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In the absence of external loading, surface tension will induce a residual stress field in the
bulk of nano structures. However, in the prediction of mechanical properties of nano struc-
tures, the elastic response of the bulk is usually described by classical Hooke’s law, in
which the aforementioned residual stress was neglected in the existing literatures. The
present paper investigates the influences of surface tension and the residual stress in the
bulk induced by the surface tension on the elastic properties of nano structures. We firstly
present the surface elasticity in the Lagrangian and the Eulerian descriptions and point out
that even in the case of infinitesimal deformations the reference and the current configu-
rations should be discriminated; otherwise the out-plane terms of surface displacement
gradient, associated with the surface tension, may sometimes be overlooked in the Eulerian
descriptions, particularly for curved and rotated surfaces. Then, the residual stress in the
bulk is studied through the non-classical boundary conditions and used to construct the
linear elastic constitutive relations for the bulk material. Finally, these relations are
adopted to analyze the size-dependent properties of pure bending of Al nanowires. The
present results show that surface tension will considerably affect the effective Young’s
modulus of Al nanowires, which decrease with either the decrease of nanowires thickness
or the increase of the aspect ratio.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The surface is a region with its own atom arrangement and properties differing from the bulk of materials [1]. Within the
surface zone, all physical properties like density, energy and stress vary quickly along the direction of thickness. In the ther-
modynamics of surfaces, such a thin region is often modeled, as done by Gibbs [2], as a bidimensional geometrical boundary
of bulk phases which extend uniformly right up to the mathematical surface. In order to preserve the total physical proper-
ties of the system, the excess physical properties have to be assigned to the geometrical surface. The concepts of surface ex-
cess energy and surface excess stress have been widely used in the communities of physics [1] and materials science [3,4].

For the surface of solid, Gibbs [2] pointed out that surface energy and surface stress are not identical; meaning that, a
different amount of reversible work is required to form a unit surface than to increase a large surface by unit area through
reversibly stretching it. Shuttleworth [5] derived the relations between surface stress and surface strain for small deforma-
tions, which were interpretated from an atomistic viewpoint [6]. Gurtin and Murdoch [7,8] established the theoretical
framework of the surface elasticity under the classical theory of membrane. Steigmann and Ogden [9,10] generalized the
Gurtin–Murdoch theory to incorporate flexural stiffness of the free surface directly into the constitutive response of surface.
Dingreville and Qu [11] investigated the influence of Poisson’s ratio effect on the surface properties under general loading
conditions. Considering the stationary condition of energy functional, Huang et al. [12,13] proposed a hyperelastic surface
. All rights reserved.
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model both in the Lagrangian and in the Eulerian descriptions within the framework of finite deformations. For nano struc-
tured materials, due to the increasing surface-to-volume ratio, surface effects become predominant and can significantly
modify the macroscopic properties of materials. Obviously, the size-dependent mechanical properties of nano structured
materials can be modeled by continuum mechanics including the above-mentioned surface elasticity [14–20]. It will be
shown that, even in the case of infinitesimal deformations, we should distinguish between the reference and the current con-
figurations; otherwise the out-plane terms of surface displacement gradient, associated with the surface tension, may some-
times be overlooked in the Eulerian descriptions, particularly for curved and rotated surfaces.

In the absence of external loading, the surfaces of a nano structure will be subjected to residual surface stress, namely the
surface tension. Thus, from generalized Young-Laplace equations, it can be concluded that the presence of surface tension
manifests itself in a nonclassical boundary condition giving the force in the bulk of nano structures to equilibrate the surface
tension [12,21]. The stress field in the bulk together with residual surface stress can be regarded as a residual stress field in
the nano structures, which are non-homogeneous and are associated with zero traction on the boundary of nano structures
in general. This self equilibrium state (without external loadings) under the action of surface tension is usually chosen as the
reference configuration, from which nano structures will elastically deform. Some researchers [22–25] have recognized the
importance of surface tension, but often neglect the effects of the residual stress field in the bulk on the mechanical response
of nano structures. Therefore, in this paper, the influences of the surface tension and the residual stress field in the bulk in-
duced by surface tension on the elastic deformations of nano structures will be studied.

Since one-dimensional (1D) nano structures, such as nanowires and nano beams, have significant applications as nano
components of electronic devices, sensors, actuators and nano electromechanical systems (NEMS) [26–28], the accurate
analysis of mechanical properties of individual 1D nano structures is required in functional design and reliability analysis
of those nano devices. In this paper, we will investigate the pure bending of Al nanowires to illustrate how the surface ten-
sion and the residual stress induced by the surface tension will affect the effective Young’s modulus of nanowires.

The paper is organized as follows. The geometry and kinematics of a deformable surface both in the Lagrangian and in the
Eulerian descriptions will be introduced in Section 2; the emphasis is placed on the study of the relations of these two
descriptions at infinitesimal deformations. The isotropic surface elasticity at small deformations will be discussed in Section
3. The residual stress field in the bulk induced by surface tension will be analyzed and the corresponding constitutive rela-
tions of the bulk are formulated in Section 4. As an illustration, in Section 5, the effective Young’s modulus of an Al nanowire
under pure bending will be calculated. It is shown that the surface tension will affect the bending properties of nanowires.

2. Geometry and kinematics of a deformable surface

There are two kinds of methods to describe the deformation of a continuum, i.e. the Lagrangian and the Eulerian descrip-
tions. In this section, we will adopt these two ways to describe the geometry and kinematics of a deformable surface and give
the correlations of these two descriptions at infinitesimal deformations.

2.1. Geometrical relations

In the reference configuration, we consider a smooth surface A0 in three-dimensional Euclidean space determined by the
parametric representation Y = Y(h1,h2), where Y is the position vector from the origin to points on the surface, and
the parameters ha (the Greek indices have the range 1, 2 in this paper) serve as curvilinear coordinates on the surface.
In the reference configuration, the covariant base vectors Aa of the surface A0 are defined as
Aa ¼ Y;a; ð1Þ
where the comma notation is used to denote partial derivatives with respect to ha in the present paper. The contra-variant
base vectors Ab of the surface A0 are given by
Ab � Aa ¼ db
a; ð2Þ
where db
a is the Kronecker delta symbol in two dimensional space.

After deformation, the point Y on surface A0 will move to the point y(h1,h2) on surface A in the current configuration. The
corresponding covariant and contra-variant base vectors of surface A are
aa ¼ y;a and ab � aa ¼ db
a: ð3Þ
Base vectors Aa (or aa) span the tangent plane of the surface at Y (or y) in the reference (or current) configuration. Assume
that there is a linear transformation that maps a vector in the tangent plane of the undeformed surface into a vector in the
tangent plane of the deformed surface (see Fig. 1). This mapping is called as the surface deformation gradient (denoted by Fs),
which is a two-point tensor and can be represented as
Fs ¼ aa � Aa
; ð4Þ
where the Einstein summation convention over repeated indices is implied in the present paper. Correspondingly, we can
define its inverse transformation F�1

s , so that



Fig. 1. The deformation of a surface.
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F�1
s ¼ Aa � aa: ð5Þ
It can be seen that
Fs � F�1
s ¼ I; F�1

s � Fs ¼ I0;

Fs � I0 ¼ I � Fs ¼ Fs; F�1
s � I ¼ I0 � F�1

s ¼ F�1
s ;

ð6Þ
where I0 = Aa � Aa and I = aa � aa are identity tensors on the tangent planes of the surface before and after deformations,
respectively.

In the reference and the current configurations, we define two surface deformation tensors Cs ¼ FT
s � Fs and B�1

s ¼ F�T
s � F

�1
s .

It can be proved that Cs and B�1
s are positive-definite. Therefore, we can introduce two tensors
Us ¼
ffiffiffiffiffi
Cs

p
; V�1

s ¼
ffiffiffiffiffiffiffiffi
B�1

s

q
: ð7Þ
Then, the following decompositions hold
Fs ¼ Rs � Us ¼ Vs � Rs; ð8Þ
where Rs is the two-point rotation tensor satisfying
RT
S � RS ¼ I0; Rs � RT

S ¼ I;
RS � I0 ¼ RS; I � Rs ¼ Rs:

ð9Þ
From (1) to (3), the displacement vector u of a point on the surface either in the reference configuration or in the current
configuration can be written as
u ¼ y � Y ¼ ua
0Aa þ un

0N ¼ uaaa þ unn ð10Þ
in which N and n are unit normal vectors of the surface before and after deformations, respectively. From (1), (3) and (10), we
have the following relations between Aa and aa
aa ¼ Aa þ uk
0

��
a � un

0bk
0a

� �
Ak þ ub

0b0ab þ un
0;a

� �
N

h i
;

Aa ¼ aa � ukka � unbk
a

� �
ak þ ubbab þ un

;a

� �
n

h i
;

ð11Þ
where uk
0

��
a and ukka are defined by
uk
0

��
a ¼ uk

0;a þ ub
0C

k
0ab;

ukka ¼ uk
;a þ ubCk

ab;
ð12Þ
Ck
0ab and Ck

ab are the Christoffel symbols of the second kind of the surface before and after deformations; and the surface cur-
vature tensors in the reference and the current configurations can be expressed as
b0 ¼ bk
0aAk � Aa ¼ b0abAa � Ab

;

b ¼ bk
aak � aa ¼ babaa � ab:

ð13Þ
From Eq. (11), Fs and F�1
s can be written as
Fs ¼ I0 þ u0
�r0s þ FðoÞs ;

F�1
s ¼ I� u �rs þ eFðoÞs

h i
;

ð14Þ
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where
u0
�r0s ¼ uk

0

��
a � un

0b0ak
� �

Ak � Aa
; FðoÞs ¼ ub

0b0ab þ un
0;a

� �
N� Aa

; ð15Þ

u �rs ¼ ukka � unbk
a

� �
ak � aa; eFðoÞs ¼ ubbab þ un

;a

� �
n� aa: ð16Þ
FðoÞs denotes the out-plane term of Fs in the reference configuration; eFðoÞs is the corresponding out-plane term of F�1
s in the

current configuration. Therefore, we have
Cs ¼ I0 þ �r0su0 þ u0
�r0s þ �r0su0 � u0

�r0s þ FTðoÞ
s � FðoÞs ;

B�1
s ¼ I� �rsu� u �rs þ �rsu � u �rs þ eFTðoÞ

s � eFðoÞs :
ð17Þ
2.2. Surface velocity gradient and rate of deformation

Velocity vector of a point y on the deformed surface A is vs ¼ @y
@t . Its gradient can be expressed by the material derivative of

Fs as
Ls ¼ vs;a � aa ¼
@ðy;aÞ
@t
� aa ¼ _aa � aa ¼ ð _aa � AaÞ � ðAb � abÞ ¼ _Fs � F�1

s ð18Þ
and the symmetrical part of Ls is
eDs ¼
1
2

Ls þ LT
s

� �
¼ 1

2
_Fs � F�1

s þ F�T
s � _FT

s

� �
: ð19Þ
Since eDs has out-plane terms in the current configuration, we define the rate of deformation of the surface as follows:
Ds ¼ I � eDs � I ¼
1
2

I � _Fs � F�1
s þ F�T

s � _FT
s � I

� �
: ð20Þ
It can be seen that
Ds ¼
1
2

F�T
s � _Cs � F�1

s ; ð21Þ
where
_Cs ¼ _FT
s � Fs þ FT

s � _Fs

� �
; ð22Þ
which yields
_Cs ¼ 2FT
s � Ds � Fs: ð23Þ
The relations between _Cs and Ds are similar to those of three-dimensional continuum mechanics.

2.3. Infinitesimal deformation approximations

The surface deformation tensors Cs and B�1
s and their material derivatives are nonlinear in the displacement gradient and,

consequently, in the displacements. However, it is reasonable and convenient to use the linearized expressions under infin-
itesimal deformations. Thus, the high-order small quantities of the surface displacement gradient will be neglected in the
following analyses. Therefore, we have
Cs ¼ I0 þ 2Es; B�1
s ¼ I� 2es ð24Þ
in which
Es ¼
1
2

�r0su0 þ u0
�r0s

� �
; es ¼

1
2

�rsuþ u �rs
� �

: ð25Þ
Consequently, F�1
s can be expressed in the reference configuration as
F�1
s ¼ C�1

s � F
T
s ¼ ðI0 � 2EsÞ I0 þ �r0su0 þ FðoÞTs

� �
¼ I0 � u0

�r0s þ FðoÞTs : ð26Þ
Hence, the identity tensor I in the tangent plane of the current configuration can be given by
I ¼ Fs � F�1
s ¼ I0 þ FðoÞTs þ FðoÞs

� �
: ð27Þ
It is shown that, even in the case of infinitesimal deformation, the identity tensors in different configurations are not the
same. The differences are the out-plane terms of surface deformation gradient. That is to say, the current identity tensor I
is dependent on the deformation even in the case of small deformations.
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Substituting Eq. (26) into the expression of B�1
s , we obtain
B�1
s ¼ F�T

s � F
�1
s ¼ I0 � 2Es þ FðoÞTs þ FðoÞs

� �
: ð28Þ
From (24), (27) and (28), it follows that:
Es ¼ es: ð29Þ
This means that although the identity tensors in different configurations are not the same, the surface strain tensors are
equal in infinitesimal deformation approximation.

Under infinitesimal deformations, Eq. (19) becomes
eDs ¼ _Es þ
1
2

_FðoÞs þ _FðoÞTs

� �
; ð30Þ
where
_Es ¼
1
2

_Cs ¼
1
2

_u0
�r0s þ �r0s _u0

� �
: ð31Þ
Accordingly, we have
Ds ¼ _Es: ð32Þ
This indicates that the strain rate tensors are the same under small deformations.
3. Surface elasticity under infinitesimal deformations

The surface Cauchy stress rs measures the force per unit length in the deformed surface. In many problems of interest, it
is not convenient to work with rs, since the deformed configuration is not known in advance. For this reason, we introduce
other two surface stress tensors, namely the first and the second surface Piola-Kirchhoff stress tensors, Ss and Ts, which give
the force measured per unit length in the reference configuration. These stress tensors should satisfy the following work con-
jugate relations:
_ws ¼ J2rs : Ds ¼ Ss : _Fs ¼
1
2

Ts : _Cs; ð33Þ
where ws = J2c is the surface energy per unit area of surface A0 in the reference configuration, and J2 = detUs is the ratio be-
tween the area elements of after and before deformations. The proofs of Eq. (33) are given in the Appendix A.

For hyperelastic media, the surface energy density c can be assumed to be a function of Us(or Cs). In particular, for an iso-
tropic surface, c can be written as a function of the first and second invariants of Us, namely J1 (or trUs) and J2. Hence, under
the Lagrangian description, the surface constitutive relation can be written as in Refs. [12,13]:
Ts ¼ 2
@ðJ2cÞ
@Cs

; ð34Þ
which is related to the first surface Piola-Kirchhoff stress tensors Ss and surface Cauchy stress rs through the following
relations:
Ss ¼ Fs � Ts; rs ¼
1
J2

Fs � Ts � FT
s :
In the case of small deformations, J1 and J2 can be approximately expressed by
J1 ¼ 2þ trEs; J2 ¼ 1þ trEs þ det Es: ð35Þ
Correspondingly, c can be expressed as a series expansion [13,29]
c ¼ c0 þ c1ðJ1 � 2Þ þ c2ðJ2 � 1Þ þ 1
2
c11ðJ1 � 2Þ2 þ c12ðJ1 � 2ÞðJ2 � 1Þ þ 1

2
c22ðJ2 � 1Þ2 þ . . . ð36Þ
Hence, by using Eqs. (34)–(36) and neglecting high-order small quantities, we have
Ts ¼ c�0I0 þ c�0 þ c�1
� �

trEsð ÞI0 þ c1 � 2c�0
� �

Es; ð37Þ
where c�0 ¼ c0 þ c1 þ c2, c�1 ¼ c1 þ 2c2 þ c11 þ 2c12 þ c22. The surface energy c0, residual surface stress (namely surface ten-
sion) c�0 and surface elastic constants c�1 and c1 are material properties intrinsic to the solid [11,15]. The condition of ther-
modynamic stability requires that surface energy c0 should be positive. However, the residual surface stress c�0 and surface
elastic constants c�1 and c1 may be either positive or negative depending on the atomic or molecular arrangement on the sur-
face [15].
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In the Lagrangian description, the first kind of surface Piola-Kirchhoff stress can be expressed by [13]
Ss ¼ c�0I0 þ c�0 þ c�1
� �

ðtrEsÞI0 � c�0ð �r0su0Þ þ c1Es þ c�0FðoÞs ð38Þ
in which the last term is related to the out-plane term of the surface deformation gradient.
In the Eulerian description, stress–strain relation of the surface can be written as
rs ¼ c�0Iþ c�1ðtresÞIþ c1es: ð39Þ
By using Eqs. (27) and (29), the above model can also be expressed, in the undeformed configuration, as
rs ¼ c�0I0 þ c�1ðtrEsÞI0 þ c1Es þ c�0 FðoÞs þ FðoÞTs

� �
: ð40Þ
This means that there are out-plane terms when surface Cauchy stress is expressed under the frame of the reference
configuration. Thus, even in the case of small deformations, it is needed to discriminate the reference and the current
configurations of the surface. Some researchers pay no attention to the difference between (39) and (40), and often neglect
the out-plane terms, which are important for curved and rotated surfaces. It can be seen that, even in the case of infinitesimal
deformations, different surface stress tensors in Eqs. (37)–(40) are not the same due to the existence of the residual stress c�0.

4. Elasticity for the bulk with residual stress fields

Atoms at or near a free surface experience reduced coordination due to a different local binding environment than the
interior atoms. As a consequence of under-coordination, the surface will be subjected to a residual stress, namely surface
tension. In order to keep equilibrium, a residual stress field in the bulk will be induced by surface tension in the reference
configuration that is not subjected to any external loading.

4.1. Determination of the residual stress in the bulk

For nano scale structures, according to the generalized Young-Laplace equations which describes the equilibrium condi-
tions of the surface (details can be found in Appendix B), the presence of surface tension will result in a non-classical bound-
ary condition which gives the traction on the bulk in terms of surface tension. This boundary condition together with the
equations of classical elasticity (to be satisfied within the bulk) forms a coupled system of field equations to determine
the residual stress in the bulk [12,21].

In the reference configurations, from Eq. (B2) and noting that rs ¼ c�0I0 for isotropic materials, the elastic stress field bT in
the bulk should satisfy [12]
bT � r ¼ 0 ðin the bulkÞ ð41Þ

N � sbTt � N ¼ �c�0I0 : b0; ðon the surfaceÞ ð42Þ
P0 � sbTt �N ¼ �r0sc�0;
where P0 = 1 � N � N is the perpendicular projection of the space of all vectors upon the space of tangential vectors in the
reference configuration, 1 is the identity tensor on 3-dimentional Euclidean space.

Based on the above equations, a large deformation analysis for the determination of the residual stress in an infinite med-
ium containing a spherical nano-cavity was given in [12]

4.2. Elasticity with residual stress

The elastic field which is induced by the surface tension is referred to as the residual elastic field. Thus, the bulk of nano
structure materials will deform elastically from a residual stressed state. It should be pointed out that, in the prediction of
mechanical properties of nano structures, the classical Hooke’s law is often used to describe the elastic response of the bulk,
where the residual stress is neglected. This may not be reasonable. It is because the constitutive relations of linear elastic
materials with residual stress are quite different from the classical Hooke’s law [30].

In view of the importance of the linearization of the general constitutive equations, we will present the linear elastic con-
stitutive relations of the bulk with residual stresses as follows [30]:
S ¼ bT þH � bT � 1
2
ðE � bT þ bT � EÞ þ kðtrEÞ1þ 2lE; ð43Þ
where S is the first Piola-Kirchhoff stress, bT is the residual stress in the reference configuration, H is the displacement gra-
dient calculated from the reference configuration, E is the infinitesimal strain, k and l are material elastic constants.

Accordingly, the Cauchy stress can be written as [30]
r ¼ bT þW � bT � bT �Wþ 1
2
ðE � bT þ bT � EÞ � ðtrEÞbT þ ktrðEÞ1þ 2lE ð44Þ
in which W ¼ 1
2 ðH�HTÞ is the infinitesimal rotation tensor.
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5. Pure bending of nanowires

Due to the distinct mechanical properties of structures at nano scale, nanowires have attracted considerable interests.
Both atom simulations [31,32] and theoretical studies [15,23,24,33,34] have shown that free surfaces will affect the elastic
modulus or stiffness of nanowires, which control their capacities for deformation during sensing and actuation. In most pre-
vious works, theoretical analyses were based on the Eulerian surface elasticity, in which the out-plane terms of surface stress
were neglected and the effect of residual stress in the bulk was not taken into account. As an illustration, in this section, we
will consider the effects of these factors on pure bending of a nanowire, which are not considered by previous authors. The
wire is assumed to be isotropic and under linear elastic responses. The coordinate system with origin at the middle of the
line, which lies both in the neutral surface and in the cross section of the middle of the wire, is shown in Fig. 2. The x-axis is
parallel to the axis of the unbent wire and the y- and z-axes are perpendicular to it. l, h and b are the length, thickness and
width of the wire in the reference configuration, respectively.

For the nanowires with rectangle cross section (as shown in Fig. 3a), the cross section can be described by a rounded rect-
angle, of which the radius is r (see Fig. 3b). Consider a quarter of the cylinder of the bulk material at the corner (as shown
Fig. 3c). From the generalized Young-Laplace equations (42), the existence of surface tension c�0 on the cylindrical surface
leads to a pressure (or traction) p acting on corresponding boundary of the bulk material (see Fig. 3c), which has magnitude
c�0=r. The equilibrium conditions require the forces Fy and Fz acting on the lateral sides of the element (as shown Fig. 3c). It
can be solved that Fy and Fz are equal in magnitude and have the values c�0, which is independent of the radius r. When r
approaches zero, the rounded rectangle cross section is close to the real case. Therefore, the corner of the bulk material at
point A will be under the actions Fy and Fz, which has been shown in Fig. 3a. The forces acting on other corners can be ob-
tained through the same methods. Using a finite element analysis, Gurtin and Murdoch [21] solved the residual stress in the
bulk, which is a non-homogeneous stress field. In order to consider the effects of residual stress in the bulk on the apparent
Young’s modulus of nanowires, we will simplify the non-homogenous residual stress field in the bulk under the equivalence
principle. We assume that the non-homogenous distributed range of the residual stress is small, which closely near the cor-
ners, and that the stress at the points away from the corners is uniformly distributed. Hence, from the equilibrium conditions
of the bulk material, we can get the stress acting on the plane A0A0 is bT yy ¼ �2c�0=h, which is uniformly distributed along the
thickness and is inversely proportional to the thickness of the nanowires. Similarly, the residual stresses along other direc-
tions in the bulk can be acquired. Here, the components of the residual stress in the bulk are
bT ij ¼ ei � bT � ej ¼

�2c�0 1
b þ 1

h

� �
0 0

0 � 2c�0
h 0

0 0 � 2c�0
b

0BB@
1CCA; ð45Þ
where i, j = x, y, z; ei are the unit orthonormal vectors.
We further assume that plane sections remain plane during the bending process and the Poisson’s ratio of the surface is

equal to that of the bulk. According to the elastic theory [35], the displacements for pure bending of a nanowire can be de-
scribed as
Fig. 2. Pure bending of a nanowire.

Fig. 3. Nanowire with rectangle cross section.
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ux ¼
xz
R
;

uy ¼ �m
yz
R
; ð46Þ

uz ¼ �
1

2R
½x2 þ mðz2 � y2Þ�;
where m is the Poisson’s ratio, R is the curvature radius of the neutral surface after bending.
Hence, the components of displacements gradient H for the bulk material are
Hij ¼ ei �H � ej ¼

z
R 0 x

R

0 �m z
R �m y

R

� x
R m y

R �m z
R

0B@
1CA; ð47Þ
and the infinitesimal strain is given by
Eij ¼ ei �
HþHT

2

 !
� ej ¼

z
R 0 0
0 �m z

R 0
0 0 �m z

R

0B@
1CA: ð48Þ
Substituting (45), (47) and (48) into (43), we obtain the stress components for the bulk material
Sij ¼ ei � S � ej ¼

bT 11 þ E z
R 0 bT 33

x
R

0 bT 22 �bT 33
my
R

�bT 11
x
R

bT 22
my
R

bT 33

0BB@
1CCA; ð49Þ
where E is bulk Young’s modulus.
For the upper and the lower surfaces x; y;� h

2

� �
, the components of surface displacement gradient Hs = Fs � I0 are
Hs
ia ¼ ei �Hs � ea ¼

1
R � h

2

� �
0

0 � m
R � h

2

� �
� x

R m y
R

0B@
1CA; ð50Þ
where a = x, y, the sign ‘‘±” is ‘‘+” for upper surface and ‘‘�” for lower surface. Thus, the surface strain components are
Es
ab ¼ ea �

Hs þHsT

2

 !
� eb ¼

1
R � h

2

� �
0

0 � m
R � h

2

� � !
: ð51Þ
Substituting (50) and (51) into (38), we obtain the surface stress components for the upper and lower surfaces
Ss
ia ¼ ei � Ss � ea ¼

c�0 þ Es
1
R � h

2

� �
0

0 c�0
�c�0 x

R c�0m
y
R

0B@
1CA; ð52Þ
where the definitions of the surface Poisson’s ratio m m ¼ c�0þc�1
c�1þc1

� �
and the surface Young’s modulus Es Es ¼ c�1 þ c1 �

c�0þc�1ð Þ2
c�1þc1

� 	
are used to simplify Ss

xx and Ss
yy.

For the anterior and the posterior surfaces x;� b
2 ; z

� �
, the components of surface displacement gradient are
Hs
ia ¼ ei �Hs � ea ¼

z
R

x
R

0 � m
R � b

2

� �
� x

R �m z
R

0B@
1CA; ð53Þ
where a = x, z, and the sign ‘‘±” is ‘‘+” for anterior surface and ‘‘�” for posterior surface. Hence, we have
Es
ab ¼ ea �

Hs þHsT

2

 !
� eb ¼

z
R 0
0 �m z

R

 !
: ð54Þ
Substituting (53) and (54) into (38), we obtain
Ss
ia ¼ ei � Ss � ea ¼

c�0 þ Es
z
R c�0 x

R

0 �c�0 m
R � b

2

� �
�c�0 x

R c�0

0B@
1CA: ð55Þ
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Next, we adopt the principle of virtual work to get the effective modulus of nanowires. Consider an arbitrary geometri-
cally permissible displacement fields _Hij; _Hs

ia

� �
for pure bending. The corresponding principle of virtual work becomes
M � _jl ¼ _WB þ _WUL
S þ _WAP

S ; ð56Þ
where M is the bending moment, _j is the curvature change of the neutral surface; and _WB, _WUL
S and _WAP

S are the virtual strain
energy of the bulk, of the upper and the lower surfaces and of the anterior and the posterior surfaces, respectively. From Eqs.
(47)–(55), we have
_WB ¼
Z l

2

� l
2

Z b
2

�b
2

Z h
2

�h
2

Sij
_Hijdzdydx ¼ l _j

I
R

Eþ ðbT 11 þ bT 33Þ
l
h

� 	2

þ ðbT 22 þ bT 33Þm2 b
h

� 	2
" #

;

_WUL
S ¼

Z l
2

� l
2

Z b
2

�b
2

Ss
ia

_Hs
iadydx ¼ l _j

I
R

6
Es

h
þ 2

c�0
h

l
h

� 	2

þ 2
c�0
h

m2 b
h

� 	2
" #

; ð57Þ

_WAP
S ¼

Z l
2

� l
2

Z h
2

�h
2

Ss
ia

_Hs
iadzdx ¼ l _j

I
R

2
Es

b
þ 2

c�0
b

l
h

� 	2

þ 6
c�0
b

m2 b
h

� 	2
" #

;

where I ¼ bh3

12 .
From (45), (56) and (57), we obtain
M ¼ I
R

E0; ð58Þ
where E0 is the effective Young’s modulus and can be expressed as
E0 ¼ Eþ 6
Es

h
þ 2

Es

b
þ 2

c�0
b

2m2 b2

h2 �
l2

h2

 !
: ð59Þ
It can be seen that E0 is dependent on surface parameters and the geometry of the nanowires. Cuenot et al. [22] and Park and
Klein [36] pointed out that the effective Young’s modulus of real nanowires is strongly dependent on the boundary condi-
tions and the geometry of the nanowires if the surface stress effects are considered. Park and Klein’s numerical simulation
results [36] show that, for the single crystal gold nanowires with the fixed/free boundary condition, either decreasing the
thickness of nanowires or increasing the aspect ratio will lead to a decrease in the effective Young’s moduli of nanowires
relative to the bulk value, while increasing in the effective Young’s moduli for the fixed/fixed cases. This is because that
the fixed/fixed boundary conditions prevent the nanowires from relaxing axially, as would occur due to surface stresses if
one of the ends were free. We theoretically investigate the pure bending properties of nanowires, which can relax axially
as the fixed/free cases. When the surface tension is positive, Eq. (59) implies that the effective Young’s modulus will decrease
with increasing the aspect ratio. The variational trends of the effective Young’s modulus are the same as those of the fixed/
free nanowires obtained by Park and Klein [36].

For nanowires with square sections (l� h, h = b), we have
E0 	 Eþ 8
Es

h
þ 2

c�0
h

2m2 � l2

h2

 !
: ð60Þ
Fig. 4. Non-dimensional difference between effective Young’s moduli of Al nanowires with different aspect ratio.
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Note that it can be reduced to Miller and Shenoy’s expression [15] by neglecting the effects of surface tension c�0. (E0 � E)/E as
a function of h for different aspect ratios of Al nanowires as shown in Fig. 4. The parameters Es=E ¼ �0:9298 A



,

c�0=E ¼ 0:06675 A


, v = 0.3 are employed form reference [15]. Results show that surface stresses will considerably affect the

effective Young’s modulus of Al nanowires, which decrease with either the decrease of nanowires thickness or the increase
of the aspect ratio. The trends of decreasing nanowire Young’s modulus are the same as those of the fixed/free Au nanowires
obtained by Park and Klein [36].

Eq. (59) is also valid for nano plates (b� h). In this case, the effective Young’s modulus becomes
E0 	 Eþ 6
Es

h
þ 2

c�0
b

2m2 b2

h2 �
l2

h2

 !
; ð61Þ
which can also be considered as a modification of Miller and Shenoy’s result [15].

6. Conclusions

This paper investigates the effects of surface tension and the residual stress field in the bulk induced by surface tension on
mechanical properties of nano structures. Furthermore, the theoretical derivations about surface elasticity show that, in
small deformations, equating the reference and the current configurations will make the out-plane terms of surface displace-
ment gradient be overlooked in the Eulerian description of surface elasticity. Illustrative results of pure bending analysis of
nanowires indicate that, besides surface elasticity, the surface tension will considerably affect mechanical properties of nano
scale structures.

Acknowledgements

This research was jointly supported by the National Basic Research Program of China (973 Program, Grant No.
2007CB310500), the National High-tech R& D Program of China (863 Program, Grant No. 2007AA04Z348), the National Nat-
ural Science Foundation of China (NSFC, Grant No. 10772180) and the Postdoctoral Science Foundation of China (Grant No.
20080440530). These financial supports are gratefully acknowledged.

Appendix A. Work conjugate relations

Under the base vectors of the reference configuration, Ts, Fs and _Fs can be expressed as
Ts ¼ Ta
bAa � Ab

;

Fs ¼ Fc
gAc � Ag þ F3

gN� Ag
; ðA1Þ

_Fs ¼ _Fk
lAk � Al þ _F3

lN� Al
:

The relations between different surface stress tensors are
Ss ¼ Fs � Ts; J2rs ¼ Fs � Ts � FT
s : ðA2Þ
From (20), (22), (40) and (A2), we can prove that
_ws ¼
1
2

Ts : _Cs ¼ Ss : _Fs ¼ J2rs : Ds ¼ AkcAbgTl
b Fc

g
_Fk
l þ AbcTk

bF3
c

_F3
k : ðA3Þ
Appendix B. The generalized Young-Laplace equations

The Young-Laplace equations are used to describe the equilibrium conditions of a surface, which can be derived from the
stationary condition of the functional proposed in Refs. [12,13]. The Lagrangian description of the Young-Laplace equations
of the surface can be written as
N � sSt � N ¼ � SðinÞs

� �
: b0 � N � SðouÞ

s

� �h i
� r0s;

P0 � sSt �N ¼ � SðinÞs

� �
� r0s þ N � SðouÞ

s

� �
� b0

h i
:

ðB1Þ
where sSt denotes the discontinuity of S across the surface A0, SðinÞs and SðouÞ
s are the in-plane term and the out-plane term of

Ss, respectively. The above equations have been given in [12], but some terms associated with SðouÞ
s were missing in Eqs. (35)

and (36) in [12], and corrections have been made by Huang et al. [13].
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The corresponding equations under the Eulerian description are [12]
n � srt � n ¼ �rs : b;
P � srt � n ¼ �rs � rs

ðB2Þ
in which P = 1 � n � n is the corresponding perpendicular projection in the current configuration, r is the Cauchy stress of
the bulk, srt denotes the discontinuity of r across the surface A.

The operations of symbols r0s and rs can be found in [12,13].
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