
REVIEW

Outline and computational approaches of protein misfolding

Xin LIU (✉)

The State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2010

Abstract Protein misfolding is a general causation of
classical conformational diseases and many pathogenic
changes that are the result of structural conversion. Here I
review recent progress in clinical and computational
approaches for each stage of the misfolding process,
aiming to present readers an outline for swift comprehen-
sion of this field.
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1 Introduction

Proteins are the most abundant bio-molecules in biology.
There are about 100 000 different types of proteins that
take part in nearly every chemical process of our life
(Brändén and Tooze, 1999). The majority of proteins must
fold into compact structures to perform their bio-functions.
As the bio-chemical reactions among bio-molecules
require the atoms that react to each other to be close less
than an angstrom scale, the protein structures are extremely
specific as if the conformations are the elaborate scaffolds
of the corresponding reaction. Therefore, a misfolding of
protein can induce an alteration of protein’s bio-properties,
and result in disease consequently.
As a general causation of illness, protein misfolding is

responsible for various types of diseases. Some proteins
that have distinct structural change were reported as
pathogenic molecules in classical cases of conformational
diseases (CDs), such as prion for transmissible spongiform
encephalopathy (TSE), and β2-microglobulin for dialysis-
related amyloidosis. More than 30 different human
diseases are related to conformational conversion (Thomas
et al., 1995; Kelly, 1996; Carrell and Lomas, 1997; Carrell
and Gooptu, 1998; Soto, 2001). Moreover, besides these
classical cases, there are lots of diseases that can be

investigated in the context of structural change, such as the
H5N1 avian influenza virus (Bornholdt and Prasad, 2008)
and A(H1N1) global pandemic outbreak in 2009 (Garten et
al, 2009; Liu and Zhao, 2010c). Therefore, CDs are not
rare, but are responsible for the development of a wide
range of diseases.
Several factors are related to the pathogenic structural

change of protein, including multiple stable states, life-
span, molecular environment, evolution, and so on. As
each of them is extremely significant, it is hard to make a
rank of their importance.

1.1 Multiple stable states

From a physical point of view, a sequence folds into its
native structure that has a free energy minimum. In the
folding process, a polypeptide chain makes a stochastic
search of many conformations that are accessible (Wolynes
et al., 1995; Dill and Chan, 1997; Karplus, 1997; Dobson
et al., 1998; Dobson, 2004). Consequently, the free energy
of the polypeptide chain can be described as a function of
its conformational properties. As shown by the energy
landscape in Fig. 1, there are usually several metastable
states for a protein related to pathogenic structural change.
It can be deemed that a protein can be in any of these states,
but with different probabilities. Once the protein folds into
a conformation other than the ‘healthy’ state, disease can
be developed potentially.

1.2 Lifespan

Some wild type proteins, such as the α-synuclein that is
associated with Parkinson’s disease (Hardy et al., 2006),
can induce conformational disease in old age. On the other
hand, some fatal disease, such as hereditary cerebral
angiopathy (Abrahamson, 1996; Ólafsson and Grubb,
2000) and TSE, are reported with sporadic events. There
are evidences that conformational disease is correlated
tightly with human lifespan (Liu and Zhao, 2010b). All
proteins can fold into pathogenic state, and have an
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inherent tendency to aggregate (Dobson, 1999). Selection
pressure of evolution has made a filtration, and resulted in
proteins that can resist aggregation and other pathogenic
state during normal lifespan. The incidence of fatal
diseases has been depressed by low probabilities of
changing structures from native to morbid states (Liu and
Zhao, 2010b). While evolution can do no better than the
necessity of enabling us to transmit our genes to offsprings
(Dobson, 2002); thus, to prolong life is to cope with the
proliferation of these diseases, and to challenge the nature
of evolution.

1.3 Molecular environment

The folding process depends on the environment in which
the folding takes place. Protein folding beginning as a
nascent chain is still attached to ribosome (Hardesty and
Kramer, 2001), and complete the major part step by step

after release from the ribosome. As only partially fold,
some regions that are buried in the native state can be
exposed. Such structures are prone to contact with other
molecules inappropriately (Hore et al., 1997; Capaldi et al.,
2002). But the living systems have developed a range of
elaborate strategies to make the completion of correct
folding prior to mistake interactions (Gething and
Sambrook, 1992; Hartl and Hayer-Hartl, 2002; Dobson,
2003), such as using molecular chaperones and folding-
accelerate catalyst. A typical example is aiding the folding
process by molecular chaperonin GroEL that contains a
cavity in which incompletely folded polypeptide chains
can be held and protected from the outside world. There are
large numbers of molecular chaperones that are present in
all types of cells and cellular compartments (Dobson,
2004), and nurse the proteins by interacting with nascent
chains as they emerge from the ribosome, or by binding
non-specifically to protect aggregation-prone regions, and

Fig. 1 Sketch map of the energy landscape for disease-related proteins. The free energy (F) is shown as a function of the number of native
contacts (Qα and Qβ) in domain α and β. The metastable state 1 denotes the oligomer in early step of protein aggregation that is highly toxic in
amyloidosis. Proteins at metastable state 2 aggregate into amyloid fibrils by ‘Steric zipper’ β-sheets architecture. The red and yellow trajectories
denote the fast and slow tracks in folding pathway of the corresponding protein (Dinner et al, 2000).
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so on. Error in such quality control mechanism can cause
disease.

1.4 Evolution

Conformational disease is a phenomenon of evolution.
Therefore, evolution is a major factor of protein misfolding
either for the past, the present, or the future. In modern life,
there are lots of practices that are not experienced during
previous evolution, such as new agricultural practices
(Prusiner, 1997), a changing diet associated with type-II
diabetes (Höppener et al., 2002), new medical procedures
associated with iatrogenic Creutzfeldt-Jakob diseases
(Prusiner, 1997). As the practices are introduced much
more rapid than evolvement, we fatally have not enough
time to set up effective protective mechanisms (Dobson,
2002).
Many efforts have been made to investigate protein

misfolding in computational approaches. Due to the
increased power and accuracy, such approaches have
attracted many concerns. In order to present readers an
outline of this field, I review the recent developments and
suggest several points for further studies.

2 The pathological structure of
disease-related protein

2.1 Clinical reports

There are several points that have been reported clinically
as the features of pathological structure of disease-related
protein.

2.1.1 Aggregation

One of the typical features of conformational disease is the
formation of insoluble protein, amyloid, that deposits in
tissues. For example, the normal prion protein is found on
the membranes of cells throughout the body, even in
healthy people and animals. In TSE, the soluble cellular
isoform of prion (PrPC) folds inappropriately into the
scrapie isoform (PrPSc), which accumulates and forms
fibrils in brain tissue, causes tissue damage and cell death,
and leads to degeneration of nerve system. In this process,
the normal alpha helix rich PrPC changes its structure into
the pathological beta sheet rich PrPSc (Kuwata et al., 2007).
Similarly, there are obviously structural changes in many
classical disease-related proteins also, such as insulin and
serpins. Whereas, there are also amyloidogenic proteins
that form fibrils in their native state in globular form, in
which the local structural change is significant, e.g. β2
microglobulin, transthyretin, lysozyme (Thomas et al.,
1995; Kelly, 1996; Carrell and Lomas, 1997; Carrell and
Gooptu, 1998; Soto, 2001).

2.1.2 ‘Steric zipper’ β-sheets amyloid architecture

It was found that the fibrillar structures of various proteins
have very similar morphologies, whereby pairs of parallel/
antiparallel β-sheets form a dry interface running perpen-
dicular to the fibril axis (Nelson et al., 2005; Sawaya et al.,
2007). It is clear that the core structure of the fibrils is
stabilized primarily by interactions, particularly hydrogen
bonds, involving the polypeptide main chain. As the main
chain is common to all polypeptides, this observation
explains why fibrils formed by polypeptides of very
different amino acid sequences are similar in appearance
(Dobson, 2004).

2.1.3 High toxicity of the early pre-fibrillar aggregate

The insoluble protein mass can disrupt the functioning of
specific organs (Pepys, 1995), or result in the loss of
functional protein that leads to the failure of some crucial
cellular process (Thomas et al., 1995). It has been
suggested that the early pre-fibrillar aggregates of proteins
are highly damaging to cell (Koo et al., 1999; Caughey and
Lansbury, 2003). Moreover, it has become clear that the
pre-fibrillar aggregates are toxic through a less specific
mechanism, such as the exposure of non-native hydro-
phobic surface (Polverino et al., 2003; Stefani and Dobson,
2003). For example, the pre-fibrillar aggregates of several
non-disease-related proteins can be as cytotoxic as those of
amyloid β-protein (Bucciantini et al., 2002). By contrast,
the mature fibrils have much lower toxicity than that of
their precursors (Walsh et al., 2002; Caughey and Lans-
bury, 2003).

2.1.4 Folding nucleus is distinct from aggregation nucleus

The roles of individual residues in the folding process have
been investigated by site-directed mutagenesis. A wide
range of studies suggest that there are a small number of
key residues, which form the folding nucleus of a protein
(Matouschek et al., 1989; Fersht, 1999, 2000); the collapse
of the polypeptide chain to stable compact structure can
occur only after the majority of the folding nucleus have
been formed, i.e., the native structure is a consequence of
the formation of folding nucleus. If these key interactions
are not formed, the protein cannot usually fold directly to a
stable globular structure. It prevents protein misfolding by
prolonging the unfolded state. As a result of such ‘quality
control’ process, native structure is formed prior to the
incorrect one (Vendruscolo et al., 2001; Davis et al., 2002;
Makarov and Plaxco, 2003). On the other hand, investiga-
tions of the mechanism of amyloid formation suggest that
there are aggregation-prone regions, ‘hot spots’ of fibril
formation, that are considered to be responsible for
aggregation (Ivanova et al., 2004; Ventura et al., 2004).
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An important observation is that the residues of the folding
nucleus are distinct from those of aggregation (Chiti et al.,
2002). It means that the evolutionary pressure may select
sequences that favor the assembly process of folding other
than aggregation.
Besides the aforementioned points, there are also other

pathogenic features in classical disease-related protins,
such as the protein unstable in haemoglobin and serpins,
structural topological change in apolipoprotein AI. As
numerous efforts have been focused on the classical cases
of conformational diseases, their features of pathological
structure have been revealed more than those of non-
classical one. In the latter, it has been suggested that the
pathological structure of disease-related protein can
introduce new targets to human immune system, and be
associated with the highly pathogenic H5N1 avian
influenza and A(H1N1) 2009 global pandemic (Liu and
Zhao, 2010c).

2.2 Computational approaches

Since aggregation appears in the majority of classical
conformational diseases, amyloidogenic mechanism is the
main focus of computational approaches.

2.2.1 Prediction of amyloid core

The discovery of aggregation-prone region has promoted
the development of a number of algorithms and models
for predicting the aggregation propensity of proteins
(Fernandez-Escamilla et al., 2004; López and Serrano,
2004; Yoon and Welsh, 2004; Pawar et al., 2005; Sánchez
et al., 2005; Bemporad et al., 2006; Caflisch, 2006;
Galzitskaya et al., 2006; Saiki et al., 2006; Zhang et al.,
2007). Some of them possess quite good capability in
identifying residues that are buried in the amyloid core,
and have become facility tools in the analysis of
pathological structure. As the amyloid core observed in
experimentation often contains a large number of
residues, it is difficult to rank the significance of
individual residues in the amyloidogenic mechanism.
Complementarily, the pre-residue score in these algo-
rithms may provide such information, and aid in the
comprehension of amyloid in the coming efforts.

2.2.2 Prediction of pathological structure

Because there is usually a block of proteins in the amyloid,
the purification of pathological structures is quite difficult
in experiment. Thus, there is a shortage of high quality
coordinates. Computational approach has been an efficient
way in uncovering such information. For example, in
contrast to the high-resolution data for the PrPC, the
structure of PrPSc is largely unknown. Huang, Prusiner, and
Cohen have developed a three-dimensional model of PrPSc

with a combination of computational techniques and
experimental data (Huang et al., 1996). However, there
are lots of unsolved problems, and it remains a hot spot in
recent studies (Smirnovas et al., 2009).

2.2.3 Investigation of interactions in fibril

Computational approaches have gained great achievement
in the study of molecular architecture of protein amyloid,
particularly for cases in lack of pathological structure. For
example, the molecular architecture of PrPSc amyloid has
been investigated with theoretical models by Govaerts et
al. and DeMarco et al. (DeMarco and Daggett, 2004;
Govaerts et al., 2004). Features of the interaction surface in
amyloidogenic regions can also been investigated by a
combination of several different algorithms (Castillo and
Ventura, 2009).

2.2.4 Investigation of the early steps of aggregation

Since the early oligomers during the aggregation process
are the primary toxic species in amyloidosis, the
investigation focusing on the initial assemblies of
oligomers is one of the hot spots at present. However,
the transient/premature atomic details are difficult to be
characterized using biophysical methods (Hardy and
Selkoe, 2002; Bitan et al., 2003; Mastrangelo et al.,
2006). Therefore, computational approaches contribute
great to this field. Although only very short polypeptide
(usually less than ten residues) can be simulated, such
efforts have achieved some patterns of self-assembly,
which could be useful for the studies of true amyloidosis
(Wei et al., 2007).

2.3 Computational assistant treatment

Scientists have attempted to prove their theory of
amyloidosis with experimental efforts. In 2002, López et
al. designed amyloid hexapeptide sequences using a
computer-designed algorithm. Sequences with a high
propensity to form homopolymeric β-sheets were validated
experimentally. It has been shown that the de novo
designed peptide self-associates efficiently into β-sheets.
Whereas, some point mutations that were predicted to be
unfavorable for fibrils inhibited the polymerization. The
delicate balance of interactions involved in fibrils forma-
tion to those in more disorder aggregates was uncovered
(López et al., 2002). Other evidences suggested that the
increased aggregation propensity and the decreased
stability of amyloid protein are significantly correlated
with the decreased patient survival (Meiering, 2008).
Therefore, the computational assistant analysis and treat-
ment may promise new clinical therapeutics in amyloi-
dosis.

4 Front. Biol.

1

5

10

15

20

25

30

35

40

45

50

55

1

5

10

15

20

25

30

35

40

45

50

55

FIB-10037-LX.3d 18/3/010 16:35:59



3 The switch of pathogenic structural
change

3.1 Clinical reports

Either the preliminary or the later stage of the process of
pathological conformational conversion, e.g. the protein
aggregation, is the result of switching on the misfolding
pathway of the native state. It is ideal for a treatment to
cure a disease by prohibiting proteins falling into the
misfolding pathway; that is, by preventing the disease-
related misfolding other than coping with the mass of
subsequent pathological changes of misfolding. As sites
significant for switching on the misfolding pathway can be
perfect binding targets for drugs in clinical treatment, many
efforts have been made to note them experimentally, using
information such as disease-related point mutations
observed in clinical practice, sites involved in the
inhibition of the pathogenic change process, and the
abnormal cleavage site responsible for amyloidosis (Liu
and Zhao, 2010c).
A typical study dealing with switch sites was reported by

Kuwata et al. (Kuwata et al., 2007). Based on a series of
relevant works, the authors selected 14 amino acid residues
for an in-depth investigation. The switch region that is
responsible for the pathogenic structural conversion of
prion protein is identified as a pocket formed by five
residues. The intercalation of an anti-prion compound GN8
to this pocket can inhibit the pathogenic change process of
the prion protein, and prolong the survival of TSE-infected
mice.
There is evidence that the amyloid-related mutations are

not necessarily involved in aggregation-prone regions. So
it is still not clear whether switch sites occur in hot spots of
aggregation or not (Ivanova et al., 2004; Ventura et al.,
2004; Liu and Zhao, 2010b). It is also an open question
whether such a difference is related to the distinction
between folding nucleus and aggregation nucleus.

3.2 Prediction of switch region responsible for pathogenic
structural change

Usually, the identification of switch sites needs large
amount of experiments. The literatures may even conflict
with each other. Moreover, the long duration is another
important restriction. A prediction algorithm of switch
region can help the comprehension of clinical reports,
speed up the clinical investigation, decrease the hardness
and knowledge threshold especially for the inexpert and
people in interdisciplinary sciences. However, such
prediction is difficult and in absence for a long time
because multiple factors must be jointly considered.
Based on a joint consideration of protein stability and

the selection pressure of protein evolution, we have
developed the first algorithm in the prediction of switch

region responsible for pathogenic structural change (Liu
and Zhao, 2010c). The remote homologous relationships
among polypeptides can be identified with a high accuracy
based on the discovery of the significant role of molecular
mechanics properties in protein evolution (Liu and Zhao,
2009a, 2010a). Using this highly accurate algorithm, it was
revealed that there are only two major clusters in the phase
space of polypeptide: the helix-donut zone that consists of
the helix segments and the N/C-terminal helix caps, and
the strand-arc part that is mainly comprised of β-sheet
segments and the N/C terminal strand caps. A query
protein is treated as successive residue segments (Liu and
Zhao, 2009b). In the native fold of a protein, each segment
belongs to one of the clusters in the phase space. Its
probability of being in the other cluster determines the
capability of each segment in arousing pathogenic
structural change.
The algorithm can identify the residue segments that are

responsible for the start of pathogenic structural changes
with an accuracy of 94%, and find the residues that are
tightly associated with conformational diseases about eight
times the capability of random dicing (Liu and Zhao,
2010b). It would be a useful tool in identifying the riskiest
region of a protein, and form a foundation for further
investigation.

4 Summary and outlook

Here I review the investigations of protein misfolding in a
full process of the formation of pathogenic change,
including studies about switching on the misfolding
pathway, the early step of aggregation, the final patholo-
gical structure per molecule, hot spots of amyloid, the
interactions in morbid polymer, and architecture of
amyloid. This review provides typical references of
clinical and computational analysis in each step therein,
and singles out some important conceptions in the
comprehension of protein misfolding, such as multiple
stable states, energy landscape, contribution of protein
evolution, high toxicity of the early pre-fibrillar aggre-
gates, amyloid architecture, the difference of folding
nucleus and aggregation nucleus, and the difference of
switch region and amyloid core. I hope it is helpful for the
readers to comprehend the outline of pathogenic structural
change and conformational disease swiftly.
As shown in the aforementioned text, there are

computational efforts for each step of the misfolding
process. Although the present letter mainly focuses on the
investigation of the disease-related proteins, there are
notable progress in the algorithm of protein-protein
interaction (Bonvin, 2006; Gray, 2006), medicine design
(Available Chemicals Directory, MDL Information Sys-
tem, San Leandro, CA), toxicity evaluation (Toxicity,
www.symyx.com), and so on. One of the bottle-neck of
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computational approach is that, as an all-around study
cannot be accomplished with the present computational
technique, the significant sites must be selected according
to experimental reports. With the development of the
algorithm of switch region prediction, some significant
sites can be identified computationally. As conformational
change is responsible for many diseases, this would benefit
large amount of research. Investigating diseases in an
aspect of structural change can be a promising methodol-
ogy in pathology (Liu and Zhao, 2010c).
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