
Vertical Bearing Capacity of a Partially-Embedded Pipeline on Tresca Soils 
 

Bo Zhao1, 2, Fuping Gao1, Jieming Liu 2, Yingxiang Wu1

1 Institute of Mechanics, Chinese Academy of Sciences, Beijing, China 
2  Design and Research Center, China National Petroleum Offshore Engineering CO. LTD., Beijing, China 

 
 
 
 
 
 
 
 

ABSTRACT 
 
Slip-line field solutions are presented for the ultimate load of 
submarine pipelines on a purely cohesive soil obeying Tresca yield 
criterion, taking into account of pipe embedment and pipe-soil contact 
friction. The derived bearing capacity factors for a smooth pipeline 
degenerate into those for the traditional strip-line footing when the 
embedment approaches zero. Parametric studies demonstrate that the 
bearing capacity factors for pipeline foundations are significantly 
influenced by the pipeline embedment and the pipe-soil frictional 
coefficient. With the increase of pipeline embedment, the bearing 
capacity factor Nc decreases gradually, and finally reaches the 
minimum value (4.0) when the embedment equals to pipeline radius. 
As such, if the pipeline is directly treated as a traditional strip footing, 
the bearing capacity factor Nc would be over evaluated. The ultimate 
bearing loads increase with increasing pipeline embedment and pipe-
soil frictional coefficient. 
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Tresca Yield Criterion; Strip Footing  
 
 
 
INTRODUCTION 
 
In geotechnical engineering, the ultimate bearing capacity is the 
capacity of soil to support the loads applied to the ground, which is 
usually defined as the maximum average contact pressure between the 
foundation and the soil causing shear failure of the supporting soil 
immediately below and adjacent to the foundation. Till now, there are 
quite a few formulas for the ultimate bearing capacity developed for 
footings, but not especially for submarine pipelines (see Craig, 1997). 
 
Under the action of its submerged weight, a submarine pipeline may 
penetrate into the soil with certain embedment. Unlike the traditional 
continuous strip footings, a pipeline holds circular cross-section. As 
such, the effective bearing width of the pipe-soil interface is a function 
of pipeline embedment, which would affect not only the bearing 
capacity of underlying soils but also the lateral stability of submarine 
pipelines in ocean currents and/or waves (Gao et al., 2007). The 

ultimate bearing load for the pipeline foundations is usually expressed 
with the maximum value of submerged weight of the pipeline per unit 
length. The existing formulas for the ultimate bearing capacity of 
traditional footing could not be efficiently employed for evaluating the 
ultimate load for the pipeline foundations. 
 
In the submarine pipeline design practice, it is highly desired to 
efficiently evaluate the bearing capacity of pipeline foundations. 
During the past few decades, the bearing capacity of pipeline 
foundations has attracted much attention from many researchers. Small 
et al. (1971) treated the pipeline with certain submerged weight as an 
equivalent uniform distributed pressure upon a traditional rectangular 
footing, and proposed empirical formulas for the bearing capacity 
factors by modifying the solutions for a traditional strip footing. This 
treatment obviously could not consider the effects of the circular 
section of the pipeline. Karal (1977) applied the upper bound theorems 
of classical plasticity theory to develop a prediction of pipe penetration, 
idealizing the pipe as a rigid wedge indenter. The approximation of 
pipeline with wedge indenter might be reasonable at small embedment 
but error becomes significant with increasing embedment. Murff et al. 
(1989) analyzed the pipeline penetration into a cohesive soil using 
upper and lower bound theorems respectively. Aubeny et al. (2005) 
further investigated the collapse loads for a cylinder laid in a trench of 
cohesive soil. Due to the special circular cross-section of the 
submarine pipeline, the quantitative evaluations of ultimate load for 
pipeline foundations on various sediments and pipe-soil contact 
conditions are far from being fully achieved. The effects of pipe-soil 
friction coefficient and pipeline embedment on the bearing capacity of 
submarine pipelines are needed to be further investigated. 
 
In this paper, the bearing capacity of the pipeline on Tresca soils is 
analyzed theoretically by employing the slip-line field theory. A 
parametric study is then performed to investigate the influential factors 
for the bearing capacity of the pipeline foundations. 
 
SLIP-LINE FIELD SOLUTION 
Slip-line Field Theory 
 
The slip-line field theory is on the basis of equilibrium equations and 
the failure criterion of the material. For a weightless soil, the 
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equilibrium equations are 
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The soil is assumed to obey Tresca or maximum shear stress failure 
criterion, i.e. 

2 2( ) 4x y xy cσ σ τ− + = 24 .                             (2) 

Let ( ) ( )1 3 2 x yσ σ σ σ σ= + = + 2  and refer to the Mohr circle, then 

sin 2x cσ σ= − θ ,                                (3a) 

cos 2xy cτ θ= ,                                     (3b) 

sin 2y cσ σ= + θ .                                 (3c) 

Submitting Eqs. 3a～3c to Eq. 1, the characteristic functions for slip-

lines can be derived as 

tgdy
dx

θ=         (α line),                           (4a) 

ctgdy
dx

θ= −     (β line),                          (4b) 

and the Hencky stress equations as 
2 1c constσ θ− =   (along α  line),       (5a) 
2 2c constσ θ+ =   (along β  line),        (5b) 

where x  and  are the coordinates for the point in the slip-line field, y
σ  is the mean stress at a certain point in the slip-line field, θ  is the 
angle between the α  tangent line and the x- axis,  c is the cohesion of 
soil. When the boundary conditions are given, the stress and the 
corresponding slip-lines can be determined (see Yan, 1988). 
 
Basic Assumptions 
 
The bearing capacity for a submarine pipeline laid upon the 
horizontally flat seabed can be treated as a plane-strain problem. The 
assumptions are given as follows (see Fig.1): 
 

 
 
Fig. 1 Sketch map of pipeline embedment in soil 
 

(1) The soil is a weightless, ideal rigid-plastic material; 
(2) The Tresca yielding criterion is satisfied for the soil, such as the 

saturated soft clay under undrained conditions; 
(3) There exists an embedment ( ) of the pipe with radius of r . 

For the case of , the uniform overburden load at the two 
sides of the pipe . For the case of , the pipe-soil 

contact condition can be treated as that for , the weight 
of soil above the pipe center is replaced by an equivalent uniform 
surcharge pressure 

0e

0 /e r ≤1
1

1

0q = 0 /e r >

0 /e r =

( )0 'q e r γ= − , where 'γ  is the effective 

(buoyant) unit weight of soil. 
 
In this study, the pipe-soil contact friction is taken into account. The 
shear stress between the pipe and the surrounding soil is assumed as 
a cα=   (Randolph & Houlsby, 1984). Note that, 0 1α< < , α  is the 
frictional coefficient. For a certain point E at the pipe-soil interface 
(see Fig. 2), the direction for the slip-line: 

E / 4 / 2θ π ϕ= − + Δ , in 
which arcsinαΔ = . 
 
Slip-line Field for the Pipeline Foundations 
 
According to the slip-line field theory, the coordinates of the slip-lines 
can be obtained by solving the characteristic functions for slip-lines 
(Eqs. 4a and 4b) under certain boundary conditions using finite-
differential method, then the mean stress σ  and angle θ  can be 
calculated from the Hencky stress equations (Eqs. 5a and 5b).  
 
As shown in Fig. 2, the boundaries CG and CEB are the Riemann 
conditions for determining the uniform field CFG and the extrusion 
filed CBD, respectively; the boundaries CF and CD are the regressive 
Riemann conditions for determining the transition region CDF. Based 
on the stress analysis, on the line CG, the minimum stress can be 
determined with the magnitude of q  and its direction is vertical. On 
the line CEB, the maximum stress is located, whose direction is 
perpendicular to the line CEB, and whose magnitude is to be 
determined. Lines CF and CD are the boundary for the filed CFD, 
whose solution can be determined from the results of the uniform field 
CFG and those of the extrusion filed CBD. By employing the finite-
differential method, the slip-line fields for the pipeline foundations can 
be constructed. Fig. 2 gives the slip-line fields for the smooth pipeline 
( 0α = ) and the rough pipeline ( 0.5α = ), respectively. As indicated 
in the figure, the whole slip-line field can be divided into three regions, 
i.e. the uniform region CFG, the extrusion region CBD, and the 
transition region CDF. The magnitude of the slip-line field for the case 
of the rough pipelines is larger than that of the smooth pipes. 
 

Fig. 2 Slip-line field of the pipeline foundation (Real lines: smooth 
pipeline ( 0α = ); dash lines: rough pipeline ( 0.5α = )) 
 
Ultimate Load for Pipeline Foundations: Derivation 
 
On the basis of the aforementioned basic assumptions and the 
constructed slip-line fields, the ultimate load for pipeline foundations 
can be further derived. The ultimate bearing load  is expressed in 
the form of integral as  

uP

0

E , y0
2uP r

ϕ
dσ ϕ= ∫ ,                            (6) 

where  is the vertical component of the pipe-soil contact force; 
E , yσ

470



0ϕ  is the embedment angle (see Fig. 2): BOC∠

(0 arccos 1 e rϕ = − )0
. As shown in Fig. 2, points A and E are along 

the same α  line, and let BOE=ϕ∠ . Submitting the values of σ  and 
θ  at points A and E into the Hencky stress equations (i.e. Eqs. 5a and 
5b), then 

A A E-2c -2c Eσ θ σ θ= ,                          (7) 
That is, 

E A E A A2c( ) 2c( )
2 2
πσ σ θ θ σ Δ

= + − = + + −ϕ .        (8) 

As 
E E , 1 = cσ σ −  (

E , 1σ  is the first principal stress at point-E along 

the pipe-soil contact arc), then 

 , 1  2 ( )
2 2E E Ac c cπσ σ σ ϕΔ

= + = + + − + ,          (9) 

in which = A q cσ + . At the point-E along the pipe-soil contact arc, the 
vertical component of the pipe-soil contact force 

,E yσ  can be 

expressed as  

,  , 1 cos( / 2)E y Eσ σ ϕ= −Δ .                     (10)  

Submitting Eqs. 9 10 into Eq. 6, the ultimate bearing load  can be 
derived as 

∼ uP

0

0
2 [ ( 2 - 2 ) ]cos( )
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ϕ

dπ ϕ ϕ Δ
= + Δ + + −∫ ϕ  

02[ (2 ) ][sin( ) sin( )]
2 2

cr qrπ ϕ Δ Δ
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2
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Referring to the formula of the bearing capacity for traditional strip 
footings, the bearing capacity for pipeline foundations may be 
expressed in the following form: 

02 sin
u

c q
P cN qN

r ϕ
= + ,                         (12) 

where  “
02 sinr ϕ ” is the width of the pipe-soil interface.  

 
Submitting Eq. 11 into Eq. 12, the bearing capacity factor for cohesion 
(

cN ) and the bearing capacity factor for distributed load ( ) can 

thereby be obtained: 
qN

0
0

1 (2+ )[sin( ) sin( )]
sin 2 2cN π ϕ

ϕ
Δ Δ

= + Δ − +  

0 0 0
0

2 [ sin( ) cos( ) cos( )
sin 2 2 2

ϕ ϕ ϕ
ϕ

Δ Δ
− − + − − ]Δ , (13a) 

0

0

sin( ) sin( )
2=

sinqN
ϕ

ϕ

Δ Δ
− +

2 .                                              (13b) 

 
PARAMETRIC STUDIES 
Comparison of Bearing Capacity between Pipeline and 
Traditional Strip Footings 

 
In the analysis on the general shear failure mechanism of a strip 
footing on weightless soils, e.g. Prandtl-Reissner solution, the smooth 
strip footing carries a uniform pressure on the surface of a mass of 
homogeneous, isotropic soil; the shear strength parameters for the soil 
are c  and φ ; and a surcharge pressure q  acting on the soil surface 
is considered. The following exact solution has been widely used for 

the ultimate bearing capacity of a strip footing on the surface of a 
weightless soil (see Craig, 1997): 

u
c q

P cN qN
b
= + ,                         (14) 

where 
cN and 

qN  are the bearing capacity factors, i.e. 

=( 1) cotc qN N φ− ,                      (15a) 

tan 2e tan (
4 2qN π φ )π φ

= + ,              (15b) 

b  is the width of the traditional strip footing (note: for the 
pipeline foundation, 

02 sinb r ϕ= (see Fig. 2)), φ  is the internal 
angle of soils. For a pure cohesive soil (i.e. 0φ = ), 

1qN = ,                                     (16a) 

2cN π= + .                              (16b) 
 
For the case of the partially-embedded pipeline on Tresca soils, if the 
pipeline surface is fully smooth ( ), then the bearing capacity 
factors (13a) and (14b) are simplified as 

=0Δ

0
0

0

1 cos=( 2)+2( )
sincN ϕπ ϕ

ϕ
−

+ − ,                  (17a) 

1qN = .                          (17b) 

Now to examine the two extrema of  (see Eq. (17a)): cN

0

0
00

0

1 coslim ( 2)+2( ) 2
sincN

ϕ

ϕπ ϕ
ϕ→

− π= + − = + ,       (18a) 

0 2

lim 4cN
πϕ →

= .   (18b) 

Fig. 3 gives the variation of 
cN  with  for smooth pipes. When 0 /e r

0 0ϕ → (i.e. the pipeline just touches the soil surface 
0e r =0), the 

bearing capacity factor 
cN  for pipeline foundations (see Eq. 18a) 

matches that for the traditional strip footings (see Eq.16b). This 
indicates that, when the pipeline embedment approaches zero, the 
formulae for the bearing capacity of pipeline foundations degenerate 
into those for the traditional strip footings. With the increase of the 
pipeline embedment, the value of 

cN  decreases gradually and finally 
reaches 4.0 when the pipeline is half buried (see Fig. 3). Therefore, if 
pipeline foundations are directly simplified as traditional strip footings, 
the bearing capacity factor 

cN  would be over evaluated, whose error 
may be up to 28.5%. 
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Fig. 3  Variation of  with  for smooth pipes. cN 0 /e r
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Parametric Study 
 
Based on the derived formulae for the bearing capacity of the partially 
embedded pipeline on Tresca soils, i.e. Eqs. 13a and 13b, the 
relationship between the bearing capacity factors (

cN , ) and the 

non-dimensional pipeline embedment ( ), and the pipe-soil 
frictional coefficient (

qN

0 /e r
α ) can be established. Fig. 4 gives the variation 

of 
cN  with the parameters  and 0 /e r α . As shown in Fig. 4, when 

, the values of 
0 / 0.e r < 6 cN  initially increases to a maximum value, 

then decreases continuously with the increase of the frictional 
coefficient α ; when , the values of 

0 / 0.e r > 6 cN  increases with 
increasing α . The effect of the pipe-soil frictional coefficient (α ) on 

cN  increased with the increase of pipeline embedment ( ). When 
0 /e r

α =1 and , the maximum value of 
0 /e r =1 cN  emerges, i.e. 

cN = 7.30 
(see Fig. 4). 

 

 
 
Fig. 4  Variation of 

cN  with α  and  0 /e r
 
Fig. 5 gives the variation of 

qN  with the parameters  and 0 /e r α . 

When , 
0 / 0.2e r < qN  decreases with increasing α . Nevertheless, 

when ,  increases with increasing 
0 / 0.2e r > qN α . When α =1 and 

, the maximum value of 
0 /e r =1 qN  emerges, i.e. 

qN = 1.42 (see Fig. 

5). 

 
 
Fig. 5 Variation of 

qN  with α  and  0 /e r

 
For better understanding the bearing capacity of pipeline foundations, 
the dimensionless ultimate bearing load 

uP cr  is introduced. Eq. (12) 
is thereby rewritten as 

02sinu c
qP cr N N
c

ϕ ⎛= +⎜
⎝ ⎠

q
⎞
⎟ ,                   (19) 

in which, the bearing capacity factors 
cN  and 

qN  are calculated with 

Eqs. 13a and 13b; 0ϕ  is the embedment angle (see Fig. 1). Fig 6 gives 
the variation of  with the dimensionless pipeline embedment 

( ) and the pipe-soil frictional coefficient (
/uP cr

0 /e r α ), under the 
condition that the embedment is less than the pipeline radius ( 0q = ). 
For the fixed value of α ,  increases with increasing . For 
the fixed valus of ,  increases with increasing 

/uP cr 0 /e r

0 /e r /uP cr α ; the 
effects of α  on  are higher for larger values of . When /uP cr 0 /e r
α =1 and 

0 / 1e r = ,  reaches its maximum value (see Fig. 6).  /uP cr
 

 
 
Fig. 6  Variation of 

uP cr  withα  and  (
0 /e r 0q = ) 

 
CONCLUSIONS 
 
Based on the slip-line field theory, the theoretical solutions are derived 
for the bearing capacity of a partially-embedded pipeline on Tresca 
soils, taking into account the pipe-soil contact frictional coefficient and 
the pipeline embedment, etc. Parametric studies are performed on the 
bearing capacity factors and the dimensionless ultimate load. The 
following conclusions can be drawn: 

(1) Due to the special circular arc shape of the pipeline foundations, 
the constructed slip-line fields for the partially-embedded 
pipeline on Tresca soils are different from those of traditional 
strip footings. The pipe-soil contact friction also has much effect 
on the magnitude of the slip-line fields. The slip-line field for the 
rough pipeline is larger than that for the smooth pipeline. 

(2) The bearing capacity factors for pipeline foundations, i.e. Nc and 
Nq, are derived. When the embedment of a smooth pipeline 
approaches zero, the bearing capacity factors degenerate into 
those for the traditional strip-line footing (Prandtl’s mechanism). 
With the increase of the pipeline embedment, the bearing 
capacity factor Nc decreases gradually, and finally reaches the 
minimum value (4.0) when the embedment equals to pipeline 
radius. As such, if pipeline foundations are directly simplified as 
traditional strip footings, the bearing capacity factor Nc would be 
over evaluated. 
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(3) The bearing capacity factors for pipeline foundations are 
significantly influenced by non-dimensional pipeline embedment 
and pipe-soil frictional coefficient.  

(4) A dimensionless ultimate bearing load Pu/cr is introduced. Under 
the condition that the embedment is less than pipeline radius, 
Pu/cr increases with increasing pipeline embedment (e0/r) for the 
fixed value of the pipe-soil frictional coefficient (α ); Pu/cr 
increases with increasing the pipe-soil frictional coefficient (α ) 
for the fixed value of e0/r. The effects of α  on Pu/cr get higher 
for larger values of e0/r.  
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