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Abstract

The JTZ model [C. Jung, T. Tél and E. Ziemniak, Chaos 3, (1993)

555], as a theoretical model of a plane wake behind a circular cylinder

in a narrow channel at a moderate Reynolds number, has previously

been employed to analyze phenomena of chaotic scattering. It is ex-

tended here to describe an open plane wake without the confined nar-

row channel by incorporating a double row of shedding vortices into

the intermediate and far wake. The extended JTZ model is found in

qualitative agreement with both direct numerical simulations and ex-

perimental results in describing streamlines and vorticity contours. To

further validate its applications to particle transport processes, the in-

teraction between small spherical particles and vortices in an extended

JTZ model flow is studied. It is shown that the particle size has signif-

icant influences on the features of particle trajectories, which have two

characteristic patterns: one is rotating around the vortex centers and

the other accumulating in the exterior of vortices. Numerical results

based on the extended JTZ model are found in qualitative agreement

with experimental ones in the normal range of particle sizes.

PACS numer(s): 05.45.-a, 47.32.-y

Keywords: Plane wake, von Kármán Vortex street, JTZ model, Particle

dynamics
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The plane wake behind a circular cylinder is one of the most fun-

damental phenomena in fluid mechanics, involving periodic vortex

shedding from the cylinder, which is known as von Kármán vortex

street. Recently, there emerge vast interests in the chaotic ad-

vection of particles in the wake flow, in particular in its diversified

applications to such processes as chemical and biological ones. The

JTZ model was introduced to describe the plane wake in a narrow

channel at a moderate Reynolds number and used to investigate

chaotic advection of particles near the circular cylinder. In this

paper we extend the JTZ model to describe an open plane wake

without the confined narrow channel by adding a double row of

shedding vortices in the intermediate and far wake, where the es-

sential change is that large damping in the original JTZ model is

now replaced by little damping in the extended one. The results of

extended JTZ model agree qualitatively with both direct numeri-

cal simulations and experimental investigations on streamlines and

vorticity contours. By using the extended JTZ model, particle

transport processes are also simulated on different particle sizes.

It is shown that the qualitative features of particle trajectories in

the experimental investigation can be predicted by the numeri-

cal simulation, justifying the application of extended JTZ model

to quick and convenient estimations of the qualitative feature of

particle transports in open plane wake flows.

3



1 Introduction

The motion of particles in a non-uniform flow has received great attention

due to its potential applications to both natural and engineering systems[1],

as well as its dominant role played in the transport processes of particulate

and multi-phase systems[2], such as those found in environmental engineer-

ing, geophysical sciences, microfluids and combustion. In the transport pro-

cesses, particles are not just passively carried by the background flow, but

also have dynamics of their own. The motion of particles exhibits abundant

characteristics even if the background flows are very simple. Particles tend

to concentrate asymptotically along periodic, quasi-periodic or chaotic tra-

jectories for such flows as steady and unsteady cellular flows[3,4], periodic

Stuart vortex flows[5], the von Kármán vortex street flows[6,7] and plane

wake flows confined in a narrow channel (the JTZ model)[8,9].

The classical von Kármán vortex street is a well known pattern[10,11],

and the viscous plane wake behind a circular cylinder, as an example of com-

plex flow containing vortices and shear layers, has been extensively studied.

For exhibiting the phenomenon of chaotic scattering, a theoretical model

(the JTZ model) was proposed in [12] to describe plane wakes in narrow

channels at a moderate Reynolds number (Re=250). It fits well the wake

flow field given by direct numerical calculations and its application is much

more convenient in getting the background wake flow field than solving the

Navier-Stokes equations. The chaotic advection of particles near a circular

cylinder has been investigated by using the JTZ model[13-17], however, rele-

vant experiments of particle dispersion were conducted in open plane wakes

consisting of near, intermediate and far regions[18,19]. And thus, we’ll ex-

tend in this paper the JTZ model to an open plane wake without the confined

narrow channel.
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2 Direct numerical simulation of a plane wake

The incompressible plane wake is governed by the two-dimensional Navier-

Stokes equations, as the following non-dimensionalized ones

∇ • u = 0,

∂u
∂t

= −∇p+N(u) + 1
Re
L(u),

(1)

where u is the fluid velocity and p is the fluid pressure divided by the fluid

density. The uniform flow velocity U∞ and the diameter of circular cylinder

D are taken as the characteristic variables of the system, and Re(= U∞D/νf ,

νf is the fluids kinematic viscosity) is Reynolds number of the plane wake.

In Eq. (1), the linear diffusion and nonlinear advection terms are described

by

L(u) = ∇2u,

N(u) = −1
2
[u • ∇u+∇ • uu].

(2)

To solve the Navier-Stokes equations, we incorporate a high-order splitting

algorithm into the spectral element method, please refer to [20, 21] for detail.

Integrating the Navier-Stokes equations under the boundary conditions given

in [21], we obtain velocity field u and vorticity field ωz at Re=250. The

drag coefficient Cd and Strouhal number Sr are determined as 1.5 and 0.21,

respectively, very close to the calculation results of [22, 23].

The streamlines and vorticity contours are displayed in Fig. 1, where a

wave structure and the von Kármán vortex street are shown in the down-

stream wake with x restricted to the range of x < 20 to have a clear and

regular vortex structure. Since the wake is a periodic process with a period

of Tc = 1/Sr = 4.8, only figures at time phases 0 and Tc/4 in the period Tc

are plotted in Fig.1(a)(b) and Fig.1(c)(d), respectively. The corresponding

figures at time phases Tc/2 and 3Tc/4 can be obtained by taking mirror im-

ages of the plots of Fig.1(a)(b) and Fig.1(c)(d) about the x axis, respectively.

5



It is observed that only two vortices can be discerned in the streamline plot

of near wake. The regular von Kármán vortex street appears in the inter-

mediate and far wake as shown in the vorticity contour plots, where the

semimajor axes of the elliptical vortices are in the vertical direction. Close

to the cylinder, the distance between the vortices is about one quarter of

those further away. Due to viscous decay, the vorticity decreases gradually

in the wake downstream. The maximum absolute value of vorticity is very

large in the boundary layer, and drops sharply in the near wake, and then,

the maximum decreases slowly in the intermediate and far wake, having two

constants in the range of 2 < x < 10 and 10 < x < 20, respectively. The

maximum in the near wake is about 1.7 times that in the intermediate wake

of 2 < x < 10, which is about 1.5 times that in the far wake of 10 < x < 20.

In other words, the vortex structure in the wake downstream can be cap-

tured in a snapshot and described approximately as follows. Within the

wake region x < 20, there occur two transition zones with varying vorticity

and two constant vorticity zones. The first transition zone is the near wake

containing two vortices, and adjacent to which is the first constant vorticity

zone, i.e. the intermediate wake with four vortices. And further downstream

there occurs the second transition zone containing two vortices, and finally

comes the second constant vorticity zone-the far wake with two vortices. An

experimental investigation on open plane wakes at Re=250 was given in [24]

with time phase around Tc/2, the streamline of which are in close agreement

with the above-given simulation results.
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3 An extended JTZ model

The classical von Kármán vortex street is the most simple model for a plane

wake behind a circular cylinder, however, its computational zone doesn’t

contain the circular cylinder. The JTZ model for plane wakes does cover the

circular cylinder, and thus the flow field satisfies the no-slip boundary condi-

tions at the cylinder surface. In what follows, we give a brief presentation of

the JTZ model, where a plane wake behind a circular cylinder is considered

within a narrow channel at a moderate Reynolds number (Re=250) with

no-slip boundary conditions on the cylinder surface. By taking the cylinder

radius R0 and the vortex shedding period Tc as the characteristic length and

time of the flow, the dimensionless model stream function[12] is written as

Ψ(x, y, t) = f(x, y)g(x, y, t), (3)

where the first factor

f(x, y) = 1− exp[−a(
√
x2 + y2 − 1)2] (4)

satisfies the no-slip boundary conditions at the cylinder surface. The second

factor in Eq. (3) is

g(x, y, t) = −wh1(t)g1(x, y, t) + wh2(t)g2(x, y, t) + u0ys(x, y). (5)

The first two terms model the periodic detachment of the vortices, in which

w represents average strength of the time-dependent vortices and

h1(t) = |sinπt|,
h2(t) = h1(t− 1

2
).

(6)

The factors

g1(x, y, t) = exp−β0[(x−x1(t))2+α2(y−y0)2],

g2(x, y, t) = exp−β0[(x−x2(t))2+α2(y+y0)2]
(7)
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are the Gaussian forms with dimensionless vortex size β
1/2
0 with its center

located at [x1(t), y0] and [x2(t),−y0] in the wake. The vortices move down-

stream at a constant velocity

x1(t) = 1 + L0mod(t, 1),

x2(t) = x1(t− 1
2
).

(8)

y0 is the distance of the vortex centers from the x-axis, L0 is the dimensionless

distance a vortex traverses during its lifetime and u0 is the dimensionless

background velocity. The last term in Eq. (5) arises from the background

flow, and the screening factor

s(x, y) = 1− exp[−(x− 1)2/α2 − y2] (9)

ensures that the effect of the background flow velocity u0 is reduced in the

wake. In the numerical simulation, parameters are chosen as a = 1, α = 2,

β0 = 0.35, L0 = 2, y0 = 0.3, u0 = 14 and w = 24[15]. The streamlines and

vorticity contours given by the JTZ model at time phases 0 and 1/4 in a

period are shown in Fig. 2, where the size is rescaled by 1/2 to set the length

unit to D.

Both the streamlines and vorticity plots show that the JTZ model gives

only two vortices near the circular cylinder, which emerge and diminish in

a period. So the JTZ model fits well the flow structures of plane wakes

in a narrow channel. However, for open plane wakes without the confined

narrow channel, the emerged vortices won’t die out so quickly, and thus it

can represent the flow structures in the near wake, rather than the structures

of staggered double row vortices in the intermediate and far wake. To extend

the JTZ model to the open plane wake, we will preserve the JTZ model for

the near wake and add a double row of staggered vortices for the intermediate

and far wake.
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In the extended stream function Ψ(x, y, t) = f(x, y)g(x, y, t), the bound-

ary function f(x, y) is kept, but g(x, y) is replaced by

g(x, y, t) = γ0
n∑

i=1

(−1)ihi(t)gi(x, y, t) + u0ys(x, y), (10)

where

γ0 = ΓTc/R
2
0,

u0 = U∞Tc/R0,

gi(x, y, t) = exp−β0{[x−xi(t)]
2+α2

i [y−(−1)i−1y0]2}, i = 1, 2, · · · , n.
(11)

Here, n − 2 vortices are added in the intermediate and far wake flow field,

and thus the extended model is more reasonable in representing the realistic

structure of open plane wakes. Γ and U∞ are respectively the magnitude of

vortex and free-stream velocity, and γ0 and u0 are their non-dimensionalized

quantities based on R0 and Tc. The reference velocity is R0/Tc instead of U∞,

and the dimensionless inflow velocity is (u0, 0) instead of (1, 0). In Eq. (10),

w of the original JTZ model is replaced by γ0. The strength of vortices is

defined as time-dependent in view of the viscous decay mentioned in section

2, where n(= 10) vortices are observed in the range −2 < x < 20
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h1 = |sinπt|,
h2 = 1− 0.8mod(t, 1),

h3≤i≤6 = 0.6,

h7 = 0.6− 0.2mod(t, 1),

h8 = 0.5− 0.2mod(t, 1),

h9≤i≤10 = 0.4,

if mod(t, 1) < 0.5;





h1 = 1− 0.8mod(t+ 0.5, 1),

h2 = |sinπ(t+ 0.5)| = |cosπt|,
h3≤i≤6 = 0.6,

h7 = 0.5− 0.2mod(t+ 0.5, 1),

h8 = 0.6− 0.2mod(t+ 0.5, 1),

h9≤i≤10 = 0.4,

if mod(t, 1) ≥ 0.5.

(12)

In the first half of the shedding period, the time dependent strength of a

shedding vortex starts from 0 and reaches 1. In the second half, it decreases

from 1 to 0.6. In the later periods, it is changing or keeps unchanged depend-

ing on its downstream distance. The vortex centers are located at positions

[xi(t),±y0], and move downstream with two different velocities L0/2 and 2L0

in the first shedding period and the later periods, respectively.

x1(t) = 1 + L0

2
mod(t, 1),

x2(t) = 1 + L0

2
mod(t+ 0.5, 1),

xi(t) =





1 + L0

2
+ (i− 3)L0 + 2L0mod(t, 1), if i = 2k − 1(k ≥ 2),

1 + L0

2
+ (i− 4)L0 + 2L0mod(t+ 0.5, 1), if i = 2k(k ≥ 2),

(13)

where L0/4 and L0 are the streamwise distance between two neighboring

vortices within and outside the near wake region, respectively. Moreover,
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s(x, y) in the last term of Eq. (10) is written as follows

s(x, y) = 1− exp[−(x− 1)2/α2
0 − y2]. (14)

In order to clarify essential features of the extended JTZ model, we display

in Table 1 the time-variation of the strength and positions of four vortices

near the cylinder in a period. In general, the up/down vortices in the double

row of staggered vortices are denoted by odd/even. Each pair of vortices

exists in a periodic streamwise interval [xi(=1,3,...)(t), xi+2(t)), which is defined

at time phase 0. For example, at time phase 0/1
2
, vortex i = 1 and vortex

i = 2 live in the first periodic streamwise interval between 1 and 1 + L0/2,

vortex i = 3 and vortex i = 4 live in the second one between 1 + L0/2 and

1 + 5L0/2, and so on. After one half of the period, i.e., at time phase 1
2
/0, a

new down/up vortex is shed from the circular cylinder and denoted by 2/1.

At the same time, the down/up vortices in the double row of vortices move

away from the original periodic streamwise positions and are re-located at the

next periodic streamwise positions. Therefore, the notation i for the original

down/up row of vortices at time phase 0/1
2
will be rewritten as i + 2. For

example, at t = 1/2, vortex i = 2 and vortex i = 4 are located at x = 1+L0/2

and 1+5L0/2, respectively. i = 4 and i = 6 will be used to denote the vortex

i = 2 at x = 1 + L0/2 and vortex i = 4 at x = 1 + 5L0/2, respectively. At

the same time, a new vortex is shed at (1,−y0). It will be denoted by i = 2.

At t = 1, vortex i = 1 and vortex i = 3 are located at x = 1 + L0/2 and

1 + 5L0/2, respectively. i = 3 and i = 5 will be used to denote the vortices

i = 1 at x = 1+L0/2 and i = 3 at x = 1+ 5L0/2, respectively. At the same

time, a new vortex is shed at (1, y0). It will be denoted by i = 1. The vortex

shedding process is periodic with period t = 1.

Parameters n = 10, a = 1, α0 = 2, β0 = 0.35 and y0 = 0.3 are used in the

following simulations and parameter αi is defined as follows
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αi =





2− 1.2mod(t, 1), if i = 1;

2− 1.2mod(t+ 0.5, 1), if i = 2;

0.8, if i ≥ 3,

(15)

which describes the continuous change of the horizontal axes of elliptical

vortices from the semimajor in the near wake to the semiminor in the in-

termediate and far wake. From the definition of Sr(= 2R0/U∞Tc), the non-

dimensional velocity u0 is written as u0 = 2/Sr. For Re = 250, Sr equals 0.21

as given in [22]. Based on the velocity and vorticity fields given by the direct

numerical simulation described in section 2, we can determine approximately

γ0 = 2.2u0 and L0 = 4.4.

The streamlines and vorticity contours at time phases 0 and 1/4 in a

period are shown in Fig. 3, which is better than the original JTZ model in

capturing the global distribution of vortices in the open plane wake field given

by the direct numerical simulation. In particular, the vorticity distribution

in the intermediate and far wake of the extended JTZ model is found in

quantitative agreement with that of direct numerical simulation, except for

the region near the cylinder surface where there exists some difference. In

the direct numerical simulation, the vorticity is confined to a thin boundary

layer, whereas in the extended JTZ model, it is extended to a finite domain

adjacent to the cylinder surface. Anyway, the extended JTZ model can

be conveniently used as a simple plane wake model to investigate particle

dynamics in plane wake flows.

4 Particle dynamics in the extended JTZ model

For the motion of a small spherical particle in fluid flow, it is well-known

that the flow field around the particle can be approximated by a Stokes flow
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provided the particle diameter is small enough compared to the characteristic

length of the fluid motion. Therefore, the particle-particle interactions as well

as the effects of particles on the flow are negligible. Under these assumptions,

the momentum equation of the motion of the small spherical particle[25] is

written as follows

π
6
d3p(ρp + 0.5ρf )

dV
dt

= π
6
d3p(ρp − ρf )g + π

4
d3pρf

Du
Dt

+3πdpνfρf (u−V) + 3
2
(πνf )

1/2d2pρf
∫ t
0

1√
t−τ

(du
dτ

− dV
dτ
)dτ,

(16)

where V is velocity of the particle, and ρ is density, g is gravitational acceler-

ation, and subscripts f and p refer to the fluid and particle, respectively. The

derivatives D/Dt and d/dt are used to denote the time derivative following

a fluid element and the moving sphere, respectively. Introducing the dimen-

sionless quantities δ = ρp/ρf , ε = 1/(0.5 + δ), x∗ = x/R0, t
∗ = t/(R0/U∞),

u∗ = u/U∞, V∗ = V/U∞ and g∗ = g/g, based on R0 and U∞, we can

non-dimensionlize Eq.(16) as follows

dV
dt

= (1−1.5ε)
Fr2

g + 3ε
2

Du
Dt

+ 1
St
(u−V)

+3
√

ε
2πSt

∫ t
0

1√
t−τ

(du
dτ

− dV
dτ
)dτ,

(17)

where Fr = U∞/
√
gR0 and St = U∞T/R0 (T is the particle viscous relax-

ation time, d2p/18ενf ) are the Froude number and the Stokes number, respec-

tively. The density and size of particles in Eq.(16) are taken from [18] as

ρp = 2.4× 103kg/m3 and dp = 0(10−5)m, respectively. Since air is chosen as

the fluid medium in the flow, the fluid properties in Eq.(16) are described by

ρf = 1.225kg/m3 and νf = 1.45× 10−5m2/s[26]. To emphasize the effects of

viscous force or St in Eq. (17) on particle transport process, the background

flow field parameters are chosen as U∞ = 0.1m/s and R0 = 1.81× 10−2m.

Since δ is fixed and is of the order of 0(103), parameter ε appears to be of
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the order of 0(10−3). The particle diameters dp is very small [dp = 0(10−5)m],

so the parameters 1/St and 1/Fr2 appear to be of the order of 0(101) and

0(100), respectively. In this case, we can neglect the following smaller order

terms: the gravity term, the stress tensor term, the Basset history term and

reduce the equation of motion (17) to

dV

dt
=

1

St
(u−V). (18)

In section 3, the physical quantities are non-dimensionalized using Tc and

R0, which are different from the above ones. The function u(x, y, t) in Eq.

(18) is now replaced by

u(x, y, t) = û(x, y, t̂)/u0,

t̂ = Sr
2
t,

(19)

where t̂ and û are the time and velocity field for the extended JTZ model,

respectively. In the definition of Sr, the characteristic length is 2R0, rather

than R0, which is the characteristic length of the model. Since t̂ × Tc =

t × R0/U∞, so t̂ = t × R0/(U∞Tc) = t × Sr/2. In what follows, we will

analyze essential features of particle trajectories in the extended JTZ model

flow.

Equation (19) is integrated with time step ∆t = 0.001− 0.01 by using a

fourth-order Runge-Kutta algorithm. Particles are released along a semicircle

(of radius 1.2) with time interval 0.05. In each time interval, the released

particles total to 100. The initial velocities of particles are taken as the local

flow ones. We choose t̂ = 0 as the time for the initial release of particles, and

give a snapshot of particle distribution in the wake at t̂ = 3.

The particle diameter dp is taken in the range of 8 × 10−6 − 8 × 10−5m,

which corresponds to St = 0.003 − 0.27. In the numerical simulation of

dp = 8×10−6m, 1×10−5m, 2×10−5m, 3×10−5m, 5×10−5m and 8×10−5m,
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the particles rotate around neighboring vortices as well as move downstream

under the effects of viscous force (u − V)/St. In interacting with vortices,

they exhibit some characteristic distributions. According to the rotation di-

rections of vortices, the particle clusters form foliations near the vortices, and

show two typical patterns depending on the particle sizes. Firstly, when the

particle diameter is small enough (in the range of 8× 10−6− 2× 10−5m), the

foliations rotate around the vortex centers with an example shown in Fig.

4(a) for dp = 1× 10−5m (St = 0.004). The large viscous force provides cen-

tripetal force to particles, and thus the foliations are folded by the rotation of

the vortices and stretched by the training field. When the particle diameter

is in the range of 2× 10−5− 8× 10−5m, the foliations are accumulated in the

exterior of vortices with an example shown in Fig. 4(b) for dp = 5× 10−5m

(St = 0.1). Since the viscous force decreases as dp increases, the larger the

dp, the smaller the centripetal force provided by the viscous force. Hence,

the foliations are moved away from the vortex centers and accumulate in

the exterior of vortices. In the experiments of [18,19], the particle dispersion

in a plane wake is investigated in detail. As the particle size increases, the

organized pattern of particle trajectories changes from filling in the vortex

structures to accumulating along the exterior of vortices. In the direct nu-

merical simulation of [27], the particle distributions for different particle sizes

are similar to the above-mentioned experimental observations, and these be-

haviors agree qualitatively with our numerical results based on the extended

JTZ model.
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5 Conclusion

In summary, we generalize and extende the JTZ model, which is a theoret-

ical model for a plane wake behind a circular cylinder in a narrow channel

at a moderate Reynolds number, to describe an open plane wake without

the confined narrow channel by incorporating a global distribution of shed-

ding vortices. The extended JTZ model is found in qualitative agreement

with both direct numerical simulations and experimental studies in respect

of streamlines and vorticity contours. The interaction of small spherical par-

ticles with vortices in the extended JTZ model flow is investigated to further

validate the moderling in studying particle transport processes. It is found

that the particle size has significant influences on the features of particle tra-

jectories, and the particles exhibit two typical patterns as the particle size

increases. When the particle size is small enough, particle clusters would

rotate around the vortex centers, whereas they would accumulate in the ex-

terior of vortices for larger particle size. The numerical results are found in

qualitatively agreement with the experimental ones in the normal range of

particle sizes.
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Table I. Time-variation of the strength and positions of four vortices near

the cylinder in a period.

t 0 1/4 1/2 3/4

h1 0
√
2/2 1 0.8

h2 1 0.8 0
√
2/2

h3 0.6 0.6 0.6 0.6

h4 0.6 0.6 0.6 0.6

x1 1 1+L0/8 1+L0/4 1+3L0/8

x2 1+L0/4 1+3L0/8 1 1+L0/8

x3 1+L0/2 1+L0 1+3L0/2 1+2L0

x4 1+3L0/2 1+2L0 1+L0/2 1+L0
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FIGURE CAPTION

Fig. 1. Streamlines and vorticity contours for the plane wake flow at Re =

250 obtained from direct numerical simulation. The values of vorticity ωD,U∞ ,

which are non-dimensionalized by D and U∞, are shown in the vorticity

contour plots. The time phases are chosen as 0 in (a)−2 < x < 10;(b)

10 < x < 20 and Tc/4 in (c)−2 < x < 10; (d)10 < x < 20 in a vortex

shedding period Tc.

Fig. 2. Streamlines and vorticity contours for the JTZ model flow at time

phases (a) 0 and (b) 1/4 in a period.

Fig. 3. Streamlines and vorticity contours for the extended JTZ model

flow at time phases 0 in (a)−2 < x < 10;(b) 10 < x < 20 and 1/4 in (c)−2 <

x < 10; (d)10 < x < 20 in a period. The index i of vortices in the extended

JTZ model (10) is marked at the upper and bottom zones of the vortex street

central region. The non-dimensional values ωD,U∞ in the vorticity contour

plots are calculated from the modelling of vorticity ωR0,Tc scaled by R0 and

Tc by referring to the relation ωD,U∞ = SrωR0,Tc = 0.21ωR0,Tc .

Fig. 4. Instantaneous particle distribution and vorticity contour in the

extended JTZ model flow at time phase 0 in a period with different particle

diameters (a) dp = 1×10−5m and (b) dp = 5×10−5m. The release of particles

starts at t̂ = 0 and is completed at t̂ = 3 when the snapshot is taken.
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