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Size effects of mechanical behaviors of materials are referred to the variation of the mechanical behavior
due to the sample sizes changing from macroscale to micro-/nanoscales. At the micro-/nanoscale, since
sample has a relatively high specific surface area (SSA) (ratio of surface area to volume), the surface
energy effect, although it is often neglected at the macroscale, becomes prominent in governing the
mechanical behavior. In the present research, a continuum model considering the surface energy effect
is developed through introducing the surface energy to total potential energy. Simultaneously, a corre-
sponding finite element method is developed. The model is used to analyze the axial equilibrium strain
problem for a Cu nanowire at the external loading-free state. As another application of the model, from
dimensional analysis, the size effects of uniform compression tests on the microscale cylinder specimens
for Ni and Au single crystals are analyzed and compared with experiments in literatures.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction pute the surface energy effect which was described by adopting a
Recent researches have shown that the micro-/nanostructured
materials or materials at the micro-/nanoscale possess the superior
mechanical, physical and chemical properties [7,9,18]. At the mi-
cro-/nanoscale, size effects of mechanical behavior often become
prominent, and they are usually considered as a result from
imposed deformation gradients in crystalline materials [8,28,15]
etc. Recently, several studies emphasize that at the micro-/nano-
scale, the sample geometry size affects the mechanisms of defor-
mation and strength. Using molecular dynamics simulations for
simple shear of Ni single crystals, Horstemeyer et al. [14] found
that the yield strength depends on the specific surface area (SSA)
of the sample without considering strain gradient effects. Micro-
scale cylindrical pillars were tested under the uniaxial compression
for pure Ni and Ni-base alloys [25,4] and for Au single crystals
[11,26]. The stress–strain curves showed dramatic size effects
when sample dimensions are at the micro- or sub-micron scale.
Samples were machined from a bulk single crystal by focused ion
beam milling, and hence they are considered to have identical
initial internal structures. Size effects are mainly induced by the
variation of sample geometric sizes.

At the micro-/nanoscale, since material has a relatively high
SSA, the surface energy effect becomes prominent. The surface
stress effects on size-dependent elastic properties of nanoscale
structures have been studied widely [23,24,29,5,6,12,10] etc. For
example, Gao et al. [10] developed a finite element method to com-
ll rights reserved.

: +86 1062561284.
.

set of surface elastic constitutive equations of Miller and Shenoy
[20] within a surface layer and leading to introduce the surface
stress and strain components. However, it is difficult to measure
the surface stress tensor of solids experimentally, and it is still nec-
essary to adopt the atomistic simulations to calculate surface stres-
ses or determine the surface elastic constants. Recently Park et al.
[21] presented a surface Cauchy–Born model to study surface ef-
fects while the homogeneous deformation assumption is required.

In this paper, the surface energy effect is still expected to be
prominent in governing size effect on the mechanical behavior of
single crystals, and the surface energy density (c) is still assumed
a material constant [30] within a length scale region from sub-mi-
cron to macroscale. Based on the assumption, a continuum
mechanics model considering the surface energy effect will be
developed. A new finite element method corresponding the new
model is also developed for the model application. The model will
be used to analyze the axial equilibrium strain variation of a Cu
nanowire. Based on the modified continuum model, size effects
of compression tests on the sub-micron scale cylinder specimens
of Ni and Au single crystals are analyzed and compared with exper-
imental measurements in literatures.

2. Quantity level analysis of surface energy effect

Geometrically, the specific surface area (S=V) of a sample is a
function of sample sizes,

S
V
¼ f ðL; L1; L2; :::Þ: ð1Þ
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From dimensional analysis, Eq. (1) can be written as a non-
dimensional relation

L � S
V
¼ p L1

L
;
L2

L
; :::

� �
: ð2Þ

From Eq. (2), the SSA can be expressed by a characteristic length
(L) and several normalized shape parameters. SSA relations for
three typical samples are shown in Fig. 1. From Eq. (2) and Fig. 1,
the relation between the SSA and characteristic length for a spher-
ical or a cubic sample is linear in the logarithmic coordinate sys-
tem, as shown in Fig. 2. It can be seen that S/V is of order
108 m�1 at the sub-micron scale approximately, while it is of order
102 m�1 at the macroscale. For the typical metal materials, the
quantity levels of the stress (r), strain (e), strain energy density
(U0) and surface energy density (c) are given as follows

r � 101—103 MPa e � 10�2—10�1;

U0 � r � e=2 � 105—108 J=m3 ; c � 1 J=m2:
ð3Þ

Therefore, the order of the ratio (surface energy to strain en-
ergy) is given as

c S
U0V

� 10�6—10�3; ð4Þ

at the macroscale, and

c S
U0V

� ð1� 103Þ: ð5Þ

at the micro-/nanoscale.
Both Eqs. (4) and (5) imply that surface energy effect can be

rationally ignored at the macroscale while it should be considered
at the micro-/nanoscale.
Fig. 1. Relations of specific surface area with characteristic size for three typical
samples.

Fig. 2. Quantity level variation of specific surface area (S/V) with characteristic size
of samples.
3. A surface energy model and corresponding finite element
method

According to analysis in the last section, the surface energy ef-
fect should be considered when sample sizes are at the micro-/
nanoscale. The conventional minimum potential principle will be
revised to include the surface energy effect. In the new model,
the total potential energy of solid (P) is consisted of three parts,
the strain energy (Ub), surface energy (Us) and external force po-
tential ð�WÞ. The total potential energy can be expressed as

P ¼ Ub þ Us �W ð6Þ

In Eq. (6), Ub and �W can be expressed as usual

Ub ¼
Z

V
U0dV ;

�W ¼ �
Z

V
fiuidV �

Z
Sr

tiuidS ð7Þ

where U0 is strain energy density, fi and ti (i = 1, 2, 3) are body force
and applied surface traction, respectively.

The surface energy (Us) can be calculated by

Us ¼
Z

S0
cdS0; ð8Þ

where S0 is the deformed surface area, which can be related with
initial surface area (S) by

dS0 � ½1þ liljeij þmimjeij þ liljeijmpmqepq � ðlimjeijÞ2=2� � dS; ð9Þ

from deformation geometrical analysis, where eij (i, j =1, 2, 3) are the
surface boundary strain components in global strain field, which are
different from that of the surface strains within a surface layer spe-
cially defined by Miller and Shenoy [20] by presenting a set of sur-
face constitutive equations; l and m are the orthogonal unit vectors
on surface of solid, which are expressed as

l ¼ ½l1l2l3�T m ¼ ½m1m2m3�T; ð10Þ

ðli;miÞ (i = 1, 2, 3) are the direction cosines of l and m relative to the
global coordinate system.

From Eqs. (6)–(9), (1), the variational relation of total system
can be expressed asZ

V
deTrdV þ

Z
S

deTðRþ DseÞcdS�
Z

V
duTf dSþ

Z
Sr

duTtdS
� �

¼ 0;

ð11Þ

where e and r are the strain vector and stress vector respectively,
defined as

e ¼ ½exey ez cxy cyz czx�
T

r ¼ @U0

@e
¼ Depe ð12Þ

Dep is elastic–plastic matrix. In Eq. (2), matrix R and matrix Ds

can be expressed as

R ¼ R1 þ R2; Ds ¼ R1RT
2 þ R2RT

1 � R3RT
3

R1 ¼ ½l1
2l2

2l3
2l1l2l2l3l3l1�T

R2 ¼ ½m2
1m2

2m2
3m1m2m2m3m3m1�T ð13Þ

R3 ¼ ½2l1m12l2m22l3m3l1m2 þ l2m1l2m3 þ l3m2l3m1 þ l1m3�T

From Eqs. (2)–(4), one can obtain

Ka ¼ P ð14Þ

where a is the node displacement vector of the total system; stiff-
ness matrix and node force vector can be expressed as
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K ¼
X

e

GT
e KeGe; Ke ¼ Ke

b þ Ke
s

P ¼
X

e

GT
e Pe; Pe ¼ Pe

b þ Pe
s þ Pe

c ð15Þ

Ge is the connectivity matrix [1] by which the element displacement
matrix can be transformed into a; Ke

b and Ke
s are stiffness matrixes

of the bulk element and surface element respectively. The equiva-
lent nodal force matrixes of elements, Pe

b Pe
s and Pe

c, are calculated
through the known body forces, surface tractions and surface en-
ergy respectively. Ke

b, Ke
s , Pe

b, Pe
s and Pe

c can be expressed as

Ke
b ¼

Z
Ve

BT
bDepBbdV ; Ke

s ¼
Z

Se
BT

s DsBscdS;

Pe
b ¼

Z
Ve

NTf dV ; Pe
s ¼

Z
Se
r

NTtdS; Pe
c ¼ �

Z
Se

BT
s R c dS; ð16Þ

where Bb and Bs are the strain matrixes of the bulk element and sur-
face element respectively, and (N) is the matrix of shape functions.

In our finite element method considering the surface energy ef-
fect, the 20-node hexahedral brick isoparametric element is chosen
as the bulk elements. It is worth noting that a surface element cor-
responds to a face of the bulk element, with 8 nodes. For the 20-
node hexahedral brick isoparametric element, two unit vectors l
and m given in Eq. (1), which describe the orientation of the sur-
face element, can be expressed by the Gram–Schmidt orthogonal-
ization in parametrical coordinates ðn;g; fÞ as

l ¼ rf

jrfj
and m ¼ rn � ðrn � lÞl

jrn � ðrn � lÞlj
ðfor surface elements with g ¼ �1Þ

l ¼ rn

jrnj
and m ¼ rg � ðrg � lÞl

jlg � ðrg � lÞlj
ðfor surface elements with f ¼ �1Þ

ð17Þ

l ¼ rg

jrgj
and m ¼ rf � ðrf � lÞl

jrf � ðrf � lÞlj
ðfor surface elements with n ¼ �1Þ

where rn; rg; and rf are defined by global coordinates (x, y, z) and
parametrical coordinates ðn;g; fÞ as

rn ¼
@x
@n

@y
@n

@z
@n

� �T

; rg ¼
@x
@g

@y
@g

@z
@g

� �T

; rf ¼
@x
@f

@y
@f

@z
@f

� �T

ð18Þ

From Eqs. (4), (6), (7), (8), (9), the equilibrium Eq. (5) can be ex-
pressed completely. It should be noted that the global stiffness ma-
trix, K in Eq. (5), is positive definite after the treatment of constraints
in the traditional finite method [19]. However, K is generally a
sparse, symmetrical but non-positive definite matrix in the present
model considering the surface energy effect, so some usual methods
such as Cholesky decomposition can not be used to solve Eq. (5).

An elastic–plastic material with power-law hardening feature is
considered here,

re

rY
¼

ee=eY ðre 6 rY Þ;
ðee=eYÞN ðre > rY Þ;

(
ð19Þ

where re and ee are the Von Mises effective stress and effective
strain respectively, N is the strain-hardening exponent; rY is the
initial yield stress at the macroscale, and eY is the corresponding
yield strain, eY ¼ rY=E, where E is the macroscale Young’s modulus.

4. Applications of the surface energy model

4.1. Free relaxation of external loading-free nanowires

Metal nanowires have an interesting mechanical property. By
using atomistic simulations, Diao et al. **[2,3] found that for an
external loading-free Au nanowire, the compressive residue stress
always exists in the interior of the nanowire, and the <100> nano-
wire will undergo a phase transformation process from face-cen-
tered-cubic (FCC) structure to body-centered-tetragonal (BCT)
structure when nanowire size (width of square cross-section) is
less than 2 nm. By molecular dynamics simulations, Liang and
Zhou [17] observed that for Cu nanowire when cross-section size
is smaller than 2.17 � 2.17 nm, spontaneous lattice was reoriented
with the cross-sectional shape changing from square to rhombic,
and the wire decreased in length by 29.3% at a temperature of
300 K, approximately.

From the present surface energy model, for the external load-
ing-free nanowire case, due to the surface energy effect, the ten-
sion stress is formed on the surface, which is balanced by the
compressive stress in the interior of nanowire. At the self-balance
state, generally the length of the nanowire will be shortening due
to the interior compression, which can be determined by calculat-
ing the axial equilibrium strain. In this subsection, our surface en-
ergy model will be used to investigate the free relaxation of single
crystalline Cu nanowires and calculate the axial equilibrium strain.
Initial length of the nanowire is L1 and the size of square cross-sec-
tion is L. Assume that the surface energy density is a material con-
stant at the sub-micron scale. Both 3-D elastic–plastic and 1-D
elastic analyses are performed.

For the external loading-free nanowires using the 1-D elastic
analysis, Eq. (6) can be simplified as a theoretical formulation,

P ¼ Ee2L2L1=2þ c½2L2ð1� meÞ2 þ 4LL1ð1� meÞð1þ eÞ�; ð20Þ

where e is axial equilibrium strain of nanowire, m is Poisson’s ratio.
The axial equilibrium strain with respect to the nanowire size and
the surface energy density can be found from the functional station-
ary condition ðdP ¼ 0Þ to e, one have

e ¼ 4m� 4ð1� mÞ � ðL1=LÞ
ðE=cÞ � L � ðL1=LÞ þ 4m2 � 8m � ðL1=LÞ : ð21Þ

The 3-D elastic–plastic analysis model has been depicted in de-
tail in the last section. In the numerical examples, for the Cu single
crystals, material parameters are taken as: E = 200 GPa, m = 0.3,
N = 0.2, rY = 300 MPa, c = 1.725 J/m2, where the value of surface
energy density used in this study is come from Hirth and Lothe
[13]. The finite element method developed in last section is used.
In the present calculations, the 20-node hexahedral brick isopara-
metric element is chosen as the bulk elements, and the surface ele-
ment corresponds to a face of the bulk element, with 8 nodes. The
cuboid element is used and the mesh is divided along the sample
length direction and cross-section by 50 � 3 � 3. Total element
number is 450. For each element, 27 Gauss points are adopted in
the integration. For the given surface energy density, the displace-
ment field is computed, so that the axial equilibrium strain can be
obtained.

The simulation results based on both 1-D and 3-D surface en-
ergy model are compared with the results of molecular static
(MS) results given by Liang et al. [16], as shown in Fig. 3. All the re-
sults show nanowires contraction in their length direction. With
decreasing the size of cross-section, the axial equilibrium strain
(contraction) increases. From the results of 3-D surface energy
model, long and slender nanowires contract more than short and
thick nanowires, which are consistent with the conclusion based
on the surface Cauchy–Born model [22].

4.2. Size effects of flow stress in compressive tests for single crystalline
samples

Both surface and volume effects affect the flow stress of single
crystalline materials at the micro- or sub-micron scale [11,4].
According to the present surface energy model given in the last
section, we have an additional material parameter, surface energy
density c. Referring to the dimensional analysis method using by



Fig. 3. Axial equilibrium strain as a function of the size of single crystalline Cu
nanowire with square cross-section is shown, using 1-D model Eq. (18) and 3-D
model (finite element method developed in the present paper). The results of
molecular static simulations (MS) with three orientations [16] are also shown.

Fig. 4. Variation of material flow stress with surface energy density. Experimental
results can be modeled effectively using the theoretical model.
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Zheng [30] who analyzed fracture strength of solid considering the
surface energy effect, we can easily develop a relationship between
flow stress and the surface energy density. The flow stress ðrsÞ of
single crystal samples can be described by two types of indepen-
dent dimensionless parameters (taking a cylinder sample as exam-
ple here)

rs

rY
¼ pf

c
rY L

;
L1

L

� �
; ð22Þ

where the dimensionless parameter, c=ðrY LÞ describes a ratio of
surface energy to volume deformation energy for the uniform load-
ing sample, another parameter L1=L is the aspect ratio, rY is the flow
stress of material at the case of macroscale sample size. The order of
magnitude analysis about the surface energy effect is given in Table
1. From Table 1, it is clear that for the elastic–plastic case, the sur-
face energy effect is considerably large at the nanometer scale.
When Eq. (13) is expanded into a Taylor series, and the first-order
quantity in the series is kept, one can easily obtain a linear relation
between the normalized flow stresses and the normalized surface
energy density as,

rs

rY
¼ 1þ c

rY L
f1

L1

L

� �
ð23Þ

and can be compared with the recent experimental results given by
Greer et al. [11] and Dimiduk et al. [4], where the undetermined
function f1 is only dependent on the sample aspect ratio.

Similarly, for an elastic case, one can obtain a concise relation of
Young’s modulus ðEgÞ with surface energy density based on the
present surface energy model through dimensional analysis,

Eg

E
¼ 1þ c

EL
w1

L1

L

� �
ð24Þ

where E is the Young’s modulus at the case of macroscale sample
size. The expression (15) is similar to that given by Wang et al. [27].
Table 1
Order of magnitude analysis of surface energy effect and influence on the flow stress
for elastic–plastic materials and on the Young’s modulus for elastic materials.

L 1 m 1 mm 1 lm 10 nm 1 nm
c

rcL 10�8 10�5 10�2 100 101

c
EL 10�11 10�8 10�5 10�3 10�2

c � 1 Jm�2, rc � 102 MPa, and E � 102 GPa.
The order of magnitude analysis about the surface energy ef-
fects on the flow stress and Young’s modulus is given in Table 1.
From Table 1, c=ðrY LÞ is of order 10�2 at the micrometer scale.
However, c=ðELÞ is of order 10�2 at the nanometer scale. This indi-
cates that for plastic case the size effects are usually prominent
starting from microscale to smaller scale, while for elastic case
they are prominent starting from nanometer scale to much smaller
scale. It is interesting to note that the intrinsic length scale c=E can
be traced back to the classical Griffith theory for brittle fracture
[27].

In Fig. 4, the above linear relation Eq. (14) is used to describe the
experimental results. The experimental data are from microscale
uniaxial compression tests. From Fig. 4, one can find that this sim-
ple relation can describe the size effects of the flow stress of single
crystals effectively.

5. Concluding remarks

In the present research, through the order of magnitude analy-
sis for the SSA, a new model considering surface energy effect has
been developed. The corresponding finite element method has also
been developed. The surface energy model has been used to ana-
lyze the axial equilibrium strain variations for the external load-
ing-free nanowires. Based on the surface energy model, the size
effects of flow stress and Young’s modulus have been analyzed
from dimensional analysis, and the analysis results are used to suc-
cessfully describe the experimental data. The order of magnitude
analysis for the surface energy density and its influence on the flow
stress has been performed. The main results obtained in the pres-
ent research can be summarized to the following key points: (1) as
a length scale parameter, the SSA of sample undergoes a huge in-
crease when sample size changes from the macroscale to micro-/
nanoscale, so that the surface energy effect becomes obvious, espe-
cially when sample size reaches at the micro-/nanoscale. (2) Taking
the surface energy density as a material parameter, a surface en-
ergy model has been developed through introducing the surface
energy density to the conventional continuum theory. The corre-
sponding finite element method has been developed. Through ana-
lyzing a typical nanoscale problem, the relaxation of external
loading-free nanowire, the effectiveness of the model has been tes-
tified. (3) Through the order of magnitude analysis for the surface
energy effect and for its influence on the flow stress and Young’s
modulus, we have found that for a plastic problem the size effects
are usually prominent starting from microscale to smaller scale,
while for an elastic problem they are prominent starting from
nanometer scale to much smaller scale.
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It is worth noting that in the present research, about size effects
of mechanical behavior, although some important features can be
described and captured by using the surface energy model, how-
ever, the surface energy density is assumed as a material constant
and only single crystal materials are discussed. Generally speaking,
the surface energy density should be a variable as a function of SSA,
surface deformation or surface temperature etc. Further and in-
depth research work on surface energy effects is still needed. On
the other hand, the size effects should be dependent on both the
surface effect and the volume effect. About the volume effect, the
strain gradient effect should be important at the micro-/nanoscale,
which is not considered in the present model.
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