## CONVERGENCE OF ATTRACTORS

## Qin Wenxin（秦文新）${ }^{1,2}$ Liu Zengrong（刘曾荣）${ }^{1,2}$

（Received March 11，1996）


#### Abstract

The system of coupled oscillators and its time－discretization（with constant stepsize h）are considered in this paper．Under some conditions，it is showed that the discrete systems have one－dimensional global attractors $l_{n}$ converging to $l$ which is the global attractor of continuous system．


Key words coupled oscillators system，attractor，cone，horizontal curve

## I．Introduction

Consider system of coupled oscillators

$$
\begin{equation*}
\dot{x}=A x+f(x) \tag{1.1}
\end{equation*}
$$

in which $x=\left(x^{1}, x^{2}, \cdots, x^{m}\right) \in \mathbf{R}^{m} \quad(m \geqslant 3), A$ is $m \times m$ matrix，$f$ is a nonlinear map from $\mathbf{R}^{\boldsymbol{m}}$ to $\mathbf{R}^{\boldsymbol{m}}$

$$
A=m^{2}\left(\begin{array}{rrrrcc}
-1 & 1 & & & & 0 \\
1 & -2 & 1 & & 0 \\
& 1 & -2 & 1 & & \\
& & \ddots & \ddots & \ddots & \\
& 0 & & & -2 & 1 \\
& & & & 1 & -1
\end{array}\right), f(x)=\left(\begin{array}{l}
-\sin \left(x^{1}\right)+b \\
-\sin \left(x^{2}\right) \\
\vdots \\
-\sin \left(x^{m-1}\right) \\
-\sin \left(x^{m}\right)
\end{array}\right)
$$

with constant $b>0$ ．
（1．1）is discretized by one－step method：

$$
\begin{equation*}
x_{n+1}=x_{n}+h\left(A x_{n}+f\left(x_{n}\right)\right) \tag{1.2}
\end{equation*}
$$

with constant stepsize $h>0$ ．
Let $F_{h}$ denote the map from $\mathbf{R}^{*}$ to $\mathbf{R}^{m}$ ：

$$
\begin{equation*}
F_{h} x=x+h(A x+f(x)) \tag{1.3}
\end{equation*}
$$

The main purpose of this paper is to investigate the global attractors of discrete systems $\left\{F_{h}^{n}\right\}_{n=1}^{+\infty}$（with sufficiently small $h$ ）and continuous system（1．1）and to discuss the convergence of attractors of discrete systems．

[^0]
## II. Global Attractor of Continuous System

Consider the initial value problem of (1.1)

$$
\begin{equation*}
\dot{x}=A x+f(x), x(0)=x_{0} \tag{2.1}
\end{equation*}
$$

which determines a continuous-time semigroup $\{S(t)\}_{t \approx 0}$ :

$$
S(t): x_{0} \mapsto x(t)
$$

in which $x(t)$ is the solution to initial value problem (2.1).
Let $\lambda_{i}(i=0,1, \cdots, m-1)$ denote the eigenvalues of $A$,

$$
\lambda_{i}=-4 m^{2} \sin ^{2}(i \pi / 2 m), \quad(i=0,1, \cdots, m-1)
$$

The eigenvector corresponding to eigenvalue $\lambda_{0}=0$ is denoted by $\eta_{0}=(1,1, \cdots, 1)^{r} \in$ $\boldsymbol{R}^{m}$. Let $E_{1}=\operatorname{span}\left\{\eta_{0}\right\}$ and $E_{2}=E_{1}^{\perp}$. The projections from $\mathbf{R}^{m}$ to $E_{1}$ and $E_{2}$ are denoted by $P$ and $Q$ respectively. Note that $\lambda_{1}=-4 m^{2} \sin ^{2}(\pi / 2 m)<-4(m>3)$. In the sequel, the Euclidean inner product and norm in $\mathbf{R}^{m}$ is denoted by $\langle\cdot, \cdot\rangle$ and $|\cdot|$ respectively.

Definition 2.1 The set

$$
Z=\left\{p+q \in \mathrm{R}^{m}\left|p \in E_{1}, q \in E_{2},|q| \leqslant|p|\right\}\right.
$$

is said to be a cone in $\mathbf{R}^{m}$.
Lemma 2.2 For any $y_{0}, x_{0} \in \mathrm{R}^{n}$
i) if $y_{0}-x_{0} \in Z$, then

$$
\begin{equation*}
S(t) y_{0}-S(t) x_{0} \in Z, \text { for } t \geqslant 0 \tag{2.2}
\end{equation*}
$$

ii) if for some $t_{i}>0, S\left(t_{0}\right) y_{0}-S\left(t_{0}\right) x_{0} \notin Z$, then

$$
\begin{equation*}
\left|Q\left(S(t) y_{0}-S(t) x_{3}\right)\right| \leqslant \exp \left[\lambda_{1} t / 2\right]\left|Q\left(y_{0}-x_{0}\right)\right| \quad \text { for } 0 \leqslant t \leqslant t_{n} \tag{2.3}
\end{equation*}
$$

Proof i) Let $\quad x(t)=S(t) x_{0}, y(t)=S(t) y_{0}, \quad p(t)=P(y(t)-x(t)), q(t)=$ $Q(y(t)-x(t))$, then $p(t)$ and $q(t)$ satisfy respectively

$$
\begin{equation*}
\dot{p}=P(f(y(t))-j(x(t))), \quad p(0)=P\left(y_{0}-x_{0}\right) \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\dot{q}=A q+Q(f(y(t))-f(x(t))), q(0)=Q\left(y_{0}-x_{2}\right) \tag{2.5}
\end{equation*}
$$

By (2.4) and the fact $|f(y)-f(x)| \leqslant|y-x|$, we have

$$
\begin{align*}
\frac{d}{d t}|p(t)|^{2} & =2\langle P f(y)-P f(x), p\rangle \\
& \geqslant-2|f(y(t))-f(x(t))| \cdot|p(t)| \\
& \geqslant-2|y(t)-x(t)| \cdot|p(t)| \\
& =-2|p(t)+q(t)| \cdot|p(t)| \\
& \geqslant-2\left(|p(t)|^{2}+|p(t)| \cdot|q(t)|\right) \tag{2.6}
\end{align*}
$$

Similarly, from (2.5) it follows

$$
\begin{equation*}
\frac{d}{d t}|q(t)|^{2} \leqslant 2 \lambda_{1}|q(t)|^{2}+2\left(|q(t)|^{2}+|p(t)| \cdot|q(t)|\right) \tag{2.7}
\end{equation*}
$$

Therefore

$$
\frac{d}{d t}\left(|q|^{2}-|p|^{2}\right) \leqslant 2 \lambda_{1}|q|^{2}+2\left(|p|^{2}+|q|^{2}|+4| p|\cdot| q \mid\right.
$$

and hence

$$
\frac{d}{d t}\left(|q|^{2}-|p|^{2}\right) \leqslant\left(2 \lambda_{1}+8\right)|Q|^{2} \leqslant 0 \text { for }|q|=|p|
$$

This shows that $y(t)-x(t) \in Z, \forall t>0$ if $y_{0}-x_{0} \in \partial Z$ (the boundary of $Z$ ).
ii) Assume there exists $t_{0}>0$ such that $y\left(t_{n}\right)-x\left(t_{i}\right) \notin Z$, then $y(t)-x(t) \notin Z$ for $0 \leqslant$ $t \leqslant t_{0}$ by i), namely $|q(t)|>|p(t)|, 0 \leqslant t \leqslant t_{0}$. By (2.7) we have

$$
\frac{d}{d t}|q(i)|^{2} \leqslant\left(2 \lambda_{1}+4\right)|q(t)|^{2} \leqslant \lambda_{i}|q(t)|^{2}
$$

and

$$
|q(t)|^{2} \leqslant \exp \left[\lambda_{1} t\right]|q(0)|^{2}
$$

Consequently,

$$
|Q(y(t)-x(t))| \leqslant \exp \left[\lambda_{1} t / 2\right]\left|Q\left(y_{0}-x_{0}\right)\right|, \quad 0 \leqslant t \leqslant t_{0}
$$

Definition 2.3 Suppose $\Phi$ is a Lipschitz map from $E_{1}$ into $E_{2}$. The continuous curve

$$
l=\{p+\Phi(p) \mid p \in E:\}
$$

is said to be a horizontal curve if

$$
\left|\Phi\left(p_{1}\right)-\Phi(p,)\right| \leqslant\left|p_{1}-p_{2}\right| \text { for any } p_{1} . p_{2} \in E
$$

Additionally, if $\Phi$ satisfies $\Phi\left(p+2 \pi \eta_{0}\right)=\Phi(p)$ for any $p \in E_{1}$, then $l$ is called a restricted horizontal curve.

Corollary 2.4 If $l$ is a horizontal curve (restricted horizontal curve), then $S(t) l$ ( $\forall t>0$ ) is still a horizontal curve (restricted horizontal curve).

Proof For any $\eta, x \in S(t) l$, there exist $\exists \eta_{0}, x_{0} \in l$, such that $S(t) y_{0}=y, S(t) x_{0}=x$. Since $x_{4}, y_{0} \in l, y_{3}-x_{0} \in Z$. From Lemma 2.2 it follows $\left.S i t\right) y_{2}-S(t) x_{0}=y-x \in Z$, hence $S(t) /$ is a horizontal curve.

Note the fact $f\left(x+2 \pi \eta_{i}\right)=f(x)$, then $S(t)$ is a restricted horizontal curve if $l$ is a restricted horizontal one.

Lemma 2.5 There is a constant $c>0$, such that, for any $x \in \mathbf{R}^{m}$, there exists $t_{0}>0$, $|Q S(t) x| \leqslant c / 4$ for $t>t_{0}$. If $|Q x| \leqslant c / 4$, then $|Q S(t) x| \leqslant c / 4$ for all $t>0$.

Proof Obviously, $f$ is a bounded map from $R^{m}$ to $R^{m}$. that is, there is a constant $c>0$ such that $|f(x)| \leqslant c$ for any $x \in \mathbf{R}^{n i}$. Suppose $x \in \mathbf{R}^{n}$. then $S(t) x$ satisfies

$$
\begin{align*}
& S(t) x=\varepsilon^{A t} x+\int_{0}^{t} e^{A(t-\tau)} f(S(\tau) x) d \tau  \tag{2.8}\\
& \Rightarrow \quad|Q S(t) x| \leqslant\left\|e^{A t} Q\right\||Q x| \\
&+\int_{0}^{t}\left\|e^{(A t-\tau)} Q\right\| \cdot|f(S(\tau) x)| d \tau \\
& \leqslant \exp \left[\lambda_{1} t\right]|Q x|+c \int_{0}^{1} \exp \left[\hat{\lambda}_{1}(t-\tau)\right] d \tau \\
&=\exp \left[\lambda_{1} t\right]|Q x|+\left(c /\left|\hat{\lambda}_{1}\right|\right)\left(1-\exp \left[\lambda_{1} t\right]\right)
\end{align*}
$$

This immediately leads to lemma 2.5 .
Theorem 2.6 For anv $\tau>0$, the map $S(\tau)$ has an invariant restricted horizontal curve $l: S(\tau) l=l$.

Proof Let $H=[0,2 \pi] \cdot \eta_{3} \subset E_{1}, \mathscr{S}=\left\{x \in \mathrm{R}^{m} \mid P x \in H\right\}$
$\mathscr{A}=\{l \mid l$ is a restricted horizontal curve $\}$

$$
\hat{\mathscr{R}}=\{\hat{l}=l \cap \mathscr{D} \mid l \in \mathscr{A}\}
$$

let $I I$ denote the map from $\mathscr{N}$ to $\hat{\mathscr{A}}$ :

$$
\Pi l=\hat{l}=l \cap \mathscr{B}
$$

For any $\hat{l} \in \hat{A}, l$ corresponds to a unique Lipschtz map from $H$ to $E_{2}$. Let $M$ denote the set of Lipschitz maps corresponding to all the elements of $\hat{\boldsymbol{N}}$. The operations in $M$ are defined as usual and the norm is defined as follows:

$$
\|g\|=\max _{p \in H}|g(p)|, \quad g \in M
$$

Then $M$ is a Banach space.
Let

$$
\widetilde{M}=\{g \mid g \in M,\|g\| \leqslant c / 4\}
$$

In the sequel, the element in $M$ and the corresponding one in $\hat{\boldsymbol{N}}$ are regarded as the same. $\tilde{M}$ is compact in $M$ by Arzela-Ascoli theorem, since $\widetilde{M}$ is uniformly bounded and equicontinuous. We define a map $F$ from $M$ to $M$ such that $\Pi \circ S(r)=F_{\circ} \Pi$, namely, $F=\Pi \circ S(2) \circ \Pi^{-1}$. By lemma 2.2 and 2.5 we have $F \widetilde{M} \subset \widetilde{M}$. Since $F$ is continuous from $M$ into $M, F$ has at least one fixed point $l$ in $\widetilde{M}$ by Schauder fixed point theorem. Let $l=\Pi^{-1} l$, then

$$
\left.S(\tau) l=S(\tau) \Pi^{-1} \hat{l}=\Pi^{-1} F \hat{l}=\Pi^{-1}\right\}=l
$$

thus $l$ is an invariant restricted horizontal curve for $S(\tau)$.
Theorem 2.7 System (1.1) has one-dimensional global attractor $l$. $I$ is a restricted horizontal curve in $\mathbf{R}^{m}$.

Proof For $\tau>0$, by theorem 2.6, there exists $l \in \mathscr{A}$, such that $S(\tau) l=l$. We shall prove: $1^{\circ} \mid$ is invariant for the semigroup $\{S(t)\}_{t \geq 0}$, i. e. $S(t) l=l, \quad \forall^{i}>0.2^{\circ}$ for any $\quad x \in \mathbf{R}^{m}, d(S(t) x, l) \rightarrow 0$ as $t \rightarrow+\infty$, therefore, $l$ is the global attractor of system (1.1).

Proof of $1^{\circ}$ For any $x \in \mathbb{R}^{n t}$, we show $d(S(n i) x, \quad l) \rightarrow 0$, as $n \rightarrow+\infty$, here $d(x, l)$ denotes the distance between $x$ and $l$. Without loss of generality, we assume $|Q x| \leqslant c / 4$. For any integer $n$. there exists $\hat{y} \in l$ such that $P S(n \tau) x=P \hat{y}$. Since $S(\tau) l=l$. there is a $y \in!$ such that $S(n \tau) y=\hat{y}$ which implies $S(n \tau) y-S(n \tau) x \notin Z$. By lemma 2.2 we have

$$
\begin{aligned}
d(S(n \tau) x, l) & \leqslant|Q(S(n \tau) x-S(n \tau) y)| \\
& \leqslant \exp \left[\lambda_{1} n / 2\right]|Q x-Q y| \\
& \leqslant \exp \left[\lambda_{1} n \tau\right] \cdot(c / 2)
\end{aligned}
$$

which leads to $d(S(n t) x, l) \rightarrow 0$ as $n \rightarrow+\infty$. Hence $S(\tau)$ has a unique invariant restricted horizontal curve.

Suppose $t$ is sufficiently small such that $\Pi S(t) l \in \widetilde{M}$.

$$
F \circ \Pi S(t) l=\Pi \circ S(\tau) S(t) l=\Pi \circ S(t) S(\tau) l=\Pi \circ S(t) l
$$

This shows $\Pi S(t) l$ is a fixed poim of $F$ in $\widetilde{M}$, and hence $S(t) l$ is an invariant restricted horizontal curve for $S(\tau)$. From the above discussion, it follows $S(t) l=l, \quad \forall t>0$.

Proof of $2^{\circ}$ For any, $x \in R^{m}$, it follow from (2.3) $d(S(t) x, l) \rightarrow 0$ as $t \rightarrow$ $+\infty$. Therefore, $l$ is global attractor of semigroup $\left\{S_{(t)}\right\}_{t \geqslant 0}$, (or system (1.1)).

## III. Attractors of Discrete Systems

In this section, the notations are the same as in the previous section.
Let

$$
F_{n} x=B x+h f(x), \quad x \in \mathbf{R}^{m}
$$

in which $B=I+h A, I$ is the identity in $R^{\pi}$. In the sequel we suppose $h<1 / 4 m^{2}$ such that the eigenvalues of $B \mu_{i}=1+h \dot{\lambda}_{i}$ satisfy $0 \leqslant \mu_{i} \leqslant 1, i=0,1, \cdots, m-1$.

Lemma 3.1 For any $y, x \in \mathbf{R}^{n}$,
i) if $y-x \in Z$, then

$$
\begin{equation*}
F_{n, 4-F}^{n} x \in Z, \quad n=1,2, \ldots \tag{3.1}
\end{equation*}
$$

ii) if $F_{k}^{k} y-F_{k}^{k} x \notin Z$, then

$$
\begin{equation*}
\left|Q\left(F_{n}^{k} y-F_{h}^{k} x\right)\right| \leqslant(1-2 h)^{k}|Q(y-x)| \tag{3.2}
\end{equation*}
$$

The proof is similar to that of lemma 2.2.
Lemma 3.2 $\forall x \in \mathbb{R}^{m}, \exists N>0$. when $n>N,\left|Q F_{h}^{n} x\right| \leqslant c / 4$ (here $c$ is the same as in lemma 2.5). Furthmore, if $|Q x| \leqslant c / 4$, then $\left|Q F_{h} x\right| \leqslant c / 4$.
The proof is similar to that of lemma 2.5.
Theorem 3.3 $\quad F_{h}$ has an invariant restricted horizontal curve $l_{h}: F_{n} l_{h}=l_{h}$.
Theorem 3.4 $l_{k}$ is the global attractor of $F_{n}$.
The proofs of theorem 3.3 and 3.4 are similar to those of theorem 2.6 and 2.7 and hence omitted here.

## IV. Convergence of Attractors

From the discussions of section II and section III, we know in phase space $\mathbf{R}^{m}$ ( $m \geqslant 3$ ) the discrete system $\left\{F_{h}^{\pi}\right\}_{n=1}^{+\infty}\left(h<1 / 4 m^{2}\right)$ and the continuous system have one-dimensional attractors $l_{h}$ and $l$ respectively, which are restricted horizontal curves in $\mathbf{R}^{m}$. Suppose $l_{h}$ and / correspond respectively to the elements $\Phi_{h}$ and $\Phi$ in Banach space $M$.

For the solution.$x(t)$ to the initial value problem of (1.1)

$$
\dot{x}=A x+f(x), \quad x(0)=x_{0}
$$

the approximation value at time $T$ calculated by one-step method is denoted by $F_{h}^{N} x_{0}$ where the stepsize $h=T / N . N$ is an integer. By the convergent property of one-step method we know $F_{n}^{N} x_{0} \rightarrow \boldsymbol{x}(T)$ as $h \rightarrow 0$. For the whole system. what can be said about the relation between $l_{h}$. the attractor of the discrete system. and $l$ which is the attractor of the continuous system? General results seem to be unknown. In this section we show that for the system of coupled oscillators (1.1). $I_{h}$ approaches $/$ as $h \rightarrow 0$, by which we mean that the corresponding elements $\Phi_{h}$ converge to $\Phi$ as $h \rightarrow 0 \mathrm{in}$ Banach space $.1 /$.

Theorem $4.1 \quad \lim _{h \rightarrow 0} \Phi_{h}-\phi=0$

Proof Note that $\left\{\Phi_{h}\right\}\left(0<h<1 / 4 m^{2}\right)$ is uniformly bounded and equi-continuous, hence $\left\{\Phi_{h}\right\}$ is precompact in $M$. We prove theorem by contradiction. Suppose $\Phi_{h} \nrightarrow \Phi$ as $h \rightarrow 0$, that is, $\exists \varepsilon_{0}>0$ and series $\left\{\Phi_{h_{i}}\right\}$ such that $\left\|\Phi_{h_{i}}-\Phi\right\| \geqslant 2 \varepsilon_{h} \quad(i=1,2, \ldots)$ while $h_{i} \rightarrow 0$ as $i \rightarrow+\infty .\left\{\Phi_{h_{i}}\right\}$ has a convergent subsequence since $\left\{\Phi_{n}\right\}$ is precompact in $M$. For simplicity of presentation, we assume $\Phi_{h_{i}} \rightarrow \Psi \in M$, and $\|\Psi\| \leqslant c / 4$. Consequently, $\|\Psi-\Phi\|>\varepsilon_{0}$. According to the definition of the norm in $M$, there exists a $p \in H$ such that $\mid \Psi(p)-$ $\Phi(p) \mid>\varepsilon_{0}$; on the other hand, $\left|\Phi_{h_{i}}(p)-\Psi(p)\right| \rightarrow 0$ as $i \rightarrow+\infty$, then there is an integer number $N_{1}$ such that $\left|\Phi_{h_{i}}(p)-\Phi(p)\right|>\varepsilon_{0}$ for $i>N_{1}$. Let $x=p+\Phi(p)$, then we have

$$
\begin{equation*}
d\left(x, l_{h_{i}}\right)>2 \varepsilon_{1} \tag{4.1}
\end{equation*}
$$

if $i>N_{1}$, here $\varepsilon_{1}$ is some positive number. Take $T_{i}=h_{i} n_{i}$ such that $T_{i}$ is less than some $T>0$ and $T_{i}>T_{0}=\left[-\ln \left(2 \varepsilon_{1} / c\right) / 2\right]$. Since $l$ is invariant for $S\left(T_{i}\right)$. there exist $x_{i}^{\prime}$ such that $S\left(T_{i}\right) x_{i}^{\prime}=x, \quad i=1, \quad 2 \cdots$. On the interval $\left[0, T_{i}\right]$, calculating the initial value problem

$$
\dot{x}=A x+f(x), x(0)=x_{i}^{\prime}
$$

by one-step method, the error tends to 0 as $h_{i} \rightarrow 0$.
Consequently $F_{h_{i}}^{n_{i}} x_{i}^{\prime} \rightarrow x$ as $i \rightarrow+\infty$.
Let us suppose that

$$
\begin{equation*}
\left|\Gamma_{h_{i}}^{n_{i}} x_{i}^{\prime}-x\right|<\varepsilon_{1} \quad \text { if } i>N_{2} \tag{4.2}
\end{equation*}
$$

From (3.2) it follows

$$
d\left(F_{h_{i}}^{n_{i}} x_{i}^{\prime}, \quad l_{h_{i}}\right) \leqslant\left(1-2 h_{i}\right)^{n_{i}} \cdot(c / 2) \leqslant\left(1-2 h_{i}\right)^{T_{0} / h_{i}} \cdot(r / 2)
$$

Since

$$
\lim _{h_{i} \rightarrow 0}\left(1-2 h_{i}\right) T_{\mathrm{s}} / h_{i}=\exp \left[-2 T_{0}\right]
$$

there exists $N_{3}>0$, such that

$$
\begin{equation*}
d\left(F_{h_{i}}^{n_{i}} x_{i}^{\prime}, l_{h_{i}}\right) \leqslant \exp \left[-2 T_{0}\right](c / 2)<\varepsilon_{1} \text { for } i>N_{3} \tag{4.3}
\end{equation*}
$$

Taking $N=\max \left\{N_{1}, N_{2}, N_{3}\right\}$, we have $d\left(x, l_{h_{1}}\right)<2 \varepsilon_{1}$ as $i>N$ by $(4.2)$ and (4.3). This is in contradiction with (4.1).

From Theorem 4.1 it follows immediately that $l_{h}$ converges to $l$ as $h \rightarrow 0$

## References

[1] J. Lorenz, Numerics of invariant manifolds and attractors, in Chaotic Numerics, Contemporary Mathematics, 172 (1994), 185-202.
[2] . Y. Kuramoto, Chemical Oscillations. Waves and Turbulence, Springer-Verlag, New York (1984).
[3] P. Kloeden and J. Lorenz. Stable attracting sets in dynamical systems and in their onestep discretizations. SIAM J. Numer. Anal., 23, 5 (1986). 986~995.
[4] Qian Min, Shen Wenxian and Zhang Jinyan. Global behávior in the dynamical equation of J-J type, J. Differential Equations. 71. 2 (1988), 315~333.


[^0]:    ${ }^{\text {＇Department of Mathematics．Suzhou University，Suzhou 215006，P．R．China }}$
    ${ }^{2}$ LNM．Institute of Mechanics，Chinese Academy of Sciences，Beijing 100080，P．R．China

