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A b s t r a c t  

1t7 this paper, wavelet transform is introduced to study the Lipschitz local singular 

e.vponent for characterizing the local singularity behavior of fluctuating velocity in wall 

turbulence. It is J'ound that the local singular exponent is negative when the ejections 

and sweeps of coherent structures occur in a turbulent bound'ary layer. 
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I. I n t r o d u c t i o n  

The near wall coherent structure in a turbulent boundary layer has long been the subject  

for a large number of  investigations. There is no longer any doubt that coherent structures are 

a major compotaent in wall-bounded turbulent shear flows. They play an important role in the 

production, dissipation a n d  transportation of turbulent energy. One of  the numerous 

difficulties of these studies is how to quantitatively measure coherent structure from physical 

experiments or from direct numerical simulations. The goal is to isolate or characterize the 

coherent structures which drive the near wall turbulence dynamics. 

Wavelet transforms m are recently developed mathematical techniques based on group 

theory and square integrable representations. These techniques allow one to unfold a signal 

into both physical space and scale space at the same time by convoluting the signal with a 

giyen analyzing function called wavelet. Thewavelet  is obtained by translating and dilating the 

chosen mother wavelet function. The limited spatial support of  the wavelet localized in time 

space is important because tlae behavior of  the signal at infinity does not play any role. 

Therefore the wavelet analysis can be performed.'16cally for the signal in time space. This is 

opposed to the Fourier transform which is inherently nonlocal due to the space filling nature 

of the trigonometric functions. On the other hand, wavelet transform provides a frequency 

analysis of the signal with a filter of constant relative resolution by means of  dilating or 

contracting the window width of  the wavelet function. So wavelet transform can be regarded 

as a time-frequency adjoining analysis. 
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As a new tool, wavelet transform can be devoted to the use tbr identifying coherent 

structure arising in wall trubulence instead of the conditional sampling methods usually used. 

Jiang Nan (1997) 121 has performed the time-frequency adjoining decompositions of  the hot-film 

probe output signal of the longitudinal velocity flUCtUation in a turbulent boundary layer with 

two mother wavelet. The energy evolution across scales are obtained from the wavelet 

coefficient modulus. The energy maxima criterion is established to determine the scale that 

corresponds to coherent structure. The coherent structure velocity is extracted from the 

turbulent fluctuating velocity with wavelet inverse transform. It is found that the coherent 

structure average period made normalized with inner scale is t o" = 1138 where t § = tu2r/v 

( n ,  is the wall friction velocity and v the kinematic viscosity). The results are in good 

agreement with the experimental measurements. 

This paper is devoted to the study of Lipschitz local singular exponen03j of wall turbulence 

signal as a new defined quantity for coherent structure intensity using wavelet transform. It is 

found that when the ejections and sweeps of  coherent structures take place, the Lipschitz local 

exponent of fluctuating velocity within the near wall region of a turbulent boundary layer is 

negative. This conflicts with Kohnogorov theory 141 that the velocity field has the same scaling 

behavior ~ v ( t , A t )  = v ( t  + A t )  - v ( t )  = At  in which yieMs the well-known E ( k )  ~ k -5/3 

power law behavior of thc energy spectrum. Negative exponents which do not seem to have 

been previously reported correspond to dynamically significant events have strong localized 

gradients. The inierpretation of these events in the near wall region of a turbulent boundary 

layer is the occasional passage or the intermittency phenomenon of the coherent structures 

which is localized in space near the probe. The ejections and sweeps of the coherent structures 

c a n  lead to the strong spike of the fluctuating velocity and they are involved in a large portion 

of the momentum transport in wall turbulence. 

II .  W a v e l e t  T r a n s f o r m  a n d  L i p s c h i t z  L o c a l  S i n g u l a r  E x p o n e n t  

2.1 W a v e l e t  t r a n s f o r m  a n d  edd i e s  in t u r b u l e n c e  

Wavelet transform is a new mathematical technique developed recently which consists in 

decomposing an signal into elementary contributions called wavelets. By convoluting the signal 

with the wavelets, this decomposition comprises an expansion of the signal over the wavelets. 

In the one dimensional case, it provides a two dimensional unfolding of the signal resolving 

both in the position and scale as indenpendent variables. Wavelets are constructed from an 

analysing function called mother wavelet by means of translations and dilatations. 

D e f i n i t i o n  1 if W( t )  E L2(R) satisfies the "admissibility" condition: 

~§ I eV(o~) I ~ 
Cw = _,. I w I dzo < ~ (2 .1)  

where 1~'(o~) is the Fourier transform of IV(t), then W(t )  is called a "basic wavelet". 

Relative to every basic wavelet IV(t),  V/o~(t) is the translation (factor b) and dilatation 

(factor a) of W(t) :  

l _ [ t -  b~ w (t) -dw --F-j 

where a,b E R witha ~ 0 .  

The wavelet transform W , ( a , b )  of  signal s ( t )  E L2 (R)  

(2 .2)  

with respect to W,~(t) is 
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defined as their scalar product by 

R e m a r k  If, in addition, both W ( t ) a n d  W(o)) satisfy 

tW(t) 6 L~(R),cofC(oJ) 6 L2(R) 
then the basic wavelet W( t )p rov ides  a time-frequency window with finite area and W(oJ) is a 

continuous function, so that the finiteness of  Cw implies 

or equivalently, 

W(O) = 0 (2 .4)  

~ + ~  

, .  w(z)at = 0 (2.5) 

This means that its average is zero or the wavelet is said to have zero wmishing moment. A 

wavelet must have at least zero vanishing moment. A wavelet is said to have n vanishing 

momcnts, if and only if for all non-negative integer 0 ~ k ~ n, it satisfies 

~ +| = 0 (2 .6)  

A wavelet has n vanishing moments is also called to have cancellations up to order n. 

W~(t) also has zero mean. It follows that if s(t) E L2(R)has no variation at the scale of a 

in the vicinity of  a given position b (that is to say that, within the support of  W,~( t ) ,  s ( t ) )  is 

approximately constant) the wavelet coefficient W,(a, b)is zero. Conversely, if s(t)evolves 
around a given position b at a given scale a obviously (that is to say s ( t )  has significant 

varietions within the support of  W,a,(t), the corresponding coefficient W,(a,b)is large. So 

the wavelet transform can be regarded as a mathematical microscope, for which position and 

magnification correspond to b and a respectively, and the pcrlbrmancc of the optics is 

determined by the choice of  the analysing basic wavelet IV(t). Fig. 1 shows the shape of Gauss 

basic wavelet and Marr  basic wavelet which are defined respectively by 

w ( t )  = te - ' n  (2 .7a)  

W(t) = (1 - t2)e -?'a (2.7b) 
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The expression of W,(a,b) in equation (2.3) shows that the wavelet coefficient is 

proportional  to the intercorrelation of  s ( t ) w i t h  W,a,(t). As far as turbulence is concerned, 

wavelet function has special physical meaning. "Eddy" provides the most suitable elementary 

decomposition of turbulence. Wavelet representation provides the decompositions of  

turbulence into eddies modes. ~Eddies" are to turbulence study, what wavelets are, more 

generally, to signal decomposition. They are fa;-ly broad contributions in the spectral domain 

and localized contributions in the physical space. Large IV,(a,b) means that s(t) and 

W,~(t)  have strong intercorrelation and that there is an eddy of scale a at the time t=b 
passing through the probe. From the standard (a, b) plane representation of  the wavelet 

coefficients, turbulence can be unfolded into one-to-one eddies at different positions t=b and 

different scales a. 

Coherent structures are particularly important  large-scale "eddies" in wall-bounded 

turbulence and they are localized in spatial"space and time space. The strong intermittency and 

inhomogeneity lead the well-known physical meaning of Fourier Transtbrm is lost and the 

wavelet projection could be a very good alternative. 

2.2 L i p s e h i t z  l o c a l  s i n g u l a r  e x p o n e n t  

D e f i n i t i o n  2 Let n be a non-negative integer, n ~< a < n + 1, signal s ( t )  is said to 

have Lipschitz local exponent 7 at point t = to, if and only if there exists two constants 

> 0 and C, such that for 0 <1 t -  to I < 

( t -  to )"s (") ( to )  
, ( t )  = , ( t o )  + ('- - t o ) s ' ( t o )  + " ' +  

n! 
+ C I t - to I "('0) + o (1  t - to I ~('0)) ( 2 . 8 )  

Signal s ( t )  is said singular at point t = to, if its Lipschitz local exponent a(to) < 1 

s ( t )  = s ( t o )  + C l t - to 1 "('o) + o(1  t - to I ~('o)) ( 2 . 9 )  

Signal s(t)  that is continuously differentiable at point t = to is Lipschitz I at this point. 

If  the derivative of s( t ) is  bounded but discontinuous at point' t = to, s(t) is  still Lipschitz 1 

at this point. The Lipschitz local exponent gives an indication of the diffcrentiability of s(t)  
but it is more precise. If the Lipschitz local exponent ct of  s( t)  satisfies n < a < n + 1, ~t 

can be known that s(t)  is n times differentiable at this point but its nth derivative is singular 

a - n < I at this point and :~ characterizes this singularity. 

A wavelet has vanishing moment (cancelation) of  order zero as equation (2.5) can measure 

the Lipschitz local singular exponent a < 1. It can be proveq that if :t signal s(t)  has 

Lipschitz local singular exponent a(to) < 1 at point t = to, when 0 < max(~ .a , a )  < 8 /  

( t *  + at)  , the wavelet transform of s ( t )  satisfies 

IV', ( , t a ,  t0) = 2 `'('0) lg, ( a ,  t0) ( 2 . 1 0 )  

As a result, the Lipschitz local singular exponent a(to) of  s(t)  satisfies 

a(to) = log l W,(2a,to)/W,(a;to) I 
log I ~. I (2 .11)  

Ill fact, 
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t = ~o..% + t o 

I § W,(Xa,to) = _| + to) 

j+" , ( to)  w--~-(7~,~ = o 

W,(  :~a , to) = 

w~x) dx 

_ E , (ao=  + to) - , ( t o ) ]  v , ' ( ~ ) ~  

= C l ~  1"% ) W(x)d~ 

= 2 " ( * o ) [ + = C l  ax l~Oo ) W ( x ) d x  

= ~ ~  + to) - , ( t o ) ]  ) v ( = ) a ~  
, J _ a o  

[+'( 
= i " %  ) s ax + to) W ( x ) ~  

v _ o o  

= ,l"('o > W , ( ~ ,  to) 

If  s(t) has a Lipschi tz  local exponent  ~, its pr imit ive  has a Lipschitz  local exponent  

a + 1 . So it is possible  to make  an extension o f  Lipschitz  local exponent  to negative value. If  

the pr imi t ive  o f  s(t) has a Lipschitz local s ingular  exponent  a + I < 1 , then s(t) has a 

Lipschitz  local s ingulm exponent  a < 0. F o r  example ,  for a piece-wise linea," Function in the 

n e i g h b o r h o o d  o f  po in t  t = to, its the first der ivat ive  is a s ta i r  function and its the second 

der ivat ive is a Di rac  at point  t = to .  It can be easily proven  that a s tair  function has a 

Lipschi tz  local s ingular  exponent  a = 0 and a Dirac  has a Lipschitz  local singuk, r exponent  

gt = -  1. 

In lact ,  suppose  a stair  function 

s ( t )  = {1_, t > to 
I ,  t <~ t o 

then for the Gauss  basic wavelet  

fO,  t r to 

+ Q o )  t = t o 

then 
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So 

1 I=_ f'** W(t  ~ ) & .  = a ,  

a ( t 0 )  = -  1 

III .  U s i n g  W a v e l e t  T r a n s f o r m  to  S t u d y  t h e  L i p s c h i t z  L o c a l  S i n g u l a r  E x p o n e n t  

in  W a l l  T u r b u l e n c e  

Most important and interestintg information of a signal is often carried by irregular 

structures and transient phenomena such as peaks. In physics, it is especially important to 

study these irregular structures to infer properties about the underlined physical phenomena. A 

well-known example is the large-scale coherent structures in wall-bounded turbulence, for 

which there is still no comprehensive theory to understand the nature and repartition of them.. 

This often motivates us want to detect and characterize the irregular coherent structures from 

turbulent fluctuating signals. The Fourier transform is global and provides an overall 

description of the regularity of signals, but it is not well adapted lbr finding the location and 

the spatial distribution of singularities. By decomposing signals into elementary building blocks 

that are well localized both in space and frequency, wavelet transform can characterize the 

local irregularity of coherent structures arise in wall turbulent flows. This enable us to study 

the.intensity of coherent structures quantitatively by defining the Lipschitz local singular ex- 

ponent of turbulent fluctuating signals using wavelet transformation. 
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Fig. 2 St reamwise  f luc tuat ing  velocity signal in wall tu rbulence  at y+ =32 
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Fig. 3 Wavelet  t r an s fo rm  of  the  f luc tua t ing  velocity signal 
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Experiments are conducted in a fully developed turbulent flow of  a free-surface 

recirculating water channel with a rectangular cross-section. A Plexiglass flat plate with a 

length of 1.3m and a width of 14cm is set on the bottom of the test section of  the channel to 

trip 'a turbulent boundary layer. Simultaneous measurements of the streamwise velocity 

component are made using a TSI 1051-2D model anemometer with a 1210-20W model 

miniature hot-film probe. T h e  original sreamwise velocity fuluctuating signal is shown in 

Fig. 2. The wavelet transform of the signal is shown in Fig. 3. The coherent structure velocity 

signal shown in Fig. 4 is extracted from the fluctuating signal using inverse wavelet 

transform I'-t. The ejections and sweeps in Fig. 4 can be identified clearly. The Lipschitz local 

exponents at different time of the signal obtained by formula (2,10) and (2.11) are shown in 

Fig. 5. It can be seen from Fig. 5 that when the ejection and sweep take place, the Lipschitz 

local singular exponent is negative. This means that the signal has strong localized gradients 

when the ejections and sweeps take place. The ejections and sweeps of the coherent structures 

can lead to the strong spike of the fluctuating velocity and they are involved in a large portion 

of  the momentum transport in wall turbulence. 
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Fig.  4 Coherent  s t ruc tu re  velocity signal 
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Fig. 5 Lipschitz local s ingular  exponent  for  s t reamwise  f luc tua t ing  

v e l o c i t y  in wall tu rbu lence  

I V .  C o n c l u s i o n  

Lipschitz local singular exponent of turbulent fluctuating signal can be a new defined 

quantity for coherent structure intensity using wavelet transform. It is found that when the 

ejections and sweeps take place, the Lipschitz local exponent of fluctuating velocity signal in 

the near wall region of a turbulent boundary layer is negative. Negative exponents correspond 

to dynamically significant events have strong localized gradients. The ejections and sweeps of 

the coherent structures Can lead to the strong spike of  the fluctuating velocity and they are 

involved in a large portion of the momentunl transport in wall turbulence. 
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