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Abstract 

Based on a cottstitzrtise ILIU which inchrdes the shear cowponeuts of 

tran~&wruatiori piasticitv, the a.yilptotii~ sohtiom to riear-tip yields qf plane-strain 

mode I steaditJ propagatirlg cracl~.~ ill tran<formed ceramics are obtained for the case 
/ 

qf hear isotropic hardening. The stress sirtgularits, the distributions qf stresses and 

velocities at the crack tip are deterruirwd ,for sarious material parameters. The factors 

i@h~encirlg the near- tip ,/ieitis are di.u itssed ill detail. 
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asymptotic method 

I. Introduction 

The mechanism of fracture toughness enhancement in ceramics has been widely studied 
since the early 1980s. The pioneering constitutive model developed by Budiansky et al!‘l 

includes the effect of plastic dilation, but neglects the transformation-induced shear strain. And 
their computational results of toughness increment are much less than experimental 

observation. There arises doubt from researchers about the validity of the model of Budiansk! 

et ‘al(‘l. Recently, increasing experimental evidence found by Chen and Reyes-Morell’. ‘1 

indicated that plastic shear and dilatant effects are of comparable magnitude and both can not 
been -ignored in the assessment of toughness increment. Based on these and the related 

observations, Huang et alI presented a ne\v micromechanics-based continuum model to 
account for both dilatant and shear effects. by means of Hill-Rice’s internal variable 

consrituti\,e theory. Ye et ali’] also developed a new constitutive law including dilatant and 

shear effects. and used it in their FEM calculation of stationary cracks. Stam et all61 carried out 
FEM analysis to study the crack growth behavior by using the constitutive law in reference [4]. 

It is found that the shear components of transformation deformation which has been neglected 

in previous investigations have played an important role in the estimate of toughness behavior 
in ceramics. 

Asymptotic analyses of stress and strain fields near the crack tip in those pressure- 
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sensitive materials have been paid much attention during the past years, Li and Pan”] studied 
the asymptotic fields of a stationary crack for deformation-plasticity theory adopting Drucker- 

Prager yield surface with associative flow-rule. For incremental small-strain elastoplasticity 
obeying the Drucker-Prager yielding condition, an asymptotic determination of near-tip fields 

at the growing crack tip has been presented by Bigoni and Radi Is1 But all those investigations . 

not taking the full transformation zone into account, resulted in a plastic reloading zone near 

the crack flanks. Furthermore, because a limit value of the pressure-sensitive factors exists in 

their asymptotic analyses: the constitutive model in references [7] and [S] can not be used for 

transformation toughening ceramics. 
In our previous paper [9], the asytiptotic analysis of stress and strain field near the model 

I steadily propagating crack has been carried out, based on the constitutive model ‘of 
Budiansky et all’]. It is seen that \j.ith the decrease of plastic volumerical tangential modules, the 

singularity of stress fields and the level of mean stress ahead of the-crack tip will decrease, and 

obviously this will lead to an increase in the fracture toughness. In this paper, a brief outline 

of the constitutive model developed by Ye et all’] is firstly given. Then the paper is addressed 
to the asymptotic study of plane-strain mode I steady-state growing cracks by using a variable- 

separable expressioll similar to HRR-type fields. The results of detailed computations for 

various material parameters are presented and the effects of shear effect on the near-tip fields 

are discussed. 

II. Basic Equations 

2.1 The constitutive relations 

A homogeneous isotropic hardening material characterised by a nonlinear constitutive 
relation is adopted in reference [5]. It is assumed that the yield criterion contains two stress 

invariants and the plastic deformation obeys the associative flow rule. These assumptions are 

consistent with the experimental observation in Chen and Reyes-Morell’. ?I and the theoretical 

analysis of Huang et al[“I. 

The transformation plastic loading surface,.f, can be written as: 

(2.1) 

which ~~ is‘the effective stress, oe= $Q,s,, , fJ J s is the stress deviator: ~t~=~~~-o,,&~, ci, is 

the mean stress. Um=J- 3 6i,aij and ~fj is Cauchy stress, the material constant /I measures the 

effective stress sensitivity of yielding. ?? = J +:,d~:‘, , d&,P, is the increment in total plastic 

strain and // is ;I function of the accumulated effective plastic strain 5 
22 , G* is the 

characteristic mean stress at lvhich transformation plasticity occurs. 

Let the plastic volumetric tangential modules be B=dbnlla&, q * and the plastic effective 

tangen&~l modules be G =dcr,/daP in \I,hich daP =JG-, de:, =dc:fj-+de:6ij. 

With the devclopinp transformation plastic deformation, we have 

f=dam+pdu,-HHldEP =O 1X.2) 

\\herc H’=d Q/’ &‘, Q=~~+pa, 
Accordirig 10 Drucker‘s postuhte. we ha\:e: 

(2.3) 
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3 &j where Q,,=-$, f-p- , diL is a scalar multiplier. It is easy to be found that d%=dl 
0, 

and @ = PdA, SO we can get the hardening modulus HI: H/=3( B++cla)/+faZ. 

The constitutive relations in rate form can be expressed as follows: 
(2.4) 

where 0 before the onset and after the end of transformation 
a= 

1 at transformation loading stage 

In the case of p =O, the above equations are reduced to the constitutive equations of 

Budiansky et all’]. From the experimental results mentioned above, the tangential modules 

H”‘>O holds for Mg-PSZ ceramics, because B> 0 and 0 > 0 . Thus loading and unloading 
criterion can be given as follows: 

>O loading stage 

Q ’ klokl 
{ 

=O netural loading (2.5) 

<o unloading stage 

The yielding criteria can be formulated as: 

0,-t pe=G (2.6) 

The condition for the completion of transformation is: 

@=@’ (2.7) 
in which 8 is the plastic dilatation and Q’ is a constant. and the plastic effective strain is not 
constrained by any conditions. 

2.2 Basic equations 

H 

Fig. 1 Typical configuration of steadily- growing plane cracks 

Under the small transformation condition. there are two distinct regions, actively loading 

transformation and elastic, in the neighborhood of the crack tip, which are separated by the 

boundary r on which elastic unloadin g begins. Those are shown in Fig. 1. Transformation 
loading occurs in domain A, and region A, corresponds to elastic unloading and full 

transformation stage. The height of transformation zone is N and the height of the fully 

transformed zone is N,. The transformation zone is separated from elastic zone by the 

boundary QI and there exists a fully transformed zo,ne circled by RZ in the immediate vicinity 
of the crack tip. In this paper, we require that the material parameters B and the strength of 
transformation o =EOT ( I + Y) /a:/ ( I- u) should satisfy the conditions B>O and a> 10, 

which are always true for SOIIX materials. such as MI-PSZ and TZP. The FEM results in 
references [3. 5. 71 indicated that II, is II~LICII smaller. cornpal-cd with H, in the case of above 

conditions. And the experimental obser\,;tlion 01. Marshall et al[‘ql also showed that in 
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toughened Mg-PSZ ceramics, fully transformed zone can not be found by Raman 
Spectroscopic in the regions adjacent to crack tip, and the maximum amount of transformed 
particles was approximately 80% of the original tetragonai phase particles. So, the ring region 
circled by $2, and RZ is big enough for the existence of asymptotic solutions, because the 
deformation in fully-transformed zone has very little influence on the stress fields in it. 

A Cartesian reference system is employed, as shown in Fig. 1, with the origin attached to 
the moving crack tip. It moves together with the crack at a constant velocity V. Therefore, the 
steady-state propagation condition implies that any-material derivative can be identified with a 

spatial derivative in the direction XI 

d( )ldt= -va( sin0 a )iax,=v - 
[ 

a 
r FO-cos& 1 

Referring to the co-ordinates (r, 0). the equations of equilibrium are: 

(r~.tr)rr+~.r8,g-C+3=0 
(r~r~),t+CTgo,e4~~=0 (2.9) 

The strain components are related to the two in-plane velocities vg and L),, ue and u, by 
. 

Btr=Vt,r, eee * =(&w+V,)/r 

e’,B=T l [ve,, + (VW3 - a)/?-1 (2.10) 

. 
e33=0 

Let et, ee be the unit vectors in the directions of I’ and U respectively, and the material 
derivative of stress components can be obtained by the following equations: 

(er.ueej) ‘=et,a.e,+ei.ir.e~+el.a. e, 

sin6 
&,=V----efi 

r (2.11) 

sin0 
he= - V-e, r 

Using Eq. (3.11). the following expressions of the components of stress rate tensors are 
obtained: 

&,e=V E ~.(n,p,~-u,,+u~)-coseu,s., ] 

5,?=V II 
sine. -+ud- W,s) - COSOu,~,r 1 

(2.12) 

[ 
sin0 &=V - r ( U&l,@ + 204) - COS~ao,r 1 

CrS8=: V [ 
sin0 
-033,e - coseus:,,* r 1 

Across the loading-unloadll., 3~ boundary r, all the stress components must be continuous 
in this paper. As a mater of fact. it has been proved by Narasimhan and Rosakisl”] that the 
requirement is correct if the matcrlrir . . .* 1 i\ stable in the Drucker sense. 

III. Asymptotic Sohdion 

It is noled in rcfsrcnce [b] th;:~ 111 c‘ system of partial differential equations consisting of 
equations (2.4). (2.10). (2. I I ). which. arc homogeneous in I’. is strongly elliptic if H’>o. 
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Therefore asymptotic solutions can be sought in a variable-separable form, similar to the HRR- 

type field$ ‘?I 

zJr=K(V/E)yi(@ (Zscr)8/s 

ve=K(y/E)y,(B)(ZJrr)“/s 

ore = Ky, (6) (Z-w-) d/s 

urr=Ky4(6) (Zm-)” 
(3.1) 

aee=Kys(B) (2rcr)8 

o.33=Kye(6) (2nr)6 

where negative s is the stress singularity coefficien& I- is called as transformation stress 

intensify factor (SIF), and ~/t (0) (i= 1, 6) are unknown functions. 

The substitution of (3.1) into (3.12), (2.4). (2.9): (2.10) yields a system of six first-order 

ODES in the forms 

y.:=y,- (1 -+S)Y, 

where 

YS ‘=-(l+s)y, 

y: = (sy4cosOi-~~~ )/sin6+ 2y, 

y:=(syscos6-f-~,3)/sin0 

y:=--yl+~[~-,,-- l)(Liw +&; -tJQee 1 
y:=(l--.s)yzi2s[(l+v)~,e+I1Q,o] 

~,,=cic,/[vK(?n) sr”-i], y: =dyi/‘dO, 

&=- s(y,sinO+y,cosO) 

&v3= - s(y,sinf3+y3cos8), 

(3. 

in which /i-CO if the transformation unloading starts and then let Qrr=Qa= 
Qee=Qte=o in the above esperssions. 

The mode I symmetry requires that 
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.qz(o)=~j(o)=y/(~!)=!~:(o)=~y:(o)=o (3.3) 

Moreover-, on the crack flank. tractions must vanish, hence: 

y, (Jr) =y5 (76) = 0 (32) 

With the normalisation of stress field. thus: 

.Ys(o)=l (3.5) 

By t,lking into account g/: (0) “y:(O)=0 the followin g auxiliary boundary conditions 
:a;;! be estri(blished: 

91(o) = - eA(o) -:fi’.qr,(o) -t-g*(O)] -tQ,,(0)/1(0)} 

.Yf~((‘)=i!L;t4(0) +g,: 9) ] --Q3,tO);l(0) 
(3.6) 

The system of ODES can be solved by usin g the standard Runge-Kutta procedure? except 

for the amplituder K in (3.1). With the value s of s and ~~(0) assigned tentatively, the 

integration is performed and the values of Ye and Jam are checked if ;he condition 

(3.4) is met. On Ihe basis of the error. .y and ~~(‘0) ar e reassigned and the process is iterated. 

With the control of the error and the time step, a sarisfactory result can be got. 

IV. Numerical Results 

The numerical analysis \\as cariie i out for Mg-PSZ containing 35 vol% t-ZrO. The 
mar~:rial parameters :ised in this calculation are E=208GPa, v=o.3, B/E=Q.,~J~, 

O/.E = 0.22b and various values of rl=O.O, 0.1, 0.2, n.5, 0.6. The numerical results of many 

conb!ants. such as the singularity s and :i!e unloading angle /I, are reported in Table 1. It can 
be seen that the value of s increases with the increase of the parameter, but the value of fl 

changes very little. 

Tabie I The constants for various va!ues of p 

P 

Plots of angular distributions of the mean stress and effective stress near the crack tip are 

shown in Figs. 2 and 3. respectively. It is demonstrated that the angular distributions of 

n, = “,/I Kprr)‘! ~,=o,/[h(2irr)q] 
2.0 -__ -.-_ 

1.0. 

o- 

1.0, - p =o.o. 1,0.2 
--- ,, = 0. 5 

-2.(J, - -- I' = 0.5 

-3.Ly n 
0 

Fig. 2 The angular distribution of mean F’ lg. 3 The angular distribution of effective 
stress for various values of y  stress for various values of D 
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stresses change very little if ~<0.2 and the gradienl of the stress curves ahead of the crack 

tip is much smaller compared v+i& those in the cast of ~r=O.5 and 0.6. When ,U reaches a large 
value, the curve of stress ahead of the crack tip becomes steeper and stee,per. It can be found 

that the \.alues of effective stresses ahead of the crack tip decrease with the increasing v-alue of 
11, while the values of mean stresses increase ;I lot. Therefore the ratio of om/ge increases 

rapidly with ,U increasing. This indicates that the degree of the constraint ahead of the crack 

tip increases ;I lot. 

2.0 

Fig. 4 The angular distribution of stress Fig. 5 The angular distribution of 

components for JFO.1 stress components J[ = 0.5 

Figs. 4 and 5 demonstrate the angular distributions of stress components at the case of 

jf=O.l and 0.5.. It can be seen that by increasing the effective-stress sensitivity 11: the state of 

stress near 0x0 approaching to the crack tip tends to be a hydrostatic state of tension. This is 
due to the singular’ behaviour at the vertex of the yield locus, similar to the Drucker-Prager 

yield surface used in Bigoni and Radii’]. In the computation, when IL is greater than 0.613, we 

can not find any solution based on the present HRR-type formulation. Therefore, if we use the 
constitutive model including the plastic volumetric deformation to obtain the asymptotic crack- 

tip fields, it must be noticed that there is a limit value for its material constants, such as ,M in 

this paper and the pressure-sensitivity in Drucker-Prager yield locus. For this reason, the 
asymptotic solutioncan not be obtained for the dilatation plasticity model in reference [ 1 1, by 

using the Drucker-Prager yield surface. In addition, from the result in Bigoni and Radi’8’, the 

maximum value of the limit value of the pressure sensitivity is 0.5, much less than the value for 

the case of transformed ceramics, for example, 0.7-0.95 for &fg-PSZ and TZP ceramics. So, 
we can say that the constitutive law presented here is more suitable for the dilatation- 

dominated materials such as ceramics, rock and concrete, and the Drucker-Prager yield locus 

is suitable for steel and plastics in which the shear stress are much more important than 
volumetric deformations. 

It can be seen that when 0 approaches to 7t, the angular distribution of it?, g33 tends to 

be negative infinite. These results in the existence ofconstant compressive stresses in the region 

near the crack flank in the wake. It is consistent with the results of our previous workfg], 
Budiansy. et al[‘l and Stam et air@. But in the paper of Bigoni and Radi[*l, we found that the 

same result occurs only at the case’ of large value of the pressure sensitivity, but at most cases, 
the stresses [I,,, os3 tend to be positive infinite as those in the classical elastic plastic 

materials. 
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V. Conclusions 

Zhang Xi and Ye Yugong 

In this paper, a constitutive model which includes the effect of shear part of 

transformation plasticity, is given and the asymptotic analysis of stress and velocity fields in 

the ring zone near the crack tip is carried out. The near-tip zone is comprised of the 
transformation loading zone and the elastic one in which the material is under unloading or at 

full-transformation stage. The near-tip asymptotic fields aredependent on the choice of the 

value of effective-stress scv:sitivitp. It can be seen that an increase in ~1 will produce: 
(I) a reduction in the singularity of the near-tip fields; 

(2) a decrease in the effective stress ahead of the crack tip; 

(3) an ixrease in the ratio of mean stress and effective stress, which means that the degree 
of constraint near the crack tip increases; 

(4) a little change in the angular distribution of stress fields if the vaiue of L[ is less than 0.2. 
In the mean time. we can find from the computational results that for volumetric- 

deformation-dominated materials, the constitutive model presented in this paper is more 

suitable for asymptotic analysis than the Drucker-Prager yield condition. 
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