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Abstract The relationships between indentation responses
and Young’s modulus of an indented material were
investigated by employing dimensional analysis and finite
element method. Three representative tip bluntness geom-
etries were introduced to describe the shape of a real
Berkovich indenter. It was demonstrated that for each of
these bluntness geometries, a set of approximate indenta-
tion relationships correlating the ratio of nominal hardness/
reduced Young’s modulus Hn/Er and the ratio of elastic
work/total work We/W can be derived. Consequently, a
method for Young’s modulus measurement combined with
its accuracy estimation was established on basis of these
relationships. The effectiveness of this approach was
verified by performing nanoindentation tests on S45C
carbon steel and 6061 aluminum alloy and microindenta-
tion tests on aluminum single crystal, GCr15 bearing steel
and fused silica.

Keywords Young’s modulus . Accuracy . Instrumented
indentation . Finite element analysis . Berkovich indenter

Introduction

Instrumented indentation has been widely used for deter-
mining the mechanical properties of materials on small
scales [1–8]. Young’s modulus is one of the most
commonly concerned material properties determinable with
this technique. The pioneer work by Oliver and Pharr [4–6]
revealed a famous formula:

Er ¼
ffiffiffi
p

p
2b

Suffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A hcmð Þp ð1Þ

Su is the initial slope of an unloading curve. Er is the
reduced modulus which is related to the Young’s modulus
E and Poisson’s ratio ν of the indented material and
those (Ei, νi) of the indenter by the equation 1=Er ¼
1� n2ð Þ�E þ 1� n2i

� ��
Ei. β is a constant depending on

the shape of the indenter. A(hcm) is the projected contact
area corresponding to the maximum contact depth hcm
when the indenter proceeds to the maximum indentation
depth hm at the maximum load Pm. According to Oliver
and Pharr, A(hcm) can be directly estimated from the
unloading curve. Yet this approach is not always accurate
enough. In particular, it does not take account of piling up
effect which may occur in the indentation processes of
some materials.

Cheng and Cheng presented another fundamental ap-
proach [9–11], which was developed for the case when an
ideally sharp conical indenter was used. By applying
scaling relationships in combination with finite element
simulations, they verified the existence of an approximate
relationship:

H=Er ¼ f We=Wð Þ ð2Þ
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H � Pm=A hcmð Þ is hardness. We and W are the elastic
work and total work corresponding to the areas under
the unloading and loading curves recorded in an
indentation test. By combining equations (1) and (2) to
eliminate A(hcm), Er can be determined as:

Er ¼ p
.

2bð Þ2
h i

f We=Wð Þ S2u
�
Pm

� � ð3Þ

This formulation gives a first impression that it may
be superior to the Oliver and Pharr’s model since it does
not include hcm [or equivalently A(hcm)], such that any
possible error caused by the uncertainty in deriving hcm
from the unloading curve is prevented. However, one
should also notice that the model was only usable for the
case where an ideally sharp conical indenter is used, so
that deviation caused by the bluntness of an indenter tip is
not taken into account. Moreover, the quantity Su is still in
the formula, which is needed to be derived from the
unloading curve and may carry some error. The error
could be large if the data points are scattered, as in the
case of a shallow indentation, and in particular, the error is
further magnified after taking square as required by
equation (3).

In this paper, an improved instrumented indentation
method for determining Young’s modulus was developed
by applying dimensional and finite element analyses. In this
method, the bluntness of a non-ideally sharp indenter was
considered, and a nominal hardness Hn=Pm/A(hm) is
introduced, which is defined as the maximum load Pm

divided by the cross-sectional area A(hm) evaluated at the
maximum indentation depth hm, and is therefore Hn is
fundamentally different from the conventional hardness H.
The proposed method can prevent the needs of both the
indirectly estimated value of hcm and the quantity of Su.
More importantly, it was developed to be applicable to a
broad range of indenter shapes with almost arbitrary tip
bluntness and be able to give accuracy estimation on the
measurement of Young’s modulus.

Theoretical Analysis

Description of Nonideally Sharp Indenters

An indenter with Berkovich geometry is commonly used in
a nanoindentation test. A real indenter always has some
degree of bluntness, which influence is significant for very
shallow indentations. For simplicity, a blunt or non-ideal
Berkovich indenter is approximated by a non-ideal conical
geometry with a protruding end. The bluntness of the non-
ideally sharp indenter was described by introducing two
parameters named as volume bluntness ratio Vr and height
bluntness ratio hr. The volume bluntness ratio is defined as
Vr � Videal=Vblunt, where Videal is the part of volume
bounded by the area A(hm) for an ideally sharp Berkevich
indenter or equivalently conical indenter (Fig. 1), and Vblunt

is that for a real indenter. The height bluntness ratio is
defined as hr � hideal=hm, where hideal is the distance from
the vertex of an ideally sharp conical shape to the area A
(hm). Figure 2 shows schematically three tip geometries,
which are made to have the same volume bluntness ratio Vr
but the respective height bluntness ratios hr are different.
Case 1 refers to a flat-ended geometry, which has the
largest value of hr, and hence is used to represent one
extremely blunt situation. Case 2 refers to a conical-tipped
geometry with a half-included conical angle α larger than
θ=70.3°, namely the half-included angle of a cone giving
the same area-to-depth ratio as that of an ideally sharp
Berkovich indenter. This geometry is thus regarded to be
blunter than the ideal one. Since hr of this model is the
smallest among those of the three models, this geometry is
used to represent another extreme situation. The third case
is the spherical-capped geometry, which is an intermediate
situation between the above two. It can be demonstrated
that Vr and hr are not independent for a specific bluntness
type. By using suffixes “f”, “c” and “s” to refer to the three
typical bluntness geometries, the corresponding relations
can be derived, which are Vr ¼ 1

.
1� 1� 1=hrfð Þ3
h i

for flat-ended case; Vr=hrc for conical-tipped case; and

hideal

VbluntVideal

A(hm)
hm

Ideally sharp indenter Blunt indenter

Original surface

Fig. 1 Schematic diagrams of
an ideally sharp indenter and a
blunt indenter
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Vr ¼ 1
.

1� 1� 1=hrsð Þ3 1þ sin qð Þ
h i

when Vr≤1.361, and
Vr ¼ 2h3rs

�
3h2rs þ cot2 q
� �

when Vr>1.361 for spherical-
capped case. The condition Vr=1.361 specifies a special
situation when the maximum indentation depth is equal to
the distance between the vertex of the spherical cap and the
conical-spherical cap interface. It is noted that a real
indenter geometry may not be exactly identical to any one
of the three hypothetical models, but is most generally
somehow in between. Our presently proposed method of
analysis would embrace such a possibility.

Approximate Relationships Between Hn/Er and We/W
for Three Types of Non-Ideally Sharp Indenters

Within the framework of continuum mechanics, we apply
finite element method to investigate the responses of a
material indented by the three representative types of
non-ideal conical indenters mentioned above. The
indented material is assumed to behave as an isotropic
and rate-independent solid, and obeys Von Mises yield
criterion and pure isotropic hardening rule. The uniaxial
stress–strain relations take the form of linear elasticity
combined with the Hollomon’s power law hardening,
namely:

s ¼ E" ; " � "y
sy "

�
"y

� �n
; " > "y

�
ð4Þ

where σ and ɛ are the true stress and true strain, and σy
and ɛy=σy/E the yield stress and yield strain. We assume
that the indenter is elastic, and no friction exists between
the contact interface. The nominal hardness Hn and the
work ratio We/W are treated as indentation responses, and
they should be regarded as functions of the elastoplastic
properties (E, ν, σy, n) of the tested material, the elastic
properties (Ei, νi) of the indenter, the maximum indenta-
tion depth (hm), and two bluntness ratios (Vr and hr). The

correlations between these quantities are expressed im-
plicitly as:

Hn ¼ fH E; v; sy; n;Ei; vi; hm;Vr; hr
� � ð5Þ

We=W ¼ fw E; v; sy; n;Ei; vi; hm;Vr; hr
� � ð6Þ

According to Dao et al. [12] and Fischer–Cripps [13],
these two functions may be simplified by introducing the
quantity Er to combine all the elastic effects from the
indenter and the indented material, such that equations (5)
and (6) can be expressed as:

Hn ¼ fH sy; n;Er; hm;Vr; hr
� � ð7Þ

We

�
W ¼ fw sy; n;Er; hm;Vr; hr

� � ð8Þ
By applying Π theorem of dimensional analysis,

functions (7) and (8) can be rewritten in the following
dimensionless forms:

Hn

�
Er ¼ 6H sy

�
Er; n;Vr; hr

� � ð9Þ

We

�
W ¼ 6w sy

�
Er; n;Vr; hr

� � ð10Þ
Considering that σy /Er in equation (1) can be expressed

in terms of We/W, n, Vr and hr, it can be expressed
alternatively as:

sy

�
Er ¼ yW We=W ; n;Vr; hrð Þ ð11Þ

By substituting equation (11) into equation (9) to
remove σy/Er, the expression of Hn/Er becomes:

Hn=Er ¼ 6H yW We=W ; nð Þ; n;Vr; hr½ � ¼ ΓH We=W ; n;Vr; hrð Þ
ð12Þ

To obtain an explicit result, a commercial finite element
code ABAQUS [14] capable of handling large deformation
analysis was employed to simulate the non-ideally sharp
indentation process. In the calculations, the independent
variable σy/Er in equations (9) and (10) was varied in such a
way that Er is kept unchanged by assigning fixed values to
E, ν, Ei and νi, and let σy vary alone. In particular, Ei and νi
can be removed to get further simplicity by assuming that
the indenter is rigid. As such, E and ν are fixed at 70 GPa
and 0.3, while σy is assigned to vary in a broad range of
0.0005∼10.500 GPa. n is assigned by the values of 0, 0.15,
0.3 and 0.45 in sequence, and Vr by 1, 1.336, 2.547 and
4.764. Vr=1 refers to the case of ideal tip shape, where hr=
1. In a finite element simulation, four-node axisymmetric
elements are used. The size of the elements is made to be
small enough such that there are at least 30 nodes at the

Conical-tipped

Flat-ended

Spherical-capped

Ideal 

Original surface 

α

Pm

θ

2m
h1m

h

3m
h

ideal
h

Fig. 2 Three representative blunt geometries and ideally sharp
geometry

Exp Mech (2009) 49:719–729 721



contact region. The overall dimensions of the model in
the radial and axial directions are identical, and the
radius of the cross sectional area of the indenter at the
maximum indentation depth is constantly below 1/20 of
the overall radius of the model. A sensitivity test was
performed by looking at the result obtained after
reducing the mesh size by one half and doubling the
dimensions of the model in both radial and vertical
directions. The values of the peak load Pm and the work
ratio We/W thus obtained do not vary more than 0.5% from
those obtained by using the original model, confirming
that the original settings of meshing and overall dimension
of the model are suitable for simulating a hypothetical
indentation made on a semi-infinite solid.

Figure 3 shows some examples of normalized load–unload
curves obtained from simulations with the use of the three
representative indenter types. Similar simulation processes
were performed by assigning some other combinations of σy
and n, and Vr and hr. Each set of loading–unloading curves
can be used to derive a set of values of Hn/Er and We/W.
Figure 4(a)–(c) shows the plots of Hn/Er versus We/W for
the flat-ended geometry with Vr=2.547, hr=6.531, the
spherical-capped geometry with Vr=2.547, hr=3.832 and
the conical-tipped geometry with Vr=2.547, hr=2.547. It
is evident from the plots that the data points in each figure
fall in a narrow band bounded between the curves with n=
0 and 0.45. Therefore, Hn/Er and We/W can be roughly
regarded as if they are correlated with a functional
relationship, but such a relationship is not perfectly one
to one. Similar features can be also observed when an
ideally sharp indenter or different degrees of blunt
indenters is used.
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Spherical-capped bluntness hr=3.832
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1

Fig. 3 Normalized load–unload curves obtained from simulations
at σy=280 MPa, n=0.15, E=70 GPa, ν=0.3 and Vr=2.547, with
different hr’s corresponding to the three representative blunt
geometries
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Fig. 4 Relationships between Hn/Er and We/W obtained for (a) the
flat-ended geometry with Vr=2.547, hr=6.531, (b) the spherical-
capped geometry with Vr=2.547, hr=3.832 and (c) the conical-tipped
geometry with Vr=2.547, hr=2.547
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Functional Expressions of Hn/Er–We/W Relationships
and Accuracy Analysis for Determining Er

For a certain combination of Vr and hr, one can create a
function Hn=Er ¼ Fx We=Wð Þ to approximate the relation-
ship between Hn/Er and We/W, from which the reduced
Young’s modulus Er can be obtained by dividing Hn by
Hn/Er, i.e., Er=Hn/(Hn/Er)=Hn/Fx(We/W). Obviously, such
an estimated Er would contain some error. The magnitude
of the error would depend on how well the simulated
Hn/Er and We/W values are fitted to a function. In fact,
for a definite value of We/W the simulated value (Hn/Er)
varies with n. It is thus reasonable to assign a mean,
1= Hn=Erð Þn¼0 þ 1= Hn=Erð Þn¼0:45

� ��
2, to represent 1/(Hn/

Er) in the analysis. The trend of leftðHn=ErÞ ¼ 2
�
1= Hn=ð½

ErÞn¼0 þ 1= Hn=Erð Þn¼0:45� with respect to We/W can be
fitted to a polynomial. We introduce a double-index
convention, with the first index “x” to refer to the indenter
type, namely, “f”, “c” and “s” for flat-ended, conical-tipped
and spherical-capped geometries; and the second index “j”=1,
2, 3 and 4 to refer to four selected bluntness levels with
volume bluntness ratios Vr1=1, Vr2=1.336, Vr3=2.547 and
Vr4=4.764, respectively. In a compact form, the functions for
the three typical indenter types are expressed as:

Hn=Erð Þxj¼
X6
i¼1

axi Vrj

� �
We=Wð Þi ð13Þ

Alternatively, in an enumerated format, they are written as:

Hn=Erð Þfi¼
X6
i¼1

afi Vrið Þ We=Wð Þi ð14Þ

Hn=Erð Þci¼
X6
i¼1

aci Vrj

� �
We=Wð Þi ð15Þ

Hn=Erð Þsj¼
X6
i¼1

asi Vrj

� �
We=Wð Þi ð16Þ

where afi(Vrj), aci(Vrj) and asi(Vrj), (i=1,...,6) are the
coefficients of the polynomial and their values are given
in Table 1.

I f Hn=Erð Þxj;n¼0¼ fu We=Wð Þ a n d Hn=Erð Þxj;n¼0:45¼
fl We=Wð Þ are used to represent the upper and the lower
boundaries of an approximate Hn/Er–We/W relationship, the
maximum relative errors |δrxj| for determining Er can be
calculated from

��drxj�� ¼ �
1
��

Hn

�
Er

�
xj � 1

��
Hn

�
Er

�
xj;n¼0

��
�
1
��

Hn

�
Er

�
xj

�¼1��P6
i¼1

axj
�
Vrj

��
We

�
W
�i��

fu
�
We

�
W
�
or

��drxj�� ¼�
1
��

Hn

�
Er

�
xj;n¼0:45

� 1
��

Hn

�
Er

�
xj

���
1
��

Hn

�
Er

�
xj

� ¼
�P6
i¼1

axj
�
Vrj

��
We

�
W
�i��

fl
�
We

�
W
�� 1. Figure 5 shows the maxi-

mum relative error functions of |δrfj| (j=1,2,3,4), |δrcj| (j=
1,2,3,4) and |δrsj| (j=1,2,3,4). It is obvious from Fig. 5 that

these relative error functions are very close, so that for the
convenience of analysis they can be expressed by an
average function |δbr| in a polynomial form of:

dbrj j ¼
X6
i¼0

bi We=Wð Þi ð17Þ

where bi (i=0,1,...,6) are the coefficients of the polynomial
and their values are b0=15.67876, b1=−59.77639, b2=
102.43439, b3=−58.55967, b4=−69.27250, b5=110.06137
and b6=−40.51260. As a special case, the maximum
relative error function for an ideal Berkovich indenter tip
is derived and denoted as drj j ¼ drf1j j ¼ drc1j j ¼ drs1j j,
which is slightly smaller than |δbr|, and can be expressed
in a polynomial form of:

drj j ¼ drf 1
�� �� ¼ drc1j j ¼ drs1j j ¼

X6
i¼0

ci We=Wð Þi ð18Þ

where ci (i=0,1,...,6) are the coefficients of the polynomial
and their values are c0=13.29480, c1=−33.35762, c2=
6.84133, c3=59.83432, c4=−46.39656, c5=−31.10085 and
c6=30.96980. From Fig. 5 it can be also seen that |δbr| and
|δr| always decrease when the work ratio We/W increases.
The maximum relative errors derived from equations (17)
and (18) at the condition of We/W=0 are found to be 15.7%
for |δbr|, and 13.3% for |δr|. Obviously, from the engineering
point of view, such a level of accuracy in the measurement
of Young’s modulus can meet the requirements of most
applications.

We note that perfect functional relationship between Hn/
Er and We/W for a specific indenter tip is still lacking. It is
possible that two materials of different elastoplastic
parameters (i.e. Er, σy and n) would give almost identical
indentation load–displacement curves and hence the same
set of Hn and We/W. The estimated Er value thus derived
would deviate from the true values of the respective
materials. This is recognized to be the uniqueness problem,
which has attracted wide concerns for the measurement of
the Young’s modulus of an elastoplatic substance with
instrumented indentation technique. A systematic study on
this problem has been performed recently by Chen et al.
[15]. Results of their analysis show that in an indentation
cycle with well specified Hn and We/W, the ratio of Hn/Er

can vary from the upper bound towards the lower bound of
a range when n is set to vary from zero to reach the
maximum value specified in their study (it is 0.45 in our
study). This finding agrees with the result of our present
analysis. In fact, the problem of uniqueness is present in our
work, but appears in a form of slight dispersion of Er due to
the uncertainty of n, as reflected by the appearance of a
narrow band of Hn/Er at a specific We/W as shown in
Fig. 4(a)–(c).
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The stability for the determination of Er can be
examined by investigating the sensitivity of Er with respect
to perturbations of Hn and We/W. For all of the three
indenter geometries and four bluntness levels specified
in this work, the dispersion of Er calculated from the

formula Er ¼ Hn= Hn=Erð Þxj ¼ Hn=
P6
i¼1

axi Vrj

� �
We=Wð Þi

	 


by varying We/W with ±5% around a centered value
selected arbitrarily from a range of 0.01∼1 is less than
�5:2%, while the same change of Hn would lead to the
same variation of Er. It is thus concluded that Er exhibits a
rather good stability over small perturbations of Hn and
We/W.

Proposed Method

The establishment of equations (13), (17) and (18) forms
the basis for Young’s modulus measurement and its
accuracy estimation. For a nanoindentation test, the
procedures proposed for the purpose are listed in detail as
follows:

(i) Calibrate the area function A(h) of a real Berkovich
indenter used for indentation tests according to the tip
calibration procedures proposed by Oliver and Pharr [4, 6].

(ii) Generate loading and unloading curves by performing
indentations on the tested material with a depth-
sensing indentation system. Pm and hm are directly
measured, and A(hm) is derived from the area function
obtained in step (i). Hence, the value of the nominal
hardness Hn≡Pm/A(hm) is determined. Further, the
work ratio We/W is determined, where We and W are
obtained by integrating the areas under the unloading
and loading curves, respectively.

(iii) Calculate the volume bluntness ratio Vr≡Videal/Vblunt,
where Videal ¼ 1=3ð ÞA hmð Þ A hmð Þ=24:5½ �0:5 for an ideal

Berkovich indenter, and Vblunt ¼
R hm
0 A hð Þ d h for the

real Berkovich indenter.
(iv) Calculate the height bluntness ratio hr≡hideal/hm

for the real Berkovich indenter, where hideal ¼
A hmð Þ=24:5½ �0:5. Then, calculate the height bluntness
ratios hrf, hrc and hrs associated with the three typical
types of blunt tips by substituting the Vr value
obtained in (iii) into the expressions relating the two
bluntness ratios given in “Theoretical Analysis”.

(v) Write down the Expressions (14–16) with the coef-
ficients tabulated in Table 1 for the three typical tip
shapes and four different levels of bluntness specified
by Vrj=1, 1.336, 2.547 and 4.764 indexed with j=
1,...,4. Then substitute We/W into the formulas to
calculate the values of (Hn/Er)fj, (Hn/Er)cj and (Hn/Er)sj.

(vi) Derive the best fit to the four data points of (Hn/Er)fj
versus Vrj (j=1,2,3,4) by using a third-order polyno-
mial of 1/Vr j. A best estimate of (Hn/E r)f
corresponding to Vr obtained in (iii) is thus derived

Table 1 The values of coefficients axi(Vrj) (x=f, c, s; i=1,...,6; j=1,...,4)

x j Vrj ax1(Vrj) ax2(Vrj) ax3(Vrj) ax4(Vrj) ax5(Vrj) ax6(Vrj)

f 1 1.000 0.16716 −0.13875 0.06215 0.01568 −0.04784 0.01878
f 2 1.336 0.11088 −0.13538 0.30236 −0.50340 0.41954 −0.13528
f 3 2.547 0.05344 −0.07060 0.18858 −0.31453 0.25048 −0.07588
f 4 4.764 0.02776 −0.03934 0.10015 −0.15016 0.10604 −0.02790
c 1 1.000 0.16716 −0.13875 0.06215 0.01568 −0.04784 0.01878
c 2 1.336 0.12655 −0.14012 0.20772 −0.29096 0.22433 −0.07001
c 3 2.547 0.06482 −0.07744 0.14161 −0.22246 0.18104 −0.05782
c 4 4.764 0.03393 −0.04164 0.08170 −0.13158 0.10712 −0.03376
s 1 1.000 0.16716 −0.13875 0.06215 0.01568 −0.04784 0.01878
s 2 1.336 0.11612 −0.14391 0.29892 −0.50592 0.43731 −0.14669
s 3 2.547 0.05899 −0.06815 0.13162 −0.21203 0.17552 −0.05691
s 4 4.764 0.03104 −0.03438 0.06404 −0.10089 0.08154 −0.02588
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Fig. 5 Relative error functions |δrxj| (x=f, c, s; j=1,2,3,4) and |δbr|
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via interpolation. The best estimates of (Hn/Er)c and
(Hn/Er)s are obtained with the same technique.

(vii) Derive the best fit to the data points of (Hn/Er)x versus
hrx (x=f, c, s) by using a second-order polynomial of
hr. Based on this relationship, a best estimate of Hn/
Er at Vr and hr is derived by interpolation.

(viii) Determine the reduced Young’s modulus Er=Hn/(Hn/Er),
and the maximum relative error |δbr| of Er by applying
equation (17). Then calculate the maximum Young’s
modulus Emax and the minimum Young’s modulus Emin
of the tested material by using the expressions Emax ¼
1� n2ð Þ� 1= Er 1þ dbrj jð Þ½ � � 1� n2i

� ��
Ei

� �
a n d

Emin ¼ 1� n2ð Þ� 1= Er 1� dbrj jð Þ½ � � 1� n2i
� ��

Ei

� �
respectively, provided that the values of Ei, vi and v are
all known. Finally determine the average Young’s
modulus E ¼ Emax þ Eminð Þ=2, and its maximum
relative error dbj j ¼ Emax � Eð Þ=E ¼ � Emin � Eð Þ=
E ¼ dbrj j

.
1� 1� dbrj j2

 �
1� n2i
� �

Er=Ei

h i
.

For a microindentation test, both the values of the two
indenter bluntness parameters of Vr and hr are close to 1.
Therefore, the influence of the indenter tip bluntness on the
ratio of Hn/Er can be neglected. The values of Hn/Er and Er

can be directly estimated from the equations Hn=Er ¼
Hn=Erð Þf1¼ Hn=Erð Þc1¼ Hn=Erð Þs1¼

P6
i¼1

af i Vr1ð Þ We=Wð Þi¼P6
i¼1

aci Vr1ð Þ We=Wð Þi¼ P6
i¼1

asi Vr1ð Þ We=Wð Þi and Er ¼ Hn

�
�
Hn

�
Er

�
respectively. The value of |δr| can be determined

by drj j ¼ drf1j j ¼ drc1j j ¼ drs1j j ¼ P6
i¼0

ci We=Wð Þi. Consequently,
the Young’s modulus E of the tested material and its
maximum relative error |δ| can be determined as
E ¼ Emax þ Eminð Þ=2 ¼ 0:5 1� n2ð Þ� 1= Er 1þ drj jð Þ½ � � 1� n2i

� ��
Ei

� �þ
0:5 1� n2ð Þ� 1= Er 1� drj jð Þ½ � � 1� n2i

� ��
Ei

� �
and dj j ¼ Emax � Eð Þ=

E ¼ � Emin � Eð Þ E ¼= drj j
.

1� 1� drj j2
 �

1� n2i
� �

Er=Ei

h i
,

respectively.

Experiments

Nanoindentation Tests

In this subsection, we use the proposed method to analyze
the data of shallow indentations, where the indenter tip
bluntness effect is not negligible. Two materials, i.e. S45C
carbon steel and 6061 aluminum alloy, were selected for
investigations. Each specimen of the two materials was
polished to produce mirror-reflecting surfaces for indenta-
tion tests. The polishing processes were performed by using
grinding papers of 800, 1,200, 2,000 and 4,000 grits, and
then diamond pastes of 6, 3, 1 and 0.25 μm grain sizes.
Atomic force microscopy analysis showed that the root
mean square roughness of the polished surface was around
0.5 nm in a detected surface of 15 μm2. To obtain

references of the E values, uniaxial tensile tests for the
two selected materials were performed. Results for the
S45C carbon steel and 6061 aluminum alloy are found to
be 200.1 and 70.5 GPa, respectively.

A commercial Nano Indenter® XP equipped with a
Berkovich indenter was used for the measurements. The area
function A(h) of the indenter was derived according to Oliver
and Pharr’s procedures [4, 6]. Indentation tests with full
loads of 0.315 and 0.312 mN were performed on a carbon
steel specimen and a 6061 aluminum alloy specimen. Each
indentation test consisted of an approaching segment, a
loading segment, a holding segment, an unloading segment
and a thermal drift correction segment. Five repetitive
measurements were conducted at different positions on a
sample surface in order to give an average result. Typical
load–unload curves for S45C carbon steel and 6061 aluminum
alloy are shown in Figs. 6 and 7. Influences due to thermal
drift and load frame stiffness were diminished through
standard correction procedures. We refer to the experimental
curve shown in Fig. 6 as an example to demonstrate the
process to derive E and |δb|. The main results are listed in
Table 2. In the analysis, Ei and vi are set to be 1,141 GPa and
0.07; and the values of ν of carbon steel and aluminum alloy
were assigned to be 0.3 and 0.33, respectively.

The procedures for analyzing the indentation data of
S45C carbon steel and 6061 aluminum alloy are identical.
Results obtained from all measurements are shown in
Table 3. It can be seen that both the average values of E of
the two materials determined with the present method are
close to the reference values. The relative errors are 10.7%
for S45C carbon steel and 5.6% for 6061 aluminum alloy,
respectively, and are all smaller than their theoretical
maximum values of 11.3% and 8.0%. This indicates
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Fig. 6 Typical nanoindentation load–displacement curves for S45C
carbon steel
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that the present method is effective for nanoindentation
tests. In addition, the relative error of 10.7% for S45C
carbon steel is found to be larger than that of 5.6% for 6061
aluminum alloy. This is explained because the predicted
maximum relative error of the estimated Er, namely
|δbr| and that of the estimated E, namely dbj j ¼ dbrj j

.
1� 1� dbrj j2

 �
1� n2i
� �

Er=Ei

h i
would increase with de-

creasing work ratio We/W (Fig. 5). Since S45C carbon steel
has a smaller work ratio We/W than that of 6061 aluminum
alloy, the former is therefore expected to have larger
relative error of the estimated Er and E.

For comparison, the results of Young’s moduli EO&P

determined by the Oliver & Pharr method are also shown in
Table 3. It is obvious that for a material like S45C carbon
steel with a moderate strain hardening exponent of about
0.15, the traditional method may provide a good estimate
on the Young’s modulus, while for a material like 6061
aluminum alloy with a small strain hardening exponent of

Table 2 Main results obtained from test 1 on S45C carbon steel

Steps Main results

(i)
A hð Þ ¼ 26:2644h2 þ 1; 255:2840h� 1; 951:4068h1=2 � 61:7471h1=4 þ 945:9002h1=8

(ii)
Pm=0.315 mN, hm=46.6 nm, Hn � Pm=A hmð Þ ¼ 3:02 GPa;, We/W=0.126

(iii)

Vr � Videal=Vblunt ¼ 1=3ð ÞA hmð Þ A hmð Þ=24:5½ �0:5
.R hm

0 A hð Þ d h ¼ 1:186

(iv)

hr � hideal=hm ¼ A hmð Þ=24:5½ �0:5
.
hm ¼ 1:395, hrf ¼ 1

.
1� 1� 1=Vrð Þ1=3
h i

¼ 2:172, hrc ¼ Vr ¼ 1:186,
hrs ¼ 1

��
1� ��

1� 1
�
Vr

���
1þ sin q

��1�3� ¼ 1:762

(v)

Hn=Erð Þf j ¼
P6
i¼1

af i Vrj

� �� �
We=Wð Þi ¼ 0:0190; 0:0123; 0:0059; 0:0030 for j ¼ 1; 2; 3; 4

Hn=Erð Þcj ¼
P6
i¼1

aci Vrj

� �� �
We=Wð Þi ¼ 0:0190; 0:0141; 0:0072; 0:0037 for j ¼ 1; 2; 3; 4

Hn=Erð Þsj ¼
P6
i¼1

asi Vrj

� �� �
We=Wð Þi ¼ 0:0190; 0:0128; 0:0066; 0:0035 for j ¼ 1; 2; 3; 4

(vi)

�
Hn

�
Er

�
f
¼ P4

k¼1

��
Hn

�
Er

�
fk

Q4
j ¼ 1
j 6¼ k

�
1
�
Vr � 1

�
Vrj

���
1
�
Vrk � 1

�
Vrj

�� ¼ 0:0145

�
Hn

�
Er

�
c
¼ P4

k¼1

��
Hn

�
Er

�
ck

Q4
j ¼ 1
j 6¼ k

�
1
�
Vr � 1

�
Vrj

���
1
�
Vrk � 1

�
Vrj

�� ¼ 0:0159

�
Hn

�
Er

�
s
¼ P4

k¼1

��
Hn

�
Er

�
sk

Q4
j ¼ 1
j 6¼ k

�
1
�
Vr � 1

�
Vrj

���
1
�
Vrk � 1

�
Vrj

�� ¼ 0:0149

(vii)

Hn=Er ¼ Hn=Erð Þf hr � hrcð Þ hr � hrsð Þ= hrf � hrcð Þ hrf � hrsð Þf g
þ Hn=Erð Þc hr � hrfð Þ hr � hrsð Þ= hrc � hrfð Þ hrc � hrsð Þf g
þ Hn=Erð Þs hr � hrfð Þ hr � hrcð Þ= hrs � hrfð Þ hrs � hrcð Þf g ¼ 0:0155

(viii)

Er ¼ Hn= Hn=Erð Þ ¼ 196:5GPa

dbrj j ¼ P6
i¼0

bi We=Wð Þi ¼ 9:6%

Emax ¼ 1� n2ð Þ� 1
�
Er 1þ dbrj jð Þ½ � � 1� n2i

� ��
Ei

� � ¼ 241:1 GPa
Emin ¼ 1� n2ð Þ� 1

�
Er 1� dbrj jð Þ½ � � 1� n2i

� ��
Ei

� � ¼ 191:2 GPa
E ¼ Emax þ Eminð Þ=2 ¼ 216:3 GPa
dbj j ¼ Emax � Eð Þ=E ¼ � Emin � Eð Þ=E ¼ 11:6%
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Fig. 7 Typical nanoindentation load–displacement curves for 6061
aluminum alloy
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about 0.04, the currently proposed method appears to be
more effective than the traditional one. It is thus further
inferred that the relatively low strain hardening exponent of
6061 aluminum alloy would cause pile-up effect, which is
supposed to be the main reason responsible for the lower
accuracy in estimating the Young’s modulus of the material
by applying the Oliver & Pharr method.

Microindentation Tests

In this subsection, three materials, i.e. aluminum single
crystal, GCr15 bearing steel and fused silica were selected

for investigations, where the aluminum single crystal and
fused silica are standard samples provided by MTS. Their
reference Young’s modulus values as claimed by MTS are
70.4 and 72 GPa, respectively. The reference value for
GCr15 bearing steel is determined to be 204 GPa by
applying standard ultrasonic measurement. Another Nano
Indenter® XP equipped with a Berkovich indenter was used
to perform microindentation tests. The area function A(h) of
the indenter was calibrated as A(h)=24.4974h2+424.149h+
2,8211.4h1/2−6,9751.1h1/4−46,333.3h1/8−7,055.7h1/16+
20,987.7h1/32+37,312.2h1/64+46,075.9h1/128. An experi-
ment was repeated five times to obtain five sets of load–
displacement curves as shown in Figs. 8, 9 and 10. The
Poisson’s ratio ν of aluminum single crystal, GCr15 bearing

Table 3 The values of Er, E, |δbr| and |δb| for S45C carbon steel and 6061 aluminum alloy determined from the present method and Oliver & Pharr
method combined with nanoindentation tests

hm (nm) hr Vr We/W Hn

(GPa)
Hn/Er Er

(GPa)
±|δbr|
(%)

E
(GPa)

±|δb|
(%)

EO&P (GPa)

(a) S45C carbon steel (E−200.1)/E (EO&P–200.1)/
EO&P

Test 1 46.6 1.395 1.186 0.126 3.041 0.0155 196.5 ±9.6 216.3 ±11.6 7.5% 197.6 −1.3%
Test 2 45.7 1.401 1.190 0.128 3.138 0.0156 201.2 ±9.6 222.6 ±11.6 10.1% 211.2 5.3%
Test 3 45.2 1.404 1.192 0.129 3.193 0.0157 203.4 ±9.5 225.5 ±11.6 11.3% 202.7 1.3%
Test 4 40.6 1.435 1.212 0.170 3.787 0.0196 193.2 ±8.1 211.8 ±9.8 5.5% 206.1 2.9%
Test 5 43.5 1.415 1.199 0.128 3.395 0.0155 219.0 ±9.6 247.0 ±11.8 19.0% 256.9 22.1%
Average 224.6 ±11.3 10.7% 214.9 6.9%

(b) 6061 aluminum alloy (E−70.5)/E (EO&P-70.5)/
EO&P

Test 1 64.6 1.314 1.138 0.191 1.768 0.0234 75.6 ±7.5 72.2 ±8.1 2.3% 76.3 7.6%
Test 2 60.1 1.330 1.147 0.223 1.992 0.0263 75.7 ±6.7 72.2 ±7.1 2.4% 77.4 8.9%
Test 3 64.8 1.313 1.137 0.202 1.759 0.0245 71.8 ±7.2 68.3 ±7.7 −3.3% 80.5 12.4%
Test 4 62.1 1.323 1.143 0.184 1.888 0.0225 83.9 ±7.7 80.7 ±8.3 12.6% 91.4 22.9%
Test 5 65.9 1.309 1.135 0.164 1.711 0.0206 83.1 ±8.3 79.9 ±9.0 11.7% 93.1 24.3%
Average 74.7 ±8.0 5.6% 83.7 15.8%
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Fig. 8 Load–displacement curves of five repetitive tests made on
aluminum single crystal
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Fig. 9 Load–displacement curves of five repetitive tests made on
GCr15 bearing steel
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steel and fused silica were assigned to be 0.347, 0.3 and
0.17, respectively. By applying the proposed method, the
Young’s modulus E of the three tested materials and their
maximum relative error |δ| were determined, and the results
are given in Table 4. It is seen that the estimated values of
Young’s modulus of GCr15 bearing steel and fused silica
are very close to the reference values, while that of

aluminum single crystal shows a little large deviation from
its reference value. This validates the theoretic prediction
once again that the maximum error of an estimated E
should increase with decreasing work ratio We/W. In
addition, all the relative errors (average) of the estimated
E for the three materials are smaller than their theoretical
maximum values of |δ|, indicating that the presented
method is also effective for microindentation tests. Also
shown in Table 4 are the results of Young’s moduli EO&P

determined by the Oliver & Pharr method. It is evident that
the presently proposed method is more accurate in
measuring Young’s modulus than the traditional one.

Conclusions

In this paper, dimensional analysis and finite element
simulations were employed to investigate a set of approx-
imate relationships between Hn/Er and We/W for different
types of Berkovich tip geometries with different degree of
bluntness. These relationships were found to be not
perfectly one to one due to the uncertainty of strain
hardening exponent n. Through creating a set of functions

of Hn=Erð Þxj¼
P6
i¼1

axi Vrj

� �
We=Wð Þi (x=f, c, s; j=1,2,3,4) for

various typical indenter geometries and different degrees of

Table 4 The values of Er, E, |δr| and |δ| for aluminum single crystal, GCr15 bearing steel and fused silica determined from the present method and
Oliver & Pharr method combined with microindentation tests

hm
(nm)

hr Vr We/W Hn

(GPa)
Hn/Er Er

(GPa)
±|δr|
(%)

E
(GPa)

±|δ|
(%)

EO&P(GPa)

(a) Aluminum single crystal (E−70.4)/E (EO&P−70.4)/
EO&P

Test 1 2,000.7 1.008 0.998 0.0262 0.256 0.00429 59.6 ±12.4 55.4 ±13.1 −27.1% 69.8 −0.9%
Test 2 2,003.6 1.008 0.998 0.0193 0.255 0.00318 80.2 ±12.7 76.0 ±13.6 7.3% 62.7 −12.3%
Test 3 1,990.0 1.008 0.998 0.0259 0.259 0.00424 61.0 ±12.4 56.8 ±13.1 −24.0% 66.2 −6.3%
Test 4 2,023.1 1.008 0.998 0.0219 0.250 0.00359 69.6 ±12.6 65.3 ±13.4 −7.9% 56.4 −24.8%
Test 5 1,938.4 1.009 0.998 0.0205 0.272 0.00337 80.8 ±12.6 76.6 ±13.6 8.1% 68.8 −2.3%
Average 66.0 ±13.3 −6.7% 64.8 −8.6%

(b) GCr15 bearing steel (E−204)/E (EO&P−204)/
EO&P

Test 1 1,923.7 1.009 0.998 0.288 7.156 0.0382 187.5 ±5.3 204.1 ±6.4 0.1% 218.5 6.6%
Test 2 1,941.5 1.009 0.998 0.288 7.026 0.0382 184.0 ±5.3 199.6 ±6.3 −2.2% 212.1 3.8%
Test 3 1,938.5 1.009 0.998 0.282 7.048 0.0375 187.9 ±5.4 204.7 ±6.5 0.3% 215.2 5.2%
Test 4 1,962.3 1.008 0.998 0.283 6.880 0.0376 183.1 ±5.4 198.4 ±6.5 −2.8% 213.6 4.5%
Test 5 1,936.4 1.009 0.998 0.288 7.063 0.0381 185.2 ±5.3 201.1 ±6.3 −1.4% 216.5 5.8%
Average 201.6 ±6.4 −1.2% 215.2 5.2%

(c) Fused silica (E−72)/E (EO&P−72)/
EO&P

Test 1 1,996.8 1.008 0.998 0.667 4.632 0.0666 69.5 ±1.3 71.9 ±1.4 −0.2% 71.5 −0.7%
Test 2 1,998.8 1.008 0.998 0.664 4.623 0.0665 69.5 ±1.3 71.9 ±1.4 −0.1% 71.8 −0.3%
Test 3 1,996.7 1.008 0.998 0.664 4.633 0.0665 69.7 ±1.3 72.1 ±1.4 0.1% 72.0 0.0%
Test 4 1,996.2 1.008 0.998 0.661 4.635 0.0664 69.9 ±1.3 72.2 ±1.4 0.3% 72.2 0.3%
Test 5 1,996.4 1.008 0.998 0.666 4.634 0.0666 69.6 ±1.3 71.9 ±1.4 −0.1% 72.6 0.8%
Average 72.0 ±1.4 0.0% 72.0 0.0%
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Fig. 10 Load–displacement curves of five repetitive tests made on
fused silica
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bluntness, the reduced Young’s modulus Er and its
maximum relative error |δrxj| (x=f, c, s; j=1,2,3,4) can be
deduced. It was found from the present analysis that the
maximum relative error |δrxj| of the estimated Er for the
three indenter geometries and four bluntness levels are very
close, and can be thus expressed by a unified average error
|δbr|. As a special case, the relative error drj j ¼ drf1j j ¼
drc1j j ¼ drs1j j of the estimated Er with an ideal Berkovich
indenter tip has a slightly smaller value than |δbr|. In
particular, the values of |δbr| and |δr| always decrease with
increasing work ratio We/W, and the maximum values are
found to be 15.7% for |δbr| and 13.3% for |δr| at We/W=0.
Based on the establishment of functions (Hn/Er)xj (x=f, c, s;
j=1,2,3,4), |δbr| and |δr|, a general methodology for
determining Young’s modulus E and its maximum relative
error |δb| or |δ| was proposed.

The presented method was examined by nanoindentation
tests performed on S45C carbon steel and 6061 aluminum
alloy, and microindentation tests on aluminum single
crystal, GCr15 bearing steel and fused silica. Experimental
results showed that the proposed method for determining
Young’s modulus and its maximum relative error is
effective.
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