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Abstract Adhesive contact model between an elastic
cylinder and an elastic half space is studied in the present
paper, in which an external pulling force is acted on the above
cylinder with an arbitrary direction and the contact width is
assumed to be asymmetric with respect to the structure. Solu-
tions to the asymmetric model are obtained and the effect of
the asymmetric contact width on the whole pulling process
is mainly discussed. It is found that the smaller the abso-
lute value of Dundurs’ parameter β or the larger the pulling
angle θ , the more reasonable the symmetric model would be
to approximate the asymmetric one.

Keywords Contact mechanics · Generalized JKR
model · Asymmetric contact width · Oscillatory solution ·
Non-oscillatory solution

1 Introduction

Contact mechanics has been widely applied in many branches
of engineering since Hertz [1] gave the famous Hertz solu-
tion in 1882. In the later experiments [2,3], it was found
that at low loads contact areas were considerably larger than
those predicted by Hertz and tended towards a constant finite
value as the load was reduced to zero. Molecular interac-
tions between contacting objects should be incorporated into
contact mechanics models. Johnson et al. [2] developed the
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classical JKR model of adhesive contact based on a balance
between elastic and surface energies and predicted a com-
pressive stress field near the central region of contact and a
singular tensile stress field near the contact edges. On the
other hand, Derjaguin et al. [4] proposed the classical DMT
model in which the stress field remains in the Hertz profile
within the contact region while intermolecular adhesion is
assessed outside the contact area. Maugis [5] developed a
more general model and successfully connected the JKR and
DMT models through a cohesive model of adhesive contact.

In recent years, contact mechanics is also becoming a
valuable platform to study biological adhesion systems such
as cell–cell contact [6,7], cells on stretched substrates [8],
as well as adhesion systems of gecko and insects [9–16]. In
most of the adhesive contact models, the external force is
normal to the contact interface, which allows us to conclude
immediately that the contact area is symmetric with respect
to the contact model. However, in order to simulate some spe-
cial state of bio-adhesive tissues or bio-experiments, such as
geckoes climbing on a wall or titled micro-pipette technol-
ogy to measure the adhesive force between cells, the external
force is titled to the contact interface, what effect will happen
to the contact area? Is the contact width in the plain strain
model still symmetric with respect to the axis of the contact
model?

A plain strain generalized JKR model of an elastic cylinder
subjected to an external force in an arbitrary direction, in
adhesive contact with an elastic half space, has been investi-
gated by Chen and Wang [17], in which the contact region is
assumed to be symmetric with respect to the studied structure.
Actually, this assumption is not strictly correct because it will
result in asymmetric energy release rates at two contact edges
due to the oscillatory characteristics of the contact pressure.

In the present paper, the assumption of symmetric contact
width is given up and the adhesive contact model in Ref. [17]
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is investigated further. Exact solutions to the present contact
model are obtained and the influences of the symmetric
assumption on the final solutions are mainly discussed.

2 Adhesive contact model

The asymmetric model of an elastic cylinder of radius R
in adhesive contact with an elastic half space is studied in
the present paper as shown in Fig. 1, in which an exter-
nal force F in an arbitrary direction, θ , is acted to pull the
above cylinder. (E1, ν1) and (E2, ν2) denote the Young’s
moduli and Poisson ratios of the upper cylinder and lower
half space, respectively. The contact region is assumed to
be perfect bonding with a contact length a on the right side
and b on the left one. (x, y1) and (x, y2) are two Cartesian
coordinate systems with y1 and y2 pointing into the upper
and the lower solids, respectively. Due to the assumption
of perfect bonding, the edges of the contact region resem-
ble two opposing interfacial cracks under plane strain
deformation.

As in almost all contact mechanics theories [19], the con-
tact width a + b is assumed to be much smaller compared
to the radius of the cylinder R. The pulling force is assumed
to be properly added such that no net bending moment on
the contact region is produced. This assumption is not trivial
and accepted by almost all literatures in the field of contact
mechanics, which can be actually realized in experiments,
such as Ref. [19].

3 Solutions to the contact model

On the basis of the above model, we can express the
continuity condition of displacements across the contact

Fig. 1 Plane strain model of an elastic cylinder adhesively contacting
with an elastic half plane. F is an external pulling force and θ the pulling
angle. (E1, ν1) and (E2, ν2) are the Young’s moduli and Poisson ratios
of the cylinder and the half plane, respectively. R is the radius of the
cylinder. b is the left contact width and a is the right one

interface as

ūx1 − ūx2 = 0,

ū y1 + ū y2 = δ − x2

2R
,

− b < x < a, (1)

where ūx1 and ūx2 (ū y1 and ū y2) denote the displacements
of the contact surface in the x (yi , i = 1, 2) direction of the
above and lower materials, respectively; δ is the relative cen-
tral displacement, which has the same definition as Ref. [18].
Assumption of parabolic shape of the upper cylinder yields
the second term on the right side in the second equation.

Differentiating Eq. (1) with respect to x yields

∂ ūx1

∂x
− ∂ ūx2

∂x
= 0,

∂ ū y1

∂x
+ ∂ ū y2

∂x
= − x

R
,

− b < x < a. (2)

The surface displacement of an elastic half-space can be
related to the surface tractions via Green functions of an
elastic half space. When this is done, Eq. (2) leads to two
coupled integral equations,

1

π

a∫

−b

Q(s)

s − x
ds − β P(x) = 0,

1

π

a∫

−b

P(s)

s − x
ds + βQ(x) = − E∗x

2R
,

(3)

where P(x) and Q(x) denote the normal and tangential
tractions along the contact interface of the cylinder,
respectively. The generalized effective modulus E∗ is

1

E∗ = 1 − v2
1

E1
+ 1 − v2

2

E2
(4)

and

β = 1

2

{
(1 − 2v1)/µ1 − (1 − 2v2)/µ2

(1 − v1)/µ1 + (1 − v2)/µ2

}
(5)

is one of the Dundurs’ parameter [20]. µ1 and µ2 are the shear
moduli of materials. Rewriting Eq. (3) in a matrix form

1

π

a∫

−b

A
s − x

f(s)ds + B f(x) = C , (6)

where the coefficients of matrices are

f(s) =
[

Q(s)
P(s)

]
, A =

[
1 0
0 1

]
= I ,

B =
[

0 −β

β 0

]
, C =

⎡
⎣ 0

−E∗x

2R

⎤
⎦ .

(7)
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Introducing the following transformation

Fk(z) = 1

2π i

a∫

−b

fk(s)

s − z
ds, k = 1, 2, (8)

where z = x + yi and i = √−1. Equation (6) can be trans-
ferred to two inhomogeneous Hilbert equations. Solving the
Hilbert equations and combining the boundary conditions

a∫

−b

P(x)dx = −F sin θ,

a∫

−b

Q(x)dx = −F cos θ (9)

yields the interfacial tractions. The calculations are quite
lengthy but the methodology to solve the two inhomoge-
neous Hilbert equations is standard, which can be referenced
in Ref. [8]. We skip the details and present the final interfacial
tractions P(x) and Q(x) in the contact region directly,

P(x) = −2Im{I (x)}

−Re

{
(F sin θ + iF cos θ)(b + x)−r̄ (a − x)−r

π
√

1 − β2

}
,

(10)

Q(x) = 2Re{I (x)} + E∗βx

2R(1 − β2)

−Im

{
(F sin θ + iF cos θ)(b + x)−r̄ (a − x)−r

π
√

1 − β2

}
,

(11)

where

I (x) = E∗(b + x)−r̄ (a − x)−r

4π Ri(1 − β2)

a∫

−b

t (b + t)r̄ (a − t)r

t − x
dt.

(12)

From the interfacial tractions (10) and (11), we find that the
stress singularity r is oscillatory with an oscillatory index ε,

r = 1

2
+ iε, ε = 1

2π
ln

1 + β

1 − β
. (13)

Introducing a complex-valued stress intensity factor, for the
right contact edge at x = a, we have

K R = −√
2π lim

x→a
(a − x)r [P(x) + iQ(x)]. (14)

Substituting Eqs. (10) and (11) into the above equation yields
the stress intensity factor at the right contact edge

K R = E∗(a + b)−r̄

√
2π R(1 − β2)

a∫

−b

t (b + t)r̄ (a − t)r

a − t
dt

+
√

2(a + b)−r̄ (F sin θ + iF cos θ)√
π(1 − β2)

. (15)

Similarly, substituting Eqs. (10) and (11) into the following
expression

K L = −√
2π lim

x→−b
(b + x)r̄ [P(x) + iQ(x)] (16)

leads to the stress intensity factor at the left contact edge
x = −b

K L = E∗(a + b)−r

√
2π R(1 − β2)

a∫

−b

t (b + t)r̄ (a − t)r

−(b + t)
dt

+
√

2(a + b)−r (F sin θ + iF cos θ)√
π(1 − β2)

. (17)

At equilibrium, the dynamic Griffith energy balance criterion
is used for the right and left contact edges, respectively, i.e.

GR = 1

cosh2 πε

|K R|2
2E∗ = �γ,

GL = 1

cosh2 πε

|K L|2
2E∗ = �γ,

(18)

which yield two governing equations describing the relation
among the external pulling force F , pulling angle θ and the
contact width a + b,

2(FR)2

π(1 − β2)(a + b)
− 2FR E∗sech(πε)

(1 − β2)3/2 R

×
{

sin θ

[
(a + b)

8
(1 + 4ε2) − a

2

]
+ aε cos θ

}

+ π E∗2
sech2(πε)(a + b)

2R2(1 − β2)2

×
{[

(a + b)

8
(1 + 4ε2) − a

2

]2

+ a2ε2

}

− 2E∗�γ cosh2(πε) = 0, (19)

and

2(FL)2

π(1 − β2)(a + b)
− 2FL E∗sech(πε)

(1 − β2)3/2 R

×
{

sin θ

[
(a + b)

8
(1 + 4ε2) − b

2

]
− bε cos θ

}

+ π E∗2
sech2(πε)(a + b)

2R2(1 − β2)2

×
{[

(a + b)

8
(1 + 4ε2) − b

2

]2

+ b2ε2

}

− 2E∗�γ cosh2(πε) = 0, (20)

where FR corresponds to the energy balance at the right con-
tact edge and FL corresponds to that at the left one.

Normalized pulling force as functions of the contact width
a + b and pulling angle θ can be obtained explicitly from
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Eqs. (19) and (20) as

FR

�γ
= π

2(1 − β2)1/2

E∗ R

�γ

(a + b)

R

×
{

sin θ

[
(1 + 4ε2)

8

(a + b)

R
− a + b

2R

1

1 + 1
λ

]

+a + b

R

ε cos θ

1 + 1
λ

}
+ √

A1, (21)

and

FL

�γ
= π

2(1 − β2)1/2

E∗ R

�γ

(a + b)

R

×
{

sin θ

[
(1 + 4ε2)

8

(a + b)

R
− a + b

2R

1

1 + λ

]

−a + b

R

ε cos θ

1 + λ

}
+ √

A2, (22)

where

A1 = π cosh4(πε)(1 − β2)
E∗ R

�γ

(a + b)

R

+ π2

4(1 − β2)

(
E∗ R

�γ

)2 (
a + b

R

)2

×
⎧⎨
⎩

{
sin θ

[
(1 + 4ε2)

8

(a + b)

R
− a + b

2R

1

1 + 1
λ

]

+a + b

R

ε cos θ

1 + 1
λ

}2

−
[

(1 + 4ε2)

8

(a + b)

R

−a + b

2R

1

1 + 1
λ

]2

−
(

a + b

R

ε

1 + 1
λ

)2
⎫⎬
⎭ , (23)

A2 = π cosh4(πε)(1 − β2)
E∗ R

�γ

(a + b)

R

+ π2

4(1 − β2)

(
E∗ R

�γ

)2 (
a + b

R

)2

×
{ {

sin θ

[
(1 + 4ε2)

8

(a + b)

R
− a + b

2R

1

1 + λ

]

−a + b

R

ε cos θ

1 + λ

}2

−
[
(1 + 4ε2)

8

(a + b)

R

−a + b

2R

1

1 + λ

]2

−
(

a + b

R

ε

1 + λ

)2
}

, (24)

and a/b = λ.
Actually, we should have the relation of FR = FL = F .

4 Analysis and discussion

According to the governing Eqs. (21) and (22), the pulling
force FR (or FL) is a function of the contact width a + b.
For a set of determined parameters θ , E∗ R/�γ , λ and β, the
relation between FR/�γ (or FL/�γ ) and (a + b)/R can
be obtained numerically. The solution to FR = FL = F at
equilibrium corresponds to the intersection point of the two
curves. This procedure can be repeated by choosing differ-
ent values of λ (each value of λ results in a set of F/�γ and
(a + b)/R at equilibrium) until we get enough data points to
plot the relation of F/�γ and (a + b)/R.

Figure 2 is a snapshot of intersection points for a given λ.
One can see that the intersection points consist of stable and
unstable solutions. Unstable solution corresponds to a nega-
tive derivative of the energy release rate G at contact edges,
namely,

∂G

∂(a + b)|F,λ

< 0. (25)

Figure 3 shows the normalized pulling force F/�γ as a
function of normalized contact width (a + b)/R for differ-
ent pulling angle θ at equilibrium, in which the black dots
denote the unstable solutions. The pull-off force and critical
contact width at pull-off in the cases with different pulling
angles can be found from the relation curves of F/�γ and
(a + b)/R.

Figure 4 shows the relation of λ and θ at the moment of
pull-off, from which one can see that λ asymptotically tends
to 1 as the pulling angle θ increasing from 0 to π/2. Specially,
λ becomes unity when θ = π/2.

Deviations of the pull-off force and the critical contact
width at pull-off in symmetric and asymmetric models are
plotted in Figs. 5 and 6 for a set of given parameters,

Fig. 2 Snapshot of intersection point for λ = 1.09 with E∗ R/�γ =
1, 000, β = 0.1 and θ = π/6. The intersection point denotes FR =
FL = F
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Fig. 3 Plots of relation of F/�γ as a function of (a + b)/R for a set
of parameters E∗ R/�γ = 1,000, β = 0.1 and different pulling angles
θ = 0, π/6, π/4, π/3 and π/2

Fig. 4 The relation between λ and θ at the moment of pull-off for a
set of parameters E∗ R/�γ = 1,000, β = 0.1

respectively. One can see that the deviation would be much
smaller when θ changes from 0 to π/2.

In the same way, given a set of parameters E∗ R/�γ and
θ , we plot the normalized pulling force F/�γ as a function
of the normalized contact width (a + b)/R for different β

in Fig. 7 and the corresponding relation between λ and β at
the moment of pull-off in Fig. 8. From Fig. 8, one can see
that the smaller of the absolute value of β, the closer the two
contact lengths will be. The pull-off forces and the critical
contact widths at pull-off in the symmetric and asymmetric
models for different β are compared in Figs. 9 and 10, from
which one can see that the smaller the absolute value of β is,
the closer the results in the two models will be.

Fig. 5 Comparisons of the pull-off force F in the symmetric model to
that in the asymmetric one with a set of given parameters E∗ R/�γ =
1,000, β = 0.1 and different pulling angles θ

Fig. 6 Comparisons of the pull-off contact width 2a in the symmetric
model to the one a + b in the asymmetric model with a set of given
parameters E∗ R/�γ = 1,000, β = 0.1 and different pulling angles θ

Fig. 7 Plots of the normalized pulling force F/�γ via the normalized
contact width (a +b)/R for E∗ R/�γ = 1,000, θ = π/4 and different
values of β
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Fig. 8 The relation between λ and β at the moment of pull-off for a
set of parameters E∗ R/�γ = 1,000, θ = π/4

Fig. 9 Comparisons of the pull-off force F in the symmetric model
to that in the asymmetric one with E∗ R/�γ = 1,000, θ = π/4 and
different values of β

Fig. 10 Comparisons of the pull-off contact width 2a in the symmetric
model to that in the asymmetric one with E∗ R/�γ = 1,000, θ = π/4
and different values of β

5 Non-oscillatory solution

The above numerical analysis shows that the contact lengths
a and b are equal when β = 0. In this section, analytical
solution will be found for this case, i.e, β = 0, from which
we have

r = 1

2
, ε = 0. (26)

Then the normal and tangential tractions on the contact inter-
face can be written as

P(x) = −
E∗

[
x2 − ( a−b

2

)
x − (a+b)2

8

]

2R
√

(b + x)(a − x)

− F sin θ

π
√

(b + x)(a − x)
, (27)

Q(x) = − F cos θ

π
√

(b + x)(a − x)
. (28)

Then, the complex stress intensity factor can be de-coupled
into two parts, i.e., purely mode I and mode II results.

K R
I =−√

2π lim
x→a

(a − x)1/2 P(x)

=
√

π E∗
[
a2 − ( a−b

2

)
a − (a+b)2

8

]
√

2R
√

a + b
+

√
2F sin θ√
π(a + b)

, (29)

K R
II = −√

2π lim
x→a

(a − x)1/2 Q(x) =
√

2F cos θ√
π(a + b)

(30)

are the stress intensity factors for the right contact edge, i.e.,
at x = a.

K L
I =−√

2π lim
x→−b

(b + x)1/2 P(x)

=
√

π E∗
[
b2 + ( a−b

2

)
b− (a+b)2

8

]
√

2R
√

a + b
+

√
2F sin θ√
π(a + b)

, (31)

K L
II = −√

2π lim
x→−b

(b + x)1/2 Q(x) =
√

2F cos θ√
π(a + b)

(32)

are the counterparts at x = −b.
Substituting Eqs. (29)–(32) into the following Griffith

energy balance criterion

(K R
I )2 + (K R

II )
2

2E∗ = �γ, (33)

(K L
I )2 + (K L

II)
2

2E∗ = �γ (34)
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yields

FR =−π E∗ sin θ(3a − b)(a + b)

16R

+
√

π E∗�γ (a + b) − π2 E∗2 cos2 θ(3a − b)2(a + b)2

256R2 ,

(35)

FL =−π E∗ sin θ(3b − a)(a + b)

16R

+
√

π E∗�γ (a + b) − π2 E∗2 cos2 θ(3b − a)2(a + b)2

256R2 .

(36)

Using the relation FR = FL = F yields an explicit solution
as

a = b, (37)

which is consistent with that in the numerical calculations.
Substituting the result in Eq. (37) into Eqs. (27) and (28)

leads to the same results as those in the symmetric contact
model [17]. The analytical solutions provided for the contact
zone are obviously compatible with the equilibrium condi-
tions in Eqs. (9).

6 Conclusions

A plain strain generalized JKR model of an elastic cylinder
in adhesive contact with a half space is analyzed in the pres-
ent paper. In the model, the external pulling force is acted on
the elastic cylinder in an arbitrary direction, which results in
an asymmetric contact width with respect to the axis of the
structure. The results show that the smaller the absolute value
of β or the larger the pulling angle θ , the more reasonable the
symmetric model [17] would be to approximate the asym-
metric one. When the pulling angle θ takes the value of π/2
or β equals zero, the symmetric model [17] is analytically
proved to represent totally the asymmetric one.
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