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The critical wedge angle (CWA) for the transition from regular reflection (RR) to Mach reflection (MR) of
a cellular detonation wave is studied numerically by an improved space-time conservation element and solution
element method together with a two-step chemical reaction model. The accuracy of that numerical way is verified
by simulating cellular detonation reflections at a 19.3∘ wedge. The planar and cellular detonation reflections over
45∘–55∘ wedges are also simulated. When the cellular detonation wave is over a 50∘ wedge, numerical results
show a new phenomenon that RR and MR occur alternately. The transition process between RR and MR is
investigated with the local pressure contours. Numerical analysis shows that the cellular structure is the essential
reason for the new phenomenon and the CWA of detonation reflection is not a certain angle but an angle range.
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Detonation reflection on a wedge is a very compli-
cated phenomenon, and it is one of the fundamental
problems of detonation propagation in complex chan-
nels. Similar to the shock wave situation, regular re-
flection (RR) or Mach reflection (MR) occurs when a
detonation wave encounters a wedge.[1]

Studies on detonation reflections are still tentative,
especially for the critical wedge angle (CWA) for the
transition from RR to MR. The CWAs in different
studies may be quite different even under the same re-
search conditions. The commonest study conditions of
detonation reflections are the H2–O2 detonation waves
whose properties are familiar to researchers. Table 1
shows the CWAs in the stoichiometric H2–O2 detona-
tion reflections. The CWAs are ranged from 32∘ to
83∘ in theoretical analysis because there is no appro-
priate theory for detonation reflections. The experi-
mental results are also uncertain (39∘–50∘) for the lim-
itations of the equipment and measurement methods.
Thus the numerical simulations become important in
research on detonation reflections.[2−4]

Table 1. The CWAs of H2-O2 detonation waves by different
means.

Researchers
Means

Theory
Experiments

Numerical
analysis simulations

Meltzer et al.[5] 32∘ 40∘–45∘

Gavrilenko et al.[6] 34∘ 39∘–41∘

Akbar.[1] 33∘ 45∘–50∘

Li et al.[7] 42∘, 83∘

Yu.[3] 50∘

Hu et al.[4] ∼ 48.5∘

Numerical simulations of detonations have im-
proved immensely in the recent 25 years with the de-
velopment in both computational methods and avail-

able computer facilities. There are two main chal-
lenges in detonation simulations. One is the calcu-
lation of the process of energy release in the reac-
tion flows; the other is the strategy of capturing the
strong discontinuity in detonation waves. Successful
solutions of the two challenges depend on the devel-
opments of chemical reaction models and numerical
schemes, respectively. In this study, we adopt an im-
proved space-time conservation element and solution
element (CE/SE) scheme[8,9] and a two-step chemical
model.[10]

The CE/SE method originally proposed by
Chang[11] in 1995 is a new numerical framework for
solving conservation laws. The CE/SE method sub-
stantially differs from the existing well-established
computational fluid dynamics (CFD) methods. The
CE/SE method has many features such as a unified
treatment of space and time, satisfying both local and
global flux conservation in space and time and sim-
ple treatments under boundary conditions. Because
of its simplicity, generality and accuracy, the CE/SE
method has been successful applied to fluid problems
and engineering practices. However, the original two-
dimensional CE/SE method[12] is complicated by the
special design of solution elements (SEs) and conserva-
tion elements (CEs). Thus, we have proposed an im-
proved two-dimensional CE/SE scheme by adopting
a general rectangle mesh to construct SEs and CEs
(shown in Fig. 1)[8] and high-order accuracy Taylor
expansions.[13] Moreover, we have extended the im-
proved CE/SE scheme to detonation simulations and
verified its accuracy.[8,9]

Many chemical reaction models such as the C-J
model, the one/two-step reaction model, Sichel’s two-
step reaction model and the detailed chemical reaction
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model have been applied to numerical simulations of
detonation waves. The one/two-step chemical reac-
tion model can describe the chemical reaction process
and does not need many computing resources.[14,15]

Thus, we adopt the two-step reaction model in this
study.
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Fig. 1. Space-time geometry of the improved two-
dimensional CE/SE scheme.

The two-step reaction model simplifies the compli-
cated chemical reactions to an induction reaction and
an exothermic reaction. The progress parameters 𝛼
and 𝛽, for the induction reaction and the exothermic
reaction, respectively, are both unity first, followed by
decrease of 𝛼 to zero, then 𝛽 decreases until the equi-
librium state is reached. The rates of 𝛼 and 𝛽, 𝜔𝛼 and
𝜔𝛽 , are given as follows:[10]

𝜔𝛼 =
𝑑𝛼

𝑑𝑡
= −𝑘𝛼𝜌 exp

(︁
− 𝐸𝑎
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)︁
, (1)
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, (𝛼 ≤ 0),

(2)

where 𝜌 is the mass density, 𝑇 the temperature, 𝑅 the
gas constant, 𝑄 the heat release parameter, 𝑘𝛼 and
𝑘𝛽 the constants of reaction rates, and 𝐸𝛼 and 𝐸𝛽 the
activation energies.

The governing equations for a detonation problem
are the two-dimensional Euler equations

𝜕𝑄

𝜕𝑡
+

𝜕𝐸

𝜕𝑥
+

𝜕𝐹

𝜕𝑦
= 𝑆, (3)

where 𝑄 = (𝜌, 𝜌𝑢, 𝜌𝑣, 𝐸, 𝜌𝛼, 𝜌𝛽)𝑇 , 𝐸 = (𝜌𝑢, 𝜌𝑢2 +
𝑝, 𝜌𝑢𝑣, (𝐸 + 𝑝)𝑢, 𝜌𝛼𝑢, 𝜌𝛽𝑢)𝑇 , 𝐹 = (𝜌𝑣, 𝜌𝑢𝑣, 𝜌𝑣2 +
𝑝, (𝐸 + 𝑝)𝑣, 𝜌𝛼𝑣, 𝜌𝛽𝑣)𝑇 , 𝑆 = (0, 0, 0, 0, 𝜔𝛼, 𝜔𝛽)𝑇 , in
which 𝑢 and 𝑣 are velocity components, 𝑝 the pres-
sure. 𝐸 is the total energy density and defined as

𝐸 =
𝑝

𝛾 − 1
+

𝜌(𝑢2 + 𝑣2)

2
+ 𝜌𝛽𝑄, (4)

where 𝛾 is the specific heat ratio.
In order to verify the accuracy of the improved

CE/SE scheme and the two-step reaction model in cel-
lular detonation reflections, we simulate a stoichiomet-
ric H2-O2 cellular detonation propagating in a channel

with a 19.3∘ wedge. The initial pressure and temper-
ature are 1 atm and 298 K, respectively. The ignition
condition of pressure in the channel left is 40 atm.
The computing parameters of the two-step reaction
model for the stoichiometric H2–O2 gas mixture are
given as 𝑄 = 1.33×107 J/kg, 𝑘𝛼 = 3.0×108 m3/kg/s,
𝑘𝛽 = 1.875 × 10−5 m4/N2/s, 𝐸𝛼 = 2.261 × 107 J/kg,
𝐸𝛽 = 4.6151 × 106 J/kg.[10]

(a)

(b)

(c)

 

(d)

Fig. 2. Cellular patterns of detonation waves over the
19.3∘ wedge: (a) Numerical simulation (400×200 meshes),
(b) Sichel’s two-step reaction model (400 × 200 meshes),
(c) detailed chemical reaction model (400 × 200 meshes),
(d) experiment of Guo et al. in 2001.

Figure 2 shows the cellular patterns by the nu-
merical simulation (using the two-step reaction model,
Sichel’s two-step reaction model[16] and the detailed
chemical reaction model[17] respectively) and the cor-
responding experiment.[18] The numerical cellular pat-
terns by the three chemical reaction models all can ob-
tain clear cellular structure and can describe the basic
phenomena of the cellular detonation reflection, e.g.,
the triple-point trajectory is not a straight line and the
cell sizes between the triple-point trajectory and the
wedge become smaller. Table 2 shows the characteris-
tic parameters of cellular patterns and detonation re-
flections under different computing meshes and differ-
ent chemical reaction models. We can find that the nu-
merical parameters by the two-step reaction model can
agree well with the experimental ones at the five mesh
types. The numerical parameters by Sichel’s two-
step reaction model and the detailed chemical reaction
model can also agree well with the experimental ones,
but they cost more computing resources, such as mem-
ory (𝑀two−step : 𝑀Sichel′s : 𝑀detailed = 1.0 : 1.4 : 3.1)
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and computing time (𝑡two−step : 𝑡Sichel′s : 𝑡detailed =
1.0 : 2.5 : 3.2).

Table 2. Characteristic parameters of cellular patterns and det-
onation reflections. Here 𝑎 is the ratio of cell width to cell
length, 𝜑 is the exit angle, 𝜒 is the entrance angle, 𝜓 is the
angle of the transverse wave trace, 𝜉 is the angle between the
triple-point trajectory and the wedge.

𝑎 𝜑(deg) 𝜒 (deg) 𝜓 (deg) 𝜉 (deg) Meshes

Experiment 0.5–0.6 5–10 32–40 ∼ 30 11.5–13.0
Two-step 0.59 9.2 38.0 30.5 ∼ 13.1 400× 200
Two-step 0.56 9.0 36.2 29.24 ∼ 13.0 600× 300
Two-step 0.53 8.5 33.3 29.12 ∼ 12.9 800× 400
Two-step 0.53 8.5 33.2 29.10 ∼ 12.9 1000× 500
Two-step 0.53 8.5 33.2 29.08 ∼ 12.9 1200× 600
Sichel’s 0.60 11.2 31.5 29.0 ∼ 11.3 400× 200
Detailed 0.51 9.5 38.2 28.5 ∼ 12.2 400× 200

We simulate the planar and cellular detonation re-
flections at different wedge angles (ranging from 45∘ to
55∘ with 0.5∘ interval). The grid sizes are 1200 × 750
and the CFL number equals 0.5. Similar to reflections
of shock waves,[19] the reflection of planar detonation
is a self-similar phenomenon. The CWA of the planar
detonation is 49.5∘. However, the reflection of cellular
detonation is not a self-similar phenomenon for the
complex wave system in the detonation front. Sum-
marizing the numerical results of cellular detonation
reflections, we can find the following phenomena: (1)
MR occurs when the cellular detonations are over the
wedges whose angles are less than 49.5∘. (2) RR oc-
curs when the cellular detonations are over the wedges
whose angles are greater than 50.5∘. (3) RR and MR
occur alternately when the cellular detonation wave is
over the 50∘ wedge.

The phenomenon of RR and MR occurring alter-
nately under steady environment conditions (a steady
detonation wave and a wedge with fixed angle) does
not occur in the shock wave reflections. That phe-

nomenon has not been observed because of the limita-
tions of the measurement equipment and methods. In
this study, we describe and analyze the phenomenon
by the numerical results.

Figure 3 shows the transition process from RR to
MR of the cellular detonation over the 50∘ wedge by
describing the local pressure contours every 20 steps
between steps 2800 (56.65µs) and 3860 (60.88µs). In
order to distinguish the Mach stem in the precursor
shock wave (see step 2800), we call the Mach stem
between the wedge and the precursor shock wave the
MSWP (see step 2860). At step 2800, RR occurs be-
cause there is no MSWP, though the wave system be-
hind the detonation front is complex. We can also find
that one transverse wave has collided with the wedge
and that enhances the pressure between the wedge
and the reflection wave of the detonation wave. The
reflected wave of the transverse wave also begins to in-
teract with the reflected wave of the detonation wave.
Both the facets strengthen the reflected wave of the
detonation wave. Thus at step 2820 a MSWP begin to
form at the detonation front near the wedge. At step
2840 we can find the MSWP near the wedge. At step
2860 the MSWP can be distinguished more clearly.

Figure 4 shows the transition process from MR
to RR. MR occurs between steps 2960 (62.76µs) and
3020 (64.04µs). At step 2980 the transverse wave in-
teracts with the reflected wave of the detonation wave
and that also weakens the reflection wave of the det-
onation wave. At step 3000 the MSWP disappears
before the reflection wave of the transverse wave inter-
acts with the reflection wave of the detonation wave.
At step 3200 RR occurs though the reflection wave of
the transverse wave has interacted with the reflection
wave of the detonation wave. The numerical results
show the transition cycle time is about 4µs.

(a) (b) (c) (d)
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Fig. 3. Local pressure contours every 20 steps between steps 2800 and 2860 (M: Mach stem in the precursor shock
wave, I: incident wave, T1: triple points, T2: transverse wave, R: reflected wave of transverse wave, MSWP: Mach
stem between the wedge and the precursor shock wave).
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(a) Step 2960 62.76 ms (b) Step 2980 63.16 ms (c) Step 3000 63.58 ms (d) Step 3020 64.04 ms

Fig. 4. Local pressure contours every 20 steps between steps 2960 and 3020.
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Figure 5 shows that the velocity profiles of pla-
nar and cellular detonation waves at different times.
The maximum particle velocities in the planar deto-
nation front keep the same value (1910 ± 10 m/s) at
different times. The self-similar distribution of phys-
ical quantities is the reason for the self-similar phe-
nomena of planar detonation reflections. The maxi-
mum particle velocities in the cellular detonation front
range from 1387.5 m/s to 2415.6 m/s at different times.
The sound velocity in the initial H2-O2 gas mixture
is 536.6 m/s. Thus the Mach numbers in the pla-
nar and cellular detonation fronts are 3.56 and 2.59–
4.50, respectively. From the theory of shock wave[19]

and planar detonation[7] reflections we know that the
reflection types are decided by the Mach number if
the wedge angle is fixed. Akbar’s experiments[1] also
show that reflection types of the detonation wave and
shock wave have the same trend, though the detona-
tion waves and shock waves have different waveforms.
For planar detonation waves, the CWA is 49.5∘ in our
study. This means that RR will occur if the Mach
number is less than 3.56, and MR will occur if the
Mach number is greater than 3.56 when the detonation
wave encounters the 49.5∘ wedge. The Mach number
of the cellular detonation wave ranges from 2.59 to
4.50, so RR and MR can occur alternately in the same
wedge.
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Fig. 5. Velocity profiles at different times: (a) planar det-
onation wave, (b) cellular detonation wave.

From the description we can find that the trans-
verse waves play an important role in the transition
process between RR and MR. From the analysis we
know that the non-self-similarity of physical quanti-
ties is the reason for RR and MR occurring alter-
nately. The mechanism of cellular structure is still
a disputed problem, though some researchers thought
that the transverse waves are the key character of cel-

lular detonations.[20] However, it is widely accepted
that the cellular structure is an inherent characteris-
tic of detonation waves. Thus we believe that RR and
MR can occur alternately with a steady detonation
over a wedge with an appropriate angle and the CWA
of detonation reflections is not a certain angle but an
angle range.

In conclusion, the improved CE/SE scheme and
the two-step chemical model have been introduced and
verified for studying the CWA of cellular detonation
reflections. We find that RR and MR occur alter-
nately when the stoichiometric H2–O2 cellular det-
onation wave encounters the 50∘ wedge. The phe-
nomenon of RR and MR occurring at the same wedge
is essentially different from the reflections of planar
detonation waves and shock waves. We describe the
transition process between RR and MR aided by the
local pressure contours. We analyze the reason for
RR and MR occurring alternately using the numerical
data and the theory of planar detonation reflections.
The results show that the cellular structure of deto-
nation waves induces the new phenomenon and the
CWA of detonation reflection is not a certain angle
but an angle range.

The CWA of the stoichiometric H2–O2 cellular and
planar detonation reflection is 49.5∘–50.5∘ and 49.5∘,
respectively. The CWA of the planar detonation re-
flection, which is approximately equal to that of the
cellular detonation reflection, can be used in engineer-
ing designs.
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