chen,X., Energy analysis of size-dependent elastic properties of ZnO nanofilms using atomistic

simulations. Physical Review B, 2007, 76: 165407.
[8] Guo,J.G. and Zhao,Y.P., The size-dependent bending elastic properties of nanobeams with surface effects.

Nanotechnology, 2007, 18: 295701.
[9] Wang,J., Huang,Q.A. and Yu,H., Young’s modulus of silicon nanoplates at finite temperature. Applied

Surface Science, 2008, 255: 2449-2455.
[10] Sun,C.Q., Thermo-mechanical behavior of low-dimensional systems: The local bond average approach.

Progress in Materials Science, 2009, 54: 179-307.
[11] Zhou,L.J., Guo, J.G. and Zhao, Y.P., Size and thermal expansion coefficient of a nanofilm temperature

dependent. Chinese Physics Letters, 2009, 26: 066201.
[12] Pradhan,S.C. and Phadikar,J.K., Nonlocal elasticity theory for vibration of nanoplates. Journal of Sound

and Vibration, 2009, 325: 206-223.
[13] Shuttleworth,R., The surface tension of solids. Proceedings of the Physical Society Series A, 1950, 63: 444-

457.
[14] Gurtin,M.E. and Murdoch A.I., A continuum theory of elastic material surfaces. Archive for Rational Me-

chanics and Analysis, 1975, 57: 291-323.
[15] Murdoch,A.I., Some fundamental aspects of surface modeling. Journal of Elasticity, 2005, 80: 33-52.
[16] Steigmann,D.J., Elastic surface-substrate interactions. Proceedings of the Royal Society A: Mathematical,

Physical and Engineering Sciences, 1999, 455: 437-474.
[17] Huang,Z.P. and Wang,J., A theory of hyperelasticity of multi-phase media with surface/interface energy

effect. Acta Mechanica, 2006, 182: 195-210.
[18] Wang,Z.Q., Zhao,Y.P. and Huang, Z.P., The effects of surface tension on the elastic properties of nano

structures. International Journal of Engineering Sciences, 2009, in press, doi:10.1016/j.ijengsci.2009.07.007.
[19] Dingreville,R. and Qu,J., Interfacial excess energy, excess stress and excess strain in elastic solids: planar

interfaces. Journal of the Mechanics and Physics of Solids, 2008, 56: 1944-1954.
[20] Cammarata,R.C., Surface and interface stress effects in thin films. Progress in Surface Science, 1994, 46:

1-38.
[21] Cammarata,R.C., Trimble,T.M. and Srolovitz,D.J., Surface stress model for intrinsic stresses in thin films.

Journal of Materials Research, 2000, 15: 2468-2474.
[22] He,L.H., Lim,C.W. and Wu,B.S., A continuum model for size-dependent deformation of elastic films of

nano-scale thickness. International Journal of Solids and Structures, 2004, 41: 847-857.
[23] Lim,C.W. and He,L.H., Size-dependent nonlinear response of thin elastic films with nano-scale thickness.

International Journal of Mechanical Sciences, 2004, 46: 1715-1726.
[24] Dingreville,R., Qu,J. and Cherkaoui,M., Surface free energy and its effect on the elastic behavior of nano-

sized particles, wires and films. Journal of the Mechanics and Physics of Solids, 2005, 53: 1827-1854.
[25] Lu,P., He,L.H., Lee,H.P. and Lu,C., Thin plate theory including surface effects. International Journal of

Solids and Structures, 2006, 43: 4631-4647.
[26] Huang,R., Stafford,C.M. and Vogt,B.D., Effect of surface properties on wrinkling of ultrathin films. Journal

of Aerospace Engineering, 2007, 20: 38-44.



Vol. 22, No. 6 Zhiqiao Wang et al.: Self-instability and Bending Behaviors of Nano Plates · 641 ·

[27] Michael,J.L. and John,E.S., Effect of surface stress on the stiffness of cantilever plates. Physical Review

Letters, 2007, 99: 206102.

[28] Lin,C.C., Yang,F.Q. and Lee,S., Surface wrinkling of an elastic film: effect of residual surface stress. Lang-

muir, 2008, 24: 13627-13631.

[29] Gibbs,J.W., On the equilibrium of heterogeneous substances. In: The Scientific Papers of J. Willard Gibbs.
Volume 1: Thermodynamics. New York: Dover, 1961, 55-353.

[30] Zhao,X.J. and Rajapakse,R.K.N.D., Analytical solutions for a surface-loaded isotropic elastic layer
with surface energy effects. International Journal of Engineering Science, 2009, 47: 1433-1444,
doi:10.1016/j.ijengsci.2008.12.013.

[31] Cuenot,S., Frétigny,C., Demoustier-Champagne,S. and Nysten,B., Surface tension effect on the mechanical
properties of nanomaterials measured by atomic force microscopy. Physical Review B, 2004, 69: 165410.

[32] Gurtin,M.E. and Murdoch,A.I., Surface stress in solids. International Journal of Solids and Structures,
1978, 14: 431-440.

[33] Avazmohammadi,R., Yang,F.Q. and Abbasion,S., Effect of interface stresses on the elastic deformation of
an elastic half-plane containing an elastic inclusion. International Journal of Solids and Structures, 2009,
46: 2897-2906.

[34] Hoger,A., On the determination of residual stress in an elastic body. Journal of Elasticity, 1986, 16: 303-324.

[35] Washizu,K., Variational Methods in Elasticity and Plasticity, Oxford: Pergamon, 1982.

[36] Timoshenko,S. and Gere,J.M., Theory of Elastic Stability. New York: McGraw-Hill, 1961.

APPENDIX A: SURFACE ELASTICITY FOR INFINITESIMAL STRAINS
The surface constitutive relations for infinitesimal strains are derived from the finite deformation

approximations.
Consider a smooth surface A0 in the reference configuration, which is described by the position

function x = x
(
θ1, θ2

)
. After deformation, this surface becomes A, expressed by the parametric function

x′ = x
(
θ1, θ2

)
+u

(
θ1, θ2

)
, where u is the displacement (as shown in Fig.4). The covariant base vectors

at A0 and A are Aα = x,α (α = 1, 2) and aα = x′

,α (α = 1, 2), respectively. Base vectors Aα (or aα) span
the tangent plane of the surface at x (or x′) in the reference (or current) configuration. Vectors N and
n are unit normal vectors of the surface before and after deformations, respectively. The displacement
vector u of a point on the surface can be written either in the reference or current configurations

u = x
′ − x = uα

0 Aα + un
0N = uα

aα + un
n (46)

Then, we have the following relations between Aα and aα

aα = Aα +
[(

uλ
0

∣∣
α
− un

0 bλ
0α

)
Aλ +

(
uβ

0 b0αβ + un
0,α

)
N

]
Aα = aα −

[(
uλ

∥∥
α
− unbλ

α

)
aλ +

(
uβbαβ + un

,α

)
n

] (47)

where uλ
0

∣∣
α
and uλ

∥∥
α

are defined by

uλ
0

∣∣
α

= uλ
0,α + uβ

0 Γ̄ λ
0αβ

uλ
∥∥

α
= uλ

,α + uβΓ̄ λ
αβ

(48)

Fig. 4. The deformation of a surface: from the reference configuration A0 to the current configuration A.
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Γ̄ λ
0αβ and Γ̄ λ

αβ are the Christoffel symbols of the second kind of the surface before and after deformations;
and the surface curvature tensors in the reference and the current configurations can be expressed as

b0 = bλ
0αAλ ⊗ A

α = b0αβA
α ⊗ A

β

b = bλ
αaλ ⊗ aα = bαβaα ⊗ aβ

(49)

where A
α and aα are the contra-variant base vectors of Aα and aα, respectively. From Eq.(47), the

surface deformation gradient F s in the reference configuration and its inverse F
−1
s in the current

configuration can be written as

F s = aα ⊗ A
α = I0 + u0∇̄0s + F

(o)
s

F
−1
s = Aα ⊗ aα = I −

[
u∇̄s + F

−1(o)
s

] (50)

where

u0∇̄0s =
(
uλ

0

∣∣
α
− un

0 bλ
0α

)
Aλ ⊗ A

α, F
(o)
s =

(
uβ

0 b0αβ + un
0,α

)
N ⊗ A

α (51)

u∇̄s =
(
uλ

∥∥
α
− unbλ

α

)
aλ ⊗ a

α, F
−1(o)
s =

(
uβbαβ + un

,α

)
n ⊗ a

α (52)

I is the identity tensor on the tangent planes of the surface after deformations; F
(o)
s denotes the out-

of-plane term of F s in the reference configuration; F
−1(o)
s is the corresponding out-of-plane term of

F
−1
s in the current configuration.
In the case of small strain, the surface strain can be approximately expressed by[18]

Cs = F
T
s · F s ≈ I0 + 2Es, B

−1
s = F

−T
s · F−1

s ≈ I − 2εs (53)

in which surface Green and Cauchy strains tensors are

Es =
1

2

(
∇̄0su0 + u0∇̄0s

)
, εs =

1

2

(
∇̄su + u∇̄s

)
(54)

Consequently, F
−1
s can be expressed in the reference configuration as

F
−1
s = C

−1
s · F T

s = (I0 − 2Es)
(
I0 + ∇̄0su0 + F

(o)T
s

)
= I0 − u0∇̄0s + F

(o)T
s (55)

Hence, the identity tensor I in the tangent plane of the current configuration can be given by

I = F s · F
−1
s = I0 + F

(o)T
s + F

(o)
s (56)

Further, the relations of different surface strain tensors for infinitesimal strains can be obtained as

Es = εs (57)

For an isotropic and elastic surface, the surface energy per unit area of A0 in the reference configu-
ration, denoted by J2γ, can be assumed to be a function of of J1 and J2, where

J1 = 2 + trEs, J2 = 1 + trEs + detEs (58)

Thus, the first kind Piola-Kirchhoff stress of the surface can be written as

Ss = 2F s ·
∂ (J2γ)

∂Cs
= γ̄i0 + J2

∂γ

∂J1
Es − γ̄(∇̄0su) + γ̄F

(o)
s (59)

where γ̄ = J2 (∂γ/∂J1 + J2∂γ/∂J2 + γ). The above equation can be further simplified if γ is expressed
as a series expansion with the higher-order terms truncated

γ = γ0 + γ1(J1 − 2) + γ2(J2 − 1) +
1

2
γ11(J1 − 2)2 + γ12(J1 − 2)(J2 − 1) +

1

2
γ22(J2 − 1)2 (60)
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Hence, by neglecting high-order small quantities, we have[18]

Ss = γ∗

0i0 + (γ∗

0 + γ∗

1 ) (trEs) i0 − γ∗

0 (∇̄0su0) + γ1Es + γ∗

0F
(o)
s (61)

where γ∗

0 = γ0 + γ1 + γ2, γ∗

1 = γ1 + 2γ2 + γ11 + 2γ12 + γ22.
In the Eulerian description, the stress-strain relations of the surface can be written as

σs =
1

J2
Ss · F

T
s = γ∗

0I + γ∗

1 (trεs) I + γ1εs (62)

By using Eqs.(56) and (57), the above model can also be expressed, in the undeformed configuration,
as

σs = γ∗

0I0 + γ∗

1 (trEs) I0 + γ1Es + γ∗

0

(
F

(o)
s + F

(o)T
s

)
(63)

This means that there are out-of-plane terms which are related to the rotation of the surface when
surface Cauchy stress is expressed in the reference configuration.

APPENDIX B: GENERALIZED YOUNG-LAPLACE EQUATIONS
The Young-Laplace equations are used to describe the equilibrium conditions of a surface, which

can be derived from the stationary condition of the energy function proposed in Refs.[17,18]. The
Lagrangian description of the Young-Laplace equations of the surface can be written as

N · [[S]] · N = −
(
S

(i)
s

)
: b0 −

[
N ·

(
S

(o)
s

)]
· ∇0s

P 0 · [[S]] · N = −
(
S

(i)
s

)
· ∇0s +

[
N ·

(
S

(o)
s

)
· b0

] (64)

where [[S]] denotes the discontinuity of S across the surface A0, P 0 = 1− N ⊗N is the perpendicular
projection of the space of all vectors upon the space of tangential vectors in the reference configuration,
S

(i)
s and S

(o)
s are the in-plane term and the out-of-plane term of Ss, respectively; the operator ∇0s is

defined as V 0 · ∇0s = V α
0 |α for a vector V 0 = V α

0 Aα.
The corresponding equations under the Eulerian description are[17]

n · [[σ]] · n = −σs : b, P · [[σ]] · n = −σs · ∇s (65)

in which P = 1−n⊗n is the corresponding perpendicular projection in the current configuration, σ

is the Cauchy stress of the bulk, [[σ]] denotes the discontinuity of σ across the surface A, the operator
∇s is defined as v · ∇s = vαβ

∥∥
β

for a tensor v = vαβaα ⊗ aβ.


