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a b s t r a c t

A new structure of solution elements and conservation elements based on rectangular mesh was pro-
posed and an improved space-time conservation element and solution element (CE/SE) scheme with sec-
ond-order accuracy was constructed. Furthermore, the application of improved CE/SE scheme was
extended to detonation simulation. Three models were used for chemical reaction in gaseous detonation.
And a two-fluid model was used for two-phase (gas–droplet) detonation. Shock reflections were simu-
lated by the improved CE/SE scheme and the numerical results were compared with those obtained by
other different numerical schemes. Gaseous and gas–droplet planar detonations were simulated and
the numerical results were carefully compared with the experimental data and theoretical results based
on C–J theory. Mach reflection of a cellular detonation was also simulated, and the numerical cellular pat-
terns were compared with experimental ones. Comparisons show that the improved CE/SE scheme is
clear in physical concept, easy to be implemented and high accurate for above-mentioned problems.

Crown Copyright � 2009 Published by Elsevier Ltd. All rights reserved.
1. Introduction

Numerical simulations of detonation have been improved im-
mensely in recent 25 years with the development of both compu-
tational methods and available computer facilities. There are two
main challenges in detonation simulations. One is to calculate
the process of energy release in reaction flow; the other one is to
capture the strong discontinuity in detonation waves. Successful
solutions to above two challenges depend on the development of
chemical reaction models and numerical schemes, respectively.

Many chemical reaction models have been used in detonation
simulations, such as the C–J (Chapman–Jouguet) model [1], the
one-step reaction model [2], the two-step reaction model [3], the
detailed chemical reaction model [4] and Sichel’s two-step reaction
model [5]. Algorithm, such as famous TVD (Total Variation Dimin-
ishing) scheme which treats discontinuity surface well, has been
applied to detonation simulations [6]. Owing to above develop-
ment, numerical simulations have been widely used to solve deto-
nation problems in both academic explore and engineering
practice. However, authors have noted that many numerical
schemes lacked comprehensive verification before being applied,
especially for CE/SE method (space-time conservation element
and solution element method) [7,8].

CE/SE method proposed originally by Chang [9,10] is a new high
resolution CFD (Computational Fluid Dynamics) method for con-
009 Published by Elsevier Ltd. All r

: +86 10 62751812.
servation laws. It substantially differs from other traditional
numerical methods by possessing many features, e.g. unified treat-
ment of space and time, new shock-capturing strategy, satisfaction
of both local and global flux conservations in space and time by
introducing conservation elements (CEs) and solution elements
(SEs) etc. Simplicity, generality and accuracy are the three main
advantages of the CE/SE method [9]. The construction of a CE/SE
scheme includes the following steps: changing governing equa-
tions from differential form to integral form, dividing space-time
region as CEs and SEs, approximating flux vectors in SEs by Taylor
expansions, obtaining relation equations between the space deriv-
atives and the time derivatives, and finally integrating the govern-
ing equations on CEs. The CE/SE method has gained great successes
in simulations of jet nozzle [11] and aero-acoustics [12], steady
viscous flows [13], MHD problems [14], multi-material elastic–
plastic flows [15]. Especially, CE/SE method has been applied to
detonation simulations based on one-step chemical reaction model
[2,16] and detailed chemical reaction model [7,17], since it is able
to capture strong discontinuity surface accurately. The original
CE/SE method also has some disadvantages, such as complicated
mesh structure for two-dimensional situation, and the shortage
of high-accuracy schemes. Zhang et al. [18] have proposed quadri-
lateral and hexahedral meshes for two and three-dimensional
CE/SE schemes and obtained satisfying results. Liu et al. [19] have
proposed one-dimensional high-accuracy CE/SE schemes and ana-
lyzed the stability of the second-order CE/SE scheme.

The aim of present work is to construct a simple and accurate
two-dimensional CE/SE scheme for both gaseous and two-phase
ights reserved.
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Table 1
Detailed chemical reaction model for a hydrogen–oxygen detonations (Unit: mole, s,
cm, K, cal).

Reaction Ak nk Eak

1 H2 + O2 = 2OH 1.70 � 1013 0.0 47,780
2 OH + H2 = H2O + H 1.17 � 109 1.3 3626
3 O + OH = O2 + H 4.00 � 1014 �0.5 0
4 O + H2 = OH + H 5.06 � 104 2.7 6290
5 H + O2 + M = HO2 + M 3.61 � 1017 �0.7 0
6 OH + HO2 = H2O + O2 7.50 � 1012 0.0 0
7 H + HO2 = 2OH 1.40 � 1014 0.0 1073
8 O + HO2 = O2 + OH 1.40 � 1013 0.0 1073

8

G. Wang et al. / Computers & Fluids 39 (2010) 168–177 169
detonation simulations. A new structure of CEs and SEs based on
rectangular mesh and the second-order Taylor expansion in SEs
is proposed. Three common chemical reaction models including
two-step reaction model, detailed chemical reaction model and
Sichel’s two-step reaction model are used in gaseous detonation.
A two-fluid model is used for simulating two-phase (gas–droplet)
detonation. To verify the accuracy of the improved CE/SE scheme,
shock reflections, gaseous planar detonations, Mach reflection of
cellular detonations and two-phase planar detonations were simu-
lated, respectively. All numerical results were compared with the
corresponding experimental and theoretical results in detail.
9 2OH = O + H2O 6.00 � 10 1.3 0
10 H + H + M = H2 + M 1.00 � 1018 �1.0 0
11 H + H + H2 = H2 + H2 9.20 � 1016 �0.6 0
12 H + H + H2O = H2 + H2O 6.00 � 1019 �1.3 0
13 H + OH + M = H2O + M 1.60 � 1023 �2.0 0
14 H + O + M = OH + M 6.20 � 1016 �0.6 0
15 O + O + M = O2 + M 1.89 � 1013 0.0 �1788
16 H + HO2 = H2 + O2 1.25 � 1013 0.0 0
17 HO2 + HO2 = H2O2 + O2 2.00 � 1012 0.0 0
18 H2O2 + M = 2OH + M 1.30 � 1017 0.0 45,500
19 H2O2 + H = HO2 + H2 1.60 � 1012 0.0 3800
20 H2O2 + OH = H2O + HO2 1.00 � 1013 0.0 1800

Third-body effect coefficients: (5) H2O = 18.6, H2 = 2.86; (10) H2O = 0, H2 = 0; (13)
H2O = 5.0; (14) H2O = 5.0; others = 1.0.
2. Chemical and physical models

2.1. Chemical reaction models

Many chemical reaction models, such as the C–J model [1], the
one-step reaction model [2], the two-step reaction model [3], the
detailed chemical reaction model [4], Sichel’s two-step reaction
model [5] and some reduced chemical reaction models, have been
applied to numerical simulations of detonation waves. The C–J
model has an obvious limitation due to the infinite reaction rate,
though it is widely used for estimating the average properties of
the detonation front. The one-step reaction model can be simpli-
fied from the two-step reaction model. Most reduced chemical
reaction models are designed for special problems. Therefore, three
models, that are the two-step reaction model, the detailed chemi-
cal reaction model and Sichel’s two-step reaction model, are
adopted in this paper for general detonation problems.

Two-step reaction model considers a complicated chemical
reaction to be an induction reaction and an exothermic reaction.
For both induction reaction and exothermic reaction, the progress
parameters a and b are unity at first, then a decreases to zero, b de-
creases until an equilibrium state is reached. The rates xa and xb

are given as follows [20]

xa ¼
da
dt
¼ �kaq exp � Ea

RT

� �
; ð1Þ

xb ¼
db
dt
¼

0ða > 0Þ
�kbp2 b2 exp � Eb

RT

� �
� ð1� bÞ2 exp � EbþQ

RT

� �h i
ða 6 0Þ

(
;

ð2Þ

where q is the mass density, p the pressure, T the temperature, R the
gas constant, Q the heat release parameter, ka and kb the constants
of reaction rates, and Ea and Eb the activation energies.

The detailed chemical reaction model is extensively used to de-
scribe the transformation of reactants into products at the molecular
level through a large number of elementary steps. Concentrations of
reactants, intermediates and products can be computed by integrat-
ing the sets of differential equations describing the rates of
formation and destruction of each species. In current study, an
eight-species (H2, O2, H, O, HO, HO2, H2O, H2O2), twenty-reaction
model [21] for a hydrogen–oxygen detonation is used. Table 1 shows
the elementary chemical equations and corresponding model
parameters, where Ak, nk and Eak are constant of reaction rate, tem-
perature index and activation energy of the ith elementary reaction
step, respectively. Equations for reaction rates can be found in refer-
ence [21,22].

Sichel et al. [5] proposed a new two-step reaction model, which
estimates species densities approximately and presents a generic
Arrhenius form for the exothermic reaction rate xb. Sichel’s two-
step reaction model supposes that all mass percentages vary line-
arly with respect to the progress parameter of exothermic reaction
b. So the mass percentage of the ith species, Ci, can be gained as
Ci ¼ ðCRi � CPiÞbþ CPi; ð3Þ

where CRi and CPi are the mass fractions of the ith species in the ini-
tial reactant and balanced product, respectively. The rate of exo-
thermic reaction xb is

xb ¼
0 a > 0
ð1� bÞ � a� exp � b

T

� �
þ c a 6 0

(
; ð4Þ

where a, b, c are coefficients.

2.2. Governing equations

Governing equations for a gaseous detonation problem are two-
dimensional Euler equations

@U
@t
þ @E
@x
þ @F
@y
¼ S: ð5Þ

For two-step reaction model and Sichel’s two-step reaction
model, U = (q, qu, qv, E, qa, qb)T, E = (qu, qu2 + p, quv, (E + p)u,
qau, qbu)T, F = (qv, quv, qv2 + p, (E + p)v, qav, qbv)T, S = (0, 0, 0,
0, xa, xb)T, and for detailed chemical reaction model, U = (qCi,
qu, qv, E)T, E = (quCi, qu2 + p, quv, (E + p)u)T, F = (qvCi, quv,
qv2 + p, (E + p)v)T, S = (xi, 0, 0, 0)T, where q is the mass density, u
and v the velocity components, p the pressure, xi the production
rate of the ith species. Total energy density E is defined as

E ¼ p
c� 1

þ qðu2 þ v2Þ
2

þ qbQ ; ð6Þ

for two-step reaction model, and

E ¼ qh� pþ q
2

u2 þ v2
� �

; ð7Þ

for detailed chemical reaction model and Sichel’s two-step reaction
model, respectively. Here, c is the specific heat ratio, h the enthalpy
calculated by the thermochemical relation h = h(qi, T) [22], and p
the pressure calculated by the state equation of perfect gas p = qRT.

In detonation simulations, the scale gap between characteristic
time of chemistry and that of flow is usually significant and must
be considered specially. This difficulty is so called ‘‘stiffness”. The
magnitude of stiffness in a problem can be weighted by Damkohler
number Da = sf/sc, where sf and sc are the characteristic time scale
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of flow and chemistry, respectively. Decoupling method is applied
to avoid the difficulty of stiffness in current work. That means a
complete computing cycle consists of a flow step and thirty reac-
tion steps, if Da is equal to 30.

2.3. Two-fluid model

Two-phase system dealing with gas–fuel detonation studies is a
mixture including gas–droplet, gas–film (layer) and gas–dust.
Compared with gaseous detonations, complex interaction between
two phases is one of the main difficulties in numerical simulation
of a two-phase detonation. In this paper, a two-fluid model is intro-
duced for treating gas–droplet detonations.

It is assumed that the characters of a considered gas–droplet
system as follows: the flow is unsteady; the initial temperature
of the gas and the droplets is the same; the radii of droplets are
uniform; droplets are homogenously distributed initially; the
phase of droplets is considered as a continuous medium; the shape
of droplets always keeps to be spherical even in process of separa-
tion, evaporation, etc; the temperature distribution in droplets is
uniform; the total volume of droplets can be ignored compared
with the volume of gas; the interactions between droplets are ig-
nored; when the fuel reaches the gaseous state, chemical reactions
occur and accomplish immediately; the chemical energy is ab-
sorbed only by gas, which is considered as ideal.

Under above assumptions, the governing equations for both gas
phase and droplet phase are Eq. (5), and for gas phase, U = (q, qu,
qv, E)T, E = (qu, qu2 + p, quv, (E + p)u)T, F = (qv, quv, qv2 + p, (E +
p)v)T, S = (Id, �Fx + udId, �Fy + vdId, �(udFx + vdFy) + ((u2

d + v2
d)/2 + Q)

Id)T; for droplet phase, U = (qd, qdud, qdvd, N)T, E = (qdud, qdu2
d , qdudvd,

Nud)T, F = (qdvd, qdudvd, qdv2
d , Nvd)T, S = �(Id,�Fx + udId,�Fy + vdId, 0)T,

whereqd is the mass density of the droplet phase, ud and vd the veloc-
ity components of droplet phase, N the droplet number per unit vol-
ume, Id the density variations during phase change, and Fx and Fy the
force components acting on droplets. The total energy density E is de-
fined as

E ¼ p
c� 1

þ qðu2 þ v2Þ
2

: ð8Þ

Id can be obtained [23,24] as

Id ¼ 12rN
kNuðT � TdÞ

L
þ 4pr3=2qf N

ql
qf ld

 !1=6
ld

qf

 !1=2

jV � Vdj1=2
:

ð9Þ

The first term of Eq. (9) describes the evaporation of fuel drops,
and the second term of Id describes the shattering of fuel drops. The
force components on droplets are expressed [23,24] as

Fx ¼ 0:5pr2CDqjV � Vdjðu� udÞN; ð10Þ

Fy ¼ 0:5pr2CDqjV � Vdjðv � vdÞN; ð11Þ
Fig. 1. Space-time geometrical configuration of the or
with

jV � Vdj ¼ ½ðu� udÞ2 þ ðv � vdÞ2�1=2
; ð12Þ

Re ¼ 2qrjV � Vdj
l

; ð13Þ

Nu ¼ 2þ 0:6Re1=2Pr1=3; ð14Þ

CD ¼
27Re�0:84;

0:27Re0:21;

2;

8><
>:

Re < 80
80 6 Re < 104

Re P 104

; ð15Þ

where r is the radius of fuel droplets, k the heat conduction coeffi-
cient of gas, Td the temperature of fuel droplets, L the heat of evap-
oration of fuel droplets, qf the density of fuel droplets, l and ld the
viscosity coefficients of gas phase and droplet phase, respectively.
CD is the drag coefficient, Nu means Nusselt number, Re means
Reynolds number and Pr means Prandtl number.

3. The improved CE/SE scheme

Different numerical CE/SE schemes can be constructed from dif-
ferent definitions of SEs and CEs, since flux vectors are approxi-
mated by Taylor expansions in SEs and control equations are
integrated in CEs. Fig. 1 shows the space-time geometrical config-
uration of Chang’s two-dimensional CE/SE scheme [10]. Due to the
obvious disadvantage that directions of space mesh are neither
perpendicular each other nor coincident with global Cartesian
coordinate, this special designs of SEs and CEs are neither conve-
nient to construct numerical schemes nor suitable for three-
dimensional extension.

Our improved two-dimensional CEs and SEs are demonstrated
in Fig. 2. It is obvious that mesh structures shown in Fig. 2 are more
general than those by Chang. In order to calculate the values of
physical variables at point P0, a SE and a CE (a cuboid volume re-
lated to the SE) are defined as shown in Fig. 2(b) and (c). A CE/SE
scheme corresponding to the new definition of SE and CE would
be easy to construct and direct to extend to three-dimensional
situation.

Consider two-dimensional conservation equations

@Um

@t
þ @EmðUmÞ

@x
þ @FmðUmÞ

@y
¼ 0; ð16Þ

where m is the number of the equations. Let (j, k, n) denote a set of
space-time mesh points, in which n = 0, ±1/2, ±1, ±3/2. . . for time,
j = 0, ±1/2, ±1, ±3/2. . . for x and k = 0, ±1/2, ±1, ±3/2. . . for y.
Fig. 2(a) shows the projection of mesh points on the x–y plane, in
which time interval between mesh points d and s is Dt=2 or 1/2
for n. For every grid point P’(j, k, n), there exists a solution element
SE(P’) (see Fig. 2(b)), and the corresponding conservation element
CE(P’) is the rectangle ACEGA0C0E0G0 (see Fig. 2(c)).
iginal two-dimensional CE/SE scheme (by Chang).



Fig. 2. Space-time geometrical configuration of the improved two-dimensional CE/SE scheme.

G. Wang et al. / Computers & Fluids 39 (2010) 168–177 171
Let x1 = x, x2 = y, x3 = t as coordinates of a Euclidean space E3. By
using the Gauss’ divergence theorem, Eq. (16) can be written in
form ofI

SðVÞ
Hm�ds ¼ 0; ð17Þ

where S(V) is the boundary of the space-time region V in E3,
Hm = (Em, Fm, Um) the space-time flux vector, ds = dr � n, in which
dr and n are the area and the unit outward normal vector of a sur-
face element on S(V).

For an arbitrary grid point P’, we define a solution element
SE(P’) constituted by the three perpendicular planes intersecting
at P’ as demonstrated in Fig. 2(b). Assuming that Um, Em and Fm

at point (x, y, t) in SE(P’) are approximated by the second-order
Taylor expansions at P’(j, k, n), i.e.

Umðdx; dy; dtÞP0 ¼ ðUmÞP0 þ ðUmxÞP0dxþ ðUmyÞP0dyþ ðUmtÞP0dt

þ 1
2
ðUmxxÞP0 ðdxÞ2 þ 1

2
ðUmyyÞP0 ðdyÞ2 þ 1

2
�ðUmttÞP0 ðdtÞ2 þ ðUmxyÞP0dxdyþ ðUmxtÞP0dxdt

þ ðUmytÞP0dydt; ð18Þ

Emðdx;dy;dtÞP0 ¼ ðEmÞP0 þ ðEmxÞP0dxþðEmyÞP0dyþðEmtÞP0dt

þ1
2
ðEmxxÞP0 ðdxÞ2þ1

2
ðEmyyÞP0 ðdyÞ2

þ1
2
ðEmttÞP0 ðdtÞ2þðEmxyÞP0dxdy

þðEmxtÞP0dxdtþðEmytÞP0dydt; ð19Þ
Fmðdx; dy; dtÞP0 ¼ ðFmÞP0 þ ðFmxÞP0dxþ ðFmyÞP0dyþ ðFmtÞP0dt

þ 1
2
ðFmxxÞP0 ðdxÞ2 þ 1

2
ðFmyyÞP0 ðdyÞ2

þ 1
2
ðFmttÞP0 ðdtÞ2 þ ðFmxyÞP0dxdy

þ ðFmxtÞP0dxdt þ ðFmytÞP0dydt; ð20Þ

where dx = x � xP’, dy = y � yP’, dt = t � tP’, xP’, yP’ and tP’ are the posi-
tion coordinates of point P’. (X)P’, (Xx)P’, (Xy)P’, (Xt)P’, (Xxx)P’, (Xyy)P’,
(Xtt)P’, (Xxy)P’, (Xxt)P’ and (Xyt)P’ are the constant of X, its first-order
and second-order derivative respect to x, y and t at point P’, respec-
tively, in which X denotes Um, Em and Fm, respectively.

Substituting Eq. (18)–(20) into Eq. (16), we can obtain

ðUmtÞP0 ¼ �ðEmxÞP0 � ðFmyÞP0
ðUmxtÞP0 ¼ �ðEmxxÞP0 � ðFmxyÞP0
ðUmytÞP0 ¼ �ðEmxyÞP0 � ðFmyyÞP0
ðUmttÞP0 ¼ �ðEmxtÞP0 � ðFmytÞP0

8>>><
>>>:

: ð21Þ

Above equations imply that the variables in the computation
are ðUmÞP0 and its first and second order space derivates (Umx)P’,
(Umy)P’, (Umxx)P’, (Umxy)P’ and (Umyy)P’, because Em and Fm are func-
tions of Um.
Assume that flux vectors in every CEs satisfy integral conserva-
tion laws. Note that the values of physical variables on mesh points
A, C, E and G are known. Integrating Eq. (17) on the surfaces of CE(P’)I

SðCEðP0 ÞÞ
Hm �ds¼

Z
ACEGþACC0A0þCEE0C0þEGG0E0þGAA0G0þA0CE0G0

Hm �ds

¼
Z

ACEG
Hm �dsþ

Z
ACC0A0

Hm �dsþ
Z

CEE0C0
Hm �ds

þ
Z

EGG0E0
Hm �dsþ

Z
GAA0G0

Hm �dsþ
Z

A0CE0G0
Hm �ds¼ 0: ð22Þ

With the aid of Eq. (18)–(20), we can obtain

ðUmÞP0 þ
Dx2

24
ðUmxxÞP0 þ

Dy2

24
ðUmyyÞP0 ¼

1
4

�U þ Dt
Dx

�Eþ Dt
Dy

�F
� �

; ð23Þ

where

�U ¼ Ûm
Dx
4
;
Dy
4
; 0

� �
A
þ Ûm �Dx

4
;
Dy
4
; 0

� �
C

þ Ûm �Dx
4
;�Dy

4
;0

� �
E
þ Ûm

Dx
4
;�Dy

4
;0

� �
G
; ð24Þ

�E ¼ Êm 0;
Dy
4
;
Dt
4

� �
A

� Êm 0;
Dy
4
;
Dt
4

� �
C

� Êm 0;�Dy
4
;
Dt
4

� �
E

þ Êm 0;�Dy
4
;
Dt
4

� �
G

; ð25Þ

�F ¼ F̂m
Dx
4
;0;

Dt
4

� �
A

þ F̂m �Dx
4
;0;

Dt
4

� �
C

� F̂m �Dx
4
;0;

Dt
4

� �
E

� F̂m
Dx
4
;0;

Dt
4

� �
G

; ð26Þ

in which

Ûmðdx;dy;dtÞP0 ¼ ðUmÞP0 þ ðUmxÞP0dxþðUmyÞP0dyþðUmtÞP0dt

þ1
6
ðUmxxÞP0 ðdxÞ2þ1

6
ðUmyyÞP0 ðdyÞ2þðUmxyÞP0dxdy; ð27Þ

Êmðdx;dy;dtÞP0 ¼ ðEmÞP0 þ ðEmxÞP0dxþðEmyÞP0dyþðEmtÞP0dt

þ1
6
ðEmyyÞP0 ðdyÞ2þ1

6
ðEmttÞP0 ðdtÞ2þðEmytÞP0dydt; ð28Þ

F̂mðdx;dy;dtÞP0 ¼ ðFmÞP0 þ ðFmxÞP0dxþðFmyÞP0dyþðFmtÞP0dt

þ1
6
ðFmxxÞP0 ðdxÞ2þ1

6
ðFmttÞP0 ðdtÞ2þðFmxtÞP0dxdt: ð29Þ

Eq. (23) shows that the current second-order derivates (Umxx)P’

and (Umyy)P’ at P0 must be known firstly for solving (Um)P0. With
the linearly estimated value in SE(P0) approximated from the last
half time step, the current second-order derivates (Umxx)P’ and
(Umyy)P’ can be expressed as



Fig. 3. Structural scheme of the shock reflection problem.
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ðUmxxÞP0 ¼
ðU0mxÞC � ðU

0
mxÞA þ ðU

0
mxÞE � ðU

0
mxÞG

2Dx
; ð30Þ

ðUmyyÞP0 ¼
ðU0myÞG � ðU

0
myÞA þ ðU

0
myÞE � ðU

0
myÞC

2Dy
; ð31Þ

where ðU0mxÞ ¼ ðUmxÞ þ Dt
2 ðUmxtÞ, ðU0myÞ ¼ ðUmyÞ þ Dt

2 ðUmytÞ.

The cross derivates can be computed from

ðUmxyÞP0 ¼ ðUmyxÞP0 ¼
ðUmxyÞ0P0 þ ðUmyxÞ0P0

2
; ð32Þ

where ðUmxyÞ0P0 ¼
ðU0mxÞG�ðU

0
mxÞAþðU

0
mxÞE�ðU

0
mxÞC

2Dy , ðUmyxÞ0P0 ¼
ðU0my ÞC�ðU0my ÞAþðU0my ÞE�ðU0my ÞG

2Dx .

Using the continuous condition at point A0, C0, E0 and G0, the left
and the right derivatives of Um respect to x and y can be gained as

ðUmxÞ�P0 ¼ �
1
Dx

Um 0; 0;
Dt
2

� �
A

þ Um 0;0;
Dt
2

� �
G

� 2ðUmÞP0
� 	

; ð33Þ

ðUmxÞþP0 ¼ þ
1
Dx
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To avoid numerical instability in discontinuous cases, the deri-
vates should be rewritten in a form of average of variables marked
with ‘+’ and ‘�’ in Eq. (33)–(36).

ðUmxÞP0 ¼
ðUmxÞþP0


 

ðUmxÞ�P0 þ UmxÞ�P0



 

ðUmxÞþP0
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4. Applications

4.1. Shock reflections

Shock wave reflection is a classical benchmark problem [25]. By
imposing suitable upstream conditions, an oblique incident and a
reflected shock wave will appear above a flat plate. Fig. 3 shows
Fig. 4. Density contours by impro
the structural scheme of this problem. The domain is a 4 � 1 rect-
angle containing 200 � 50 uniform meshes. The left boundary con-
ditions are q = 1.0, u = 2.9, v = 0, p = 0.7143; the upper boundary
conditions are q = 1.7, u = 2.6193, v = �0.50632, p = 1.5282; the
right boundary is free; and the bottom boundary is solid. The total
computing time is 2.5 with a uniform time step Dt = 0.002.

Fig. 4 shows the density contours computed by the improved CE/
SE scheme, which agrees with the exact solution (Fig. 3) well. In order
to evaluate accuracy of the improved CE/SE scheme further, we also
calculated the shock reflection problem under the same conditions
using Chang’s CE/SE scheme [10], second-order MUSCL scheme and
first-order Reo scheme. Fig. 5(a) shows the distribution of the pres-
sure coefficient Cp (= 2(p/p1 � 1)/(cM2

1)) at y = 0.5 by different
numerical schemes, and the exact solution is also provided. Fig. 5(b)
gives a local enlargement vision of the pressure coefficient. It is can
be seen from Fig. 5 that the accuracy of the improved CE/SE scheme
is highest, and that of Chang’s CE/SE scheme is higher than first-order
Roe scheme and second-orderMUSCL scheme with the same comput-
ing meshes. Fig. 5 also shows numerical results using the improved
CE/SE scheme with 100� 25 meshes, 400� 100 meshes and
800� 200 meshes, respectively. The numerical results converge to
the exact solution as the number of computing meshes increases.

The case of shock reflections shows that the improved CE/SE
method not only is a high-accuracy numerical method, but also
keeps the advantages of the original CE/SE method and enhances
its numerical accuracy.
4.2. Gaseous planar detonations

The computations in this section model a detonation propagating
in a stoichiometric H2–O2 gas, and the initial pressure and the tem-
perature are 1 atm and 298 K, respectively. Channel walls are con-
sidered as solid boundaries. Assume that there is no energy loss on
the walls during a detonation propagating. The detonation wave is
generated by an igniting on the left with a high initial pressure and
temperature as 28 atm and 3874 K, respectively. Those initial condi-
tions make DDT (Deflagration-to-Detonation Transition) process
complete within 0.5 ls, so we can study detonations clearly without
considering the deflagration propagation and the DDT process.

Computing parameters of stoichiometric H2–O2 gas for the
three chemical reaction models are given as follows.

1. Two-step reaction model: Q = 1.33 � 107 J/kg, ka = 3.0 � 108 m3/kg/
s, kb = 1.875� 10�5 m4/N2/s, Ea = 2.261� 107 J/kg, Eb = 4.6151�
106 J/kg [20].

2. Detailed chemical reaction model: see Table 1 [21].
3. Sichel’s two-step reaction model: a = 1.2 � 108, b = 8 � 103, c = 0

[5]; CP(H2, O2, H, O, HO, HO2, H2O, H2O2) = (1.978 � 10�2,
0.10042, 4.49 � 10�3, 3.27 � 10�2, 0.14027, 2.3209 � 10�4,
0.70209, 2.2772 � 10�5) which are calculated from the detailed
chemical reaction model.

Fig. 6(a)–(c) show the pressure profiles using the two-step
reaction model, the detailed chemical reaction model and Sichel’s
ved CE/SE scheme (200 � 50).



Fig. 5. Pressure coefficient at y = 0.5 by different numerical schemes (200 � 50).

Fig. 6. Pressure profiles by different chemical reaction models (1000 meshes).
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reaction model, respectively. All of the three figures are typical
pressure profiles of a planar detonation wave. The highest pressure
appears in detonation front, the pressure decreases in rarefaction
zone and keeps constant in stable zone. Table 2 gives characteristic
quantities of detonation waves coming from five different ways
(experiment, C–J theory, and three numerical simulations by the
improved CE/SE scheme using two-step, detailed and Sichel’s
two-step reaction models, respectively) under the same initial con-
ditions. Relative errors of detonation velocities calculated by the
three chemical reaction models are all limited to 3% compared to
the experimental result. As to detonation temperature and C–J
pressure, the detailed chemical reaction model agrees best with
the experimental data. For peak pressure, the two-step reaction
model agrees best with the experimental data.

In order to verify the improved CE/SE scheme further, we simulate
H2–O2 detonations at different equivalence ratios using the detailed
chemical reaction model. Fig. 7(a)–(c) show comparisons of the three
different physical variables, such as the detonation velocities, the C–J
pressures and the von Neumann peak pressures, obtained from our
numerical results, experiment and C–J theory, respectively. The com-
parisons show that detonation velocities by C–J theory and simula-
tions are both agree well with that from experiments, but for peak
pressure and C–J pressure at low equivalence ratios situations, the
numerical results are more accurate than that by C–J theory.

This case indicates that the improved CE/SE scheme can simu-
late gaseous planar detonation waves successfully and accurately
using the three chemical reaction models.
4.3. Mach reflection of cellular detonations

Reflection of detonation wave on a wedge is one of the most
fundamental problems relating interactions between detonation
wave and surrounding structure [27–29]. In this section, we simu-
lated Mach reflection of cellular detonations and captured cellular



Table 2
Detonation properties by different ways (1000 meshes).

Detonation
velocity
(m/s)

Temperature
(K)

C–J
pressure
(atm)

Peak
pressure
(atm)

Experiment [26] 2825 3583 18.6 27.1
C–J model [26] 2853 � 18.59 34.16
Two-step reaction model 2784 2466 12.55 28.5
Detailed chemical reaction

model
2826 3421 18.60 31.4

Sichel’s two-step reaction model 2908 4037 19.03 35.1
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patterns on tube wall. Computational models are the same as Sec-
tion 4.2 except that a 19.3� wedge is putted in the tube. The bound-
ary of the wedge is also a solid.

Fig. 8(a)–(d) show the cellular patterns observed in experiment
[27] and numerical simulations using the two-step reaction model,
the detailed chemical model and Sichel’s two-step reaction model,
respectively. It is found that all the three numerical results can de-
scribe the basic phenomena of cellular detonation reflections, such
as regular numerical cellular pattern at the left of the wedge,
changes of the size and the shape of cells between the triple-point
trajectory and the wedge. Table 3 lists characteristic parameters of
cellular patterns and detonation reflections. Fig. 9 shows a sche-
matic sketch identifying characteristic parameters of the cellular
pattern. Comparisons in Table 3 show that the numerical results
by the three chemical reaction models all agree well with the
experimental results in quantity.

The case of Mach reflection of cellular detonations indicates
that the improved CE/SE scheme can simulate cellular structure
and reflection of gaseous detonations accurately using all the three
chemical reaction models.
Fig. 7. Numerical results compared with experimental and theoretical results.
4.4. Two-phase planar detonations

In this section, two-phase planar detonations in a gas–droplet
system are simulated. Initial pressure and temperature are 1 atm
and 298 K, respectively. Fuel droplets are made of C3H6O and with
a uniform radius 50 lm. Channel walls are still considered as solid
boundaries. Detonation wave is generated by igniting in the left
with a high initial pressure and temperature as 20 atm and
2980 K, respectively. Other computing parameters of a stoichiom-
etric O2–C3H6O are given as below: k = 0.1 W/K/m, L = 5.27 � 105 J/
kg, qf = 860 kg/m3, l = 2.07 � 10�5 Pas, ld = 3.5 � 10�4 Pas, Q =
3.17 � 107 J/kg, Pr = 0.74.

Fig. 10(a)–(d) show the distributions of the pressure, the tem-
perature, the density of gas phase and the density of droplet phase
in x direction at t = 1 � 10�3 s. It can be seen that the profiles of the
pressure, the temperature and the density of the gas phase are sim-
ilar to those of gaseous detonations, but values of physical quanti-
ties are higher than those of gaseous detonations. That means the
improved CE/SE scheme can simulate two-phase planar detona-
tions using the two-fluid model. The higher values of physical
quantities are due to the high chemical energy of the liquid fuel
and that is one of the main reasons for two-phase detonation
research. Fig. 10(d) shows that the length of chemical reaction zone
is about 0.06 m, which is much longer than that in a gaseous det-
onation. This phenomenon was also observed in experiments [30].

It is assumed that chemical reactions finish immediately when
fuel droplets are converted into gaseous state in our two-fluid
model. The rate of state transformation is determined by Eq. (9).
So the rate of chemical reaction is related to Id. Comparing the
characteristic time of Id (physical process of fuel droplet) with that
of chemical reactions, it can be proved that the assumption is
reasonable.
The variation of droplet radius respect to time can be computed
by

dr
dt
¼ 9kNuðT � TdÞ

prqdL
þ 3

ql
qdld

� �1
6 ld

qf

 !1
2

jV � Vdj1=2r�
1
2: ð39Þ



Fig. 8. Cellular patterns of detonation waves over the 19.3� wedge.

Fig. 9. Schematic sketch identifying characteristic parameters of the cellular
pattern.

Table 3
Characteristic parameters of cellular patterns and detonation reflections.

Cell
width/ cell
length

Exit
angle
(�)

Entrance
angle (�)

Angle of
transverse
wave trace
(�)

Angle between
the triple-point
trajectory and
the wedge (�)

Experiment 0.5–0.6 5–10 32–40 �30 11.5–13.0
Two-step 0.59 9.2 33.0 30.5 �13.1
Sichel’s two-step 0.60 11.2 31.5 29.0 �11.3
Detailed 0.51 9.5 38.2 28.5 �12.2
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From Fig. 10 the approximate values of physical quantities can be
obtained as: q � 1.0 kg/m3, |V � Vd| � 1000 m/s and (T � Td) �
2200 K, then dr/dt � 1.0 m/s calculated from Eq. (39). That means
the characteristic time of Id is 5 � 10�5 s, if the radius of fuel droplets
is equal to 50 lm. The rate of chemical reactions is obtained as
1.0 � 105 kg/m3/s from Eq. (2). The fuel droplet concentration is
about 5%. So the characteristic time of chemical reactions is equal
to 5 � 10�7 s (�5 � 10�5 s). The comparison implies that the char-
acteristic time of Id is much larger than that of chemical reaction.
Therefore the chemical reaction can finish within the characteristic
time of Id.

In order to verify the accuracy of the improved CE/SE scheme
in two-phase detonations, we simulated two-phase planar
detonations in O2–C6H14 and O2–C10H20 system with different
equivalence ratios and droplet radii. Table 4 shows detonation
velocities at different computational conditions with correspond-
ing results from C–J theory and experiments [30,31]. The experi-
mental errors in gas–droplet detonations are much larger than
that in gaseous detonations, because experimental conditions of
gas–droplet detonations, such as the sizes and distribution of drop-
lets, are quite difficult to be well-proportioned. But people prefer
to trust in experimental results because errors of C–J theory which
ignores two-phase effects are larger [30]. Table 4 also shows rela-
tive errors (= (v � vexperiment)/v) of the velocities from numerical
simulations and the C–J model respect to that from experiments.
It can be found that the numerical velocities are all more accurate
than C–J velocities. The relative errors exceed 10% in only two
cases, and we believe that the reason should also be the uncertain
experimental results. As to the whole results, the relative errors of
numerical simulations could be considered as less than 10%.

The case of two-phase planar detonations provides an accurate
evidence for using the improved CE/SE scheme and the two-fluid
model to simulate two-phase detonation problems. As we know, it
is the first time to use CE/SE method to solve two-phase detonations.
5. Conclusions

In this paper, we developed an improved CE/SE scheme for detona-
tion simulations. This scheme is based on the rectangular mesh and
the second-order Taylor expansion. Three chemical reaction models
and their governing equations were introduced for gaseous detona-
tion simulations, and a two-fluid model was introduced for two-phase
detonation simulations. Obviously, other chemical and physical mod-
els can be added to the current frame work conveniently.

The main advantages of the current scheme are clear in physical
concept, easy to be extended to three-dimensional situations, accu-
rate to capture the shock wave and convenient to implement bound-
ary conditions. In the applications of detonation simulations, this
scheme combines chemical reaction models with physics models
conveniently and treats source items easily. The numerical results
show that the improved CE/SE scheme can simulate gaseous and
two-phase detonation problems accurately. The improved CE/SE
scheme can also be applied to detonation simulations for academic
explore and engineering extensively.

In future, we will develop a three-dimensional improved CE/SE
scheme for detonation simulations. Some specific detonation prob-
lems, such as DDT process, PDE (Pulse Detonation Engine) perfor-



Fig. 10. Physical quantity profiles of O2–C3H6O two-phase detonation wave at t = 1 � 10�3 s (2000 meshes).

Table 4
Detonation velocities at different computational conditions (2000 meshes).

Liquid fuel Droplet radius (lm) Equivalence ratio Simulation (m/s), relative error Experiment (m/s) C–J theory (m/s), relative error

C6H14 20–30 0.41 1544.83, �7.50% 1670 1950, 16.77%
C6H14 20–30 0.49 1671.30, �2.83% 1720 2040, 18.60%
C6H14 20–30 0.56 1773.92, 4.35% 1700 2090, 22.94%
C6H14 20–30 0.68 1935.89, 8.76% 1780 2170, 21.91%
C10H20 145 1.0 1946.93, �8.59% 2130 2380, 11.74%
C10H20 375 0.914 1996.72, 7.93–10.32% 1810–1850 2260, 22.16–24.86%
C10H20 1300 0.23 1169.97, �6.40–20.62% 970–1250 1780, 42.40–83.51%
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mance, will also be investigated using the improved CE/SE scheme
and appropriate chemical and physical models.
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