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ABSTRACT  In this paper. the closad form of solution to the stochastic differential equation for a {a-
tigue crack evolution sysiem is derived. and the relationship between metal fatigue damage and crack
stochastic behaviour is investigated. It 1s found that the damage extent of metals is independent of
ereck stochastic behaviour if the stochastic deviation of the crack growth rate is directly proportional to
its mean vaive, The evolution of stochastic deviation of metal fati gue damage in the stage close o the

transition point between short and long crack regimes is also discussed,
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[ . INTRODUCTION

Experimental investigations have revealed that the characteristics of fatigue damage of vari-
ous metallic alloys in the primary and the final stage of fatigue failure possess different mecha-
nisms of fatigue cracking. In the primary stage of fatigue failure, the length of most cracks is
comparable with the grain size of alloy concerned. and the fatigue damage cumulation is con-
trolled by a large number of dispersed short cracks. which presents collective damage characteris-
tics with the gradual evolwion of crack numerical density -1, The method based on the equilibri-
um of crack numerical density * is a possible approach 1o describing and analyzing the collective
evolution process of dispersed short cracks =2, The basic conception of the method is that the wo-
tal number of dispersed cracks is determined by the effects of crack nucleation and crack growth,

The equilibrium equation is,

a > ;
ety + —=[Alemn(e.0)] = Nan(e) (1)
s it e

where n(c.t) is the crack numerical density. with n(c. 1) ds being the number of cracks with
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length between ¢ and c+de at time 1..(¢) is crack growth rate, and nx (¢) is crack nucleation
raie. All of these physical quantities are dimensionless. and the nondimensional coefficient N =
nsd/(n" A" ), with n§ being the characteristic crack nucleation rate, A* the characteristic crack
growth rate, n* the characteristic crack numerical density, and  the characteristic disnension of
the material concerned (e. g. the grain diameter), noting that @/ A" is the characteristic time. E-
quation (1) describes the equilibrium of crack numerical density in phase space, The second wrm
at the left side describes the flow of crack numerical density in the phase space, namely . the con-
tribution to crack numerical density made by crack growth. and the term at the right side de-
scribes the effect of crack nucleation,

Letting n(c.0)=0 ar the initial stage, and assuming that the threshold value of crack length

for growth is zero, we have the theoretical solution of Ex. (1),

et = _1“(]17 j Nt yae (2)
Pead)

The lower integral boundary 7(c.,¢) is of such a 1.07 R

.
definition that for a crack with an inital length E B i
of 7(c.t) at t=0, its length will grow to ¢ at 0'8; e 9ED '
tme ¢ at the growth rate of A(e¢). Figure 1 1

shows the evolution process of (¢, ¢) calculated :0' Br

from Eq. (1). which is obtained after the forms g

of At¢) and ny(c) are given-*!, From the solu-
tion of Eq. (1) we find that n(c,t) gradually

tends to a stable curve n,(¢) .

mlc) = “(1“ [_’\",.mv((" e (3)

Fig. 1 Distribution of erack numerical density
“This is shown as the dash-line in Fig. 1.

nte.t) at different values of 1,
If ACe) and ny(e) in the above equations

represent the mean value of a time series. the solutions of these equations are the resulis in aver-
age sense. In fact. there exists stochastic fluctuation of damage behaviour. and the extent of the
fluctuation is a vital factor of damage evolution. In this paper. the stochastic fluctuation of crack
numerical density. especially the correlation between the extent of stochastic fluctuation for the
distribution of crack numerical density in the region with the crack length close to ¢, « is invesii-
gated. Here, ¢, denotes the critical crack length of the boundary between short and long crack
regimes, The stochastic lluctuations of crack growth rate and crack nucleation rate are considered
as two major aspects in relation to the behaviour of fatigue damage. The factors that dominate the

stochastic fluctuation of fatgue damage are discussed,
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I, STOCHASTIC DIFFERENTIAL EQUATIONS AND THEIR SOLUTIONS
There have been several studies concerning the stochastic deviation of crack growth
rate-~" . in which the relationship between the probability of single crack length and the stochas-
tic deviation of crack growth rate has been investigated, However. in the short-crack damage
regime which normally takes up a large portion of 1otal fatigue life. the development of shor
cracks may presem collective evolution process and the damage cumulation controlled by a large
number of dispersed short cracks . Therefore the relationship between stochastic fluctuation of

crack numerical density and fatigue behaviour of dispersed short cracks should be studied.
In general. the stochastic behaviour of short cracks can be described by the stochastic devia-

tion of crack growth rate :1(¢) and crack nucleation rate ay(c). Hence. it is assumed that

Ale) = Ale) + LW ;
; 2 1)
() = ne () — He)W
where A (¢) is the expectation value (i.e. mean value) of crack growth rate: ny (¢) is the ex-
pectation value of crack nucleation rate; W(s) is Gauss white noise; L(¢) and H(¢) are {funce-
tions representing the relationship between crack length and erack stochastic behaviour.

Substituting Ey. (4) into Eqy, (1). we have,

Mle.t) LA (eynte.)]
l){ ! . J('

= iy (e {H(c) Xz 1—"—‘-‘—1}1& L) )

Equation (3) is the stochastic differential equation of fatigue damage evolution, By introducing a
series of scattering points for continuous crack length ¢. Eq. (5) can be rewritten as;

-

dn (1) = L— :—i’_n,(;’) -+ ilif;jn,_iﬂ) + Hiig -;{h‘ + [h'_ = %H_-(x’] -+ !:i‘:%lﬂ_, -1(”-11‘-11';. (6)

where j=1.2,3,:+; ( + ), has the meaning of + (¢,), and ¢, = » J+ with 2 being a small
step of crack length and B the Wiener process. According to Ey. (6) we can find that »,(¢) can
be derived if u,—, (¢) is given. Because n(1) |, is known as the boundary condition. »,(£) (j=1,
24 3.+) can be obtained recursively. Therefore in the following. »,—, (+) will be used as a
known function, '

Equation (6) has the same form as Tio's formula™, 1f the range of stochastic fluctuation of
n(cyt) is relatively small compared with its mean value. the stochastic parts of () and w,— (1)
may be omitted. Thus Er. (6) has the form,

dn(t) = | — :—'t’}'(” . i'l_ffz*_‘;('r) -+ ra_\-,,,.jd!_-i- [H_'. — %‘1.(:) + éi_j-"r-r,..l(e‘) _i(lB_ (7)

-
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where »,(¢) and n,._, (1) are expectation values of »,(t) and n,.., (1) respectively . which can be

solved according 10 Eq. (1),

By setting the initial condition of »,(0)=0, Eq. (7) has the solution .

e AN Bizis 3
[ iyl 22 o L o .
I| [e:\pll s | _|[ =n,-1(5) =+ ny, lds

I

n, (1) =-—:|:cxp{ — '__‘—:r'_.*l

(8)
- J.I_exp!‘ li—x | _"_” — %:},(s) - 'f"’f’:},__,(.\')-;!d.li"x',J
where the integration has the meaning of mean-square integration,
Writing A, (¢) as the stochastic part of n,(¢) . from Eq. (8). we have.
o Pkl 2 T M J BN Fae o Biiret i s
h(t) = [expl — 3¢ 2 Lnxp-l Z°) JLH, i 1;(s) + TH:—;(S) dB | (N

Equations (8) and (9) represent the dependence of crack numerical density upon the stochastic

fluctuation of crack growth rate and erack nucleation rate.

. DISCUSSION
From Eq. (9). the average value E!h,(¢)} and the variance Dih (1)} due to the stochastic

part of crack numerical density /;(¢) can be shown.

T A T sl A1 T g— X by
Elh)) = I:expfl — Er] Jj[ekpl. 3 ] _iE{ [H_. % “=HJI-¥,}{L¢ =0 (10)
6 o v ol A(Ln) Ty
and Dihite) = [{i_expi - _—i—"_(r - .\')] Jli_HJ = J(_E |‘,_.: ds (11

It is common sense that the mean value of a stochastic deviation s always zero. As a cons-
quence, Ei/,(¢)} is also always zero. Therefore the stochastic behaviour of crack numerical den-
sity is predominated by DA, (¢) . It can be seen from Eq. (11) that DiA() ) isa monotonically
incremental function,

3.1 An Approximation for Stochastic Analysis

Taking into account the two-phase model *- of fatigue process. we assume that

Ale)=1¢ g €12)
and Lic) = ac? a3

where v,a and 2 are material parameters. The order of magnitude of @ may be inferred from
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published data of crack growth rate”~1-, the values of « of different materials (pure nickel.
Monel K500 Ni-Cu alloy and Inconel 625 Cr-Ni-Fe alloy) are within the range from 0. 3 w0
7:0.

Combining Egs, (12), (13) and (2). we have

e

= a3 — v)e’! [ e (¢ )de! 4 ac*’_'ri,\-..(c')[l — ﬁ(j.k_” ; . (14)

a(Ln)
de

o
o)

where 7 has the same form as Eq. (2).

Noticing that a large part of fatigue life of metallic materials is in the regime of short crack
damage, and that the critical time characterizing the transition of short and long crack regimes is
mainly related to the cracks with the length close t0 ¢.,***, it is important to discuss the crack nu-
merical density near the critical crack length ¢.,. Because the crack nucleation rate tends to zero if
the crack length is relatively large, we may assume that under this condition. ;. the stochastic
deviation of crack nucleation rate, also tends to zero. which suggests that the crack numerical
density of the cracks with the length close 10 ¢, is independent of the stochastic behaviour of

crack nucleation. Thus. substituting Eq. (14) into (11). we are able to derive the formula for
Dihi(e)}

e, = Hexp[-— %(r — s)jéa(ﬁ — )i J rive (" ) de! j'ck (15)

[ icas)

Dih(t))

where ¢, denotes the crack length in the region close to c,,.

In correspondence with the stable curve shown in Fig. 1 (dash line), we take 7(c.t)—0.
and for simplicity . we write J-::,\-U(c" Yd¢' = &k , which denotes the total number of cracks nucleat-
0
ed in unit ime. If ; represents the corresponding stochastic deviation of crack numerical densi-
ty. Eq. (13) is reduced to

5 " DI |
Dih_,' H_-*s.! 22%1;[,1,5('3 - ,)}gt,-}_’-,a-‘.—pl-] —_ expi‘ g §J| l
- e -

(16)

o
I/

HE=Zv=11
kg

— 2'—33[:&.%(,9 — )
e

In the above derivation, we use the condition that exp( - %r] tends to zero when the distribu-
tion of crack numerical density becomes stable. This is under the consideration that for the crack
with the length close to ... its growth rate is relatively large.

3.2 Stochastic Behaviour of Fatigue Damage at the Region near .,

Equations (15) and (16) represent the evolution of stochastic deviation of crack numerical



Vol. 10, No. 4 Qiao Yu et al. ;. Stochastic Behaviour of Short Crack * 357 «

density for crack length near ¢,,. They imply that the stochastic deviation of crack numerical den-
sity will increase with a decrease of the mean value of crack growth rate (A4;) or an increase of
the stochastic deviation of crack growth rate ().

When the evolution stage of fatigue damage

is close to the transition point between short and ’ —p>3u/241

long crack regimes, the fatigue behaviour is pre- o '"ﬁ;%gi} "I/
dominantly determined by relatively large cracks i Sp—k=r

whose length is close to ¢,, and the extent of AT

stochastic deviation of fatigue damage is de- § 3r

scribed by D{/;(¢)} of the largest crack. Note E 2t

that the maximum crack length in a damage sys- = e S
temn increases with the progress of fatigue pro- bl o S St
cess, Thus the evolution of stochastic deviation ; . . . |

of fatigue damage is characterized by Eq. (16). 4 5 6 7 8 g 10

Figure 2 shows several typical cases of the solu-
tion of Eq. (16) at different values of 2 and v.

It is seen that D{A; (¢)} decreases with an in-

Fig. 2 Stochastic extent of crack numerical densi-
ty versus crack length at different values of

A _I? and v,
crease of the mean value of the crack growth

rate; on the other hand. D{A;(¢)} increases with an increase of the extent of stochastic deviztion
of the crack growth rate, When 3=3v/2+1, the two effects offset each other. It is clear that.
under the condition of £>>3v/2+1. the extent of stochastic fluctuation of fatigue behaviour will
increase with the evolution of fatigue damage,

Considering that the range of stochastic deviation of crack growth rate is directly proportional

to 1ts mean value, 1. e.

L(c) oc A(e) an

we have 3=v. Based on Eqs. (15) and (16), it can be seen that under this condition. the vari-
ance of crack numerical density in the region of cracks with the length close to ., is zero, which
is also shown in Fig. 2 (dash-dot line). Thus the difference in the fatigue behaviour between dif-
ferent specimens should be explained not by the crack stochastic behaviour, but by intrinsic mate-

rial parameters such as grain size, inclusion dimension, initial defect, etc.

IV. CONCLUSIONS
In this paper. the stochastic differential equation of metal fatigue evolution is proposed and
analyzed, The influence of the stochastic behaviour of crack growth and crack nucleation on the
distribution of crack numerical density is discussed. The following conclusions are drawn,
(1) The stochastic deviation of crack numerical density becomes small with an increase in

the mean value of the crack growth rate and with a decrease in the stochastic extent of crack
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propensity,

(2) In the case of 7>3v/241. the extent of stochastic fluctuation for the fatipue crack be-
gu

haviour of metallic materials increases with the progression of fatigue damage.

(3) If the range of stochastic deviation of the crack growth rate is in direct proportion to its

mean value. the erack numerical density in the region near ¢, is independent of the stochastic de-

viation of the crack growth rate,
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