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Abstract: In this paper the authors prove that the generalized positivep selfadjoint
(GPpS) operators in Banach space satisfy the generalized Schwarz inequality, solve the
maximal dissipative extension representation ofp dissipative operators in Banach space
by using the inequality and introducing the generalized indefinite inner product (GIIP)
space, and apply the result to a certain type of Schr¨odinger operator.

1. Introduction

This research studies a sort ofp dissipative operator in Banach space by means of the
generalized semi-inner product (GSIP) space and the generalized indefinite inner prod-
uct (GIIP) space. The research on its maximal dissipative extension representation on an
infinite dimensional dynamic system in Banach space is of great importance. Moreover,
this paper will give some applications in quantum mechanics and the Schr¨odinger opera-
tor. Now, research on the Schr¨odinger operator is one of the key problems to study soliton
wave and quantum mechanics. On the basis of the above discussion the authors make
further research on the behavior of the nonlinear Schr¨odinger equation and scattering of
the corresponding particle collision.

The dissipative operator in Hilbert space comes from the Cauchy problem on the
hyperbolic partial differential equation withL2 measure. Maximal dissipative operators
occur in many applications, for instance they are the infinitesimal generators of strongly
continuous semigroups of a contraction operator. Now, with the intensive research on
the infinite dimensional dynamic system and such problems as the soliton wave, the
scattering of particle collisions in quantum mechanics, great attention was focused on the
initial value problems of partial differential equations with the measure of Banach space.
For example, the natural measure of the heat equation is the supreme of temperature; the
measure of the diffusion equation is inL1; the measure of dealing with the scattering of
a particle collision is inLp (p= 2 orp =6 2) (see [7, 12, 13, 16, 23, 29, 30]). It is well



520 L.-X. Tian, Z.-R. Liu

known that the dissipative operator in Hilbert space is one with wider applications (see
[12, 16, 19, 22, 29, 30, 42, 43, 44, 50]. Especially in [12] R. S. Phillips and G. Lumer
researched the operatorL0 = A − S in Hilbert space, whereA is a skew-symmetric
operator andS is a positive operator. And there is a one to one correspondence between
the maximal dissipative expansion onL0 and the maximal negative subspace in indefinite
inner product space. In this paper we extend the result to the Banach space by using the
GSIP space and introducing the GIIP space. Because Banach space does not have the
bilinear character as the inner product, this makes it difficult to study the operators in
Banach space.

The research on GSIP and operator theory in GSIP space originated in Lumer’s semi-
inner product (SIP) in Banach space (see [31]) and Nath’s GSIP space in Banach space.
Many researchers (see [1, 4, 9, 31–35, 37–40, 51]) studied the geometric properties
of GSIP space or SIP space which include orthogonal projection, isometry and the
Riesz Representation Theorem, etc. And also researchers (see [2, 3, 4, 8, 13, 15, 24,
27, 28, 32, 33, 38, 39, 41]) studied the operator theory in SIP or GSIP space: the
adjoint operator, adjointAbelian operator, generalizedp selfadjoint operator, generalized
p normal operator, etc. They also established the function models of adjoint Abelian
operators inLp (�) andC(K) (see [15]). These researches added more to the theory of
the SIP and GSIP spaces. G. Lumer and R. S. Phillips [13] researched the characters
of the dissipative operator in Banach space and paper [10] obtained the properties of
theJ dissipative operator in indefinite inner product space. Based on these results, the
authors of the paper [7, 8, 25] obtained some important results by dealing with the
Schrödinger operator on Banach spaceLp [0, 2π]. It is important whether the results
obtained in [7] can be extended to general Banach space. What we will do in our paper
is to further extend in general the Banach space. The most difficult point is to determine
if the generalized Schwarz inequality holds for the generalized positivep selfadjoint
operator (GPpS operator).

The research on indefinite inner product space comes from quantum field theory.
Until now, the operator theory in the space is fruitful, for example [9, 10, 11, 14, 42, 43,
44]. It is of real importance in physics to solve the difficulty of divergence by establishing
scattering theory with an indefinite inner product space. However, for general Banach
space which can’t be changed into Hilbert space we may not use the indefinite inner
product to deal with the scattering of particle the collision with the measureLp(p =6 2),
as there is a bilinear Hermite function in the indefinite inner product space. Therefore,
we introduce GIIP space into the study of thep dissipative operator in Banach space.
This extension is of particular significance not only in mathematics but also in a real
physical system, which we may find when the maximal dissipative extension of a sort
of Schrödinger operator is dealt with in the paper.

The research on the linear operator with character of chaos and the dynamic behavior
of the linear operators in infinite dimension Banach space gives the foundation to look
into the complexity and dynamic behavior of infinite dimensional dynamic systems with
the metric of the Banach space (see [25, 26, 46, 47, 48]). Based on it we develop the
maximal dissipative extension of thep dissipative operator in Banach space and we
apply the result to a certain kind of Schr¨odinger operator.

The paper includes six sections. In Sect. 1 we give the introduction. In the next section
we set up the generalized Schwarz inequality of the generalized positivep selfadjoint
operator in GSIP space. In Sect. 3 the generalized indefinite inner product space and
generalized Krein space are introduced and some properties are obtained. In Sect. 4
we construct the natural boundary space ofp dissipative operator in Banach space. In
Sect. 5 we give the maximal dissipative extension representation of a sort ofp dissipative
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operator in Banach space by the natural boundary space. Finally a kind of Schr¨odinger
operator is studied by using the results obtained in Sects. 4 and 5 and we solve the
maximal dissipative extension representation of the operator.

The main results in the paper are described as follows.

Theorem 2.1. Let X be a GSIP space.T ∈ L(X), if T is a generalized positivep
selfadjoint operator inX, then the generalized Schwarz inequality ofT is right.

Theorem 5.1. Let L0 = A − S, whereA is p skewsymmetric,Re [Au, u]p = 0 andS
is a reversible generalized positivep selfadjoint operator. Suppose that the maximal
dissipative extension ofL0 is L. Then, there is an one to one correspondence between
the maximal dissipative extensionL ofL0 and the maximal negative subspaceÑ of GIIP
spaceH̃, and

Lu = L1u + S1/2ϕ (û) , L1 = A∗ − S,

D(L) = {u ∈ D(L1)|û ∈ N̂ , N̂ is the projection ofÑ from H̃ to Ĥ}.

Theorem 6.3. In X = Lp′
[0, 2π], 1 < p′ < ∞, suppose the Schr¨odinger operator

L0 = if ′′ − f,

D(L0) = {f |f, f ′′ ∈ X, f (0) = f (2π) , f ′ (0) = f ′ (2π)}.

If the maximal dissipative extension ofL0 isL, then there is an one to one correspondence
between the operatorL and the maximal negative subspaceÑ of H̃ and

Lu = iu′′ − u + u′ (0) u (0) f,

D (L) = {u|u, u′, u′′ ∈ X, αu′ (2π) u (2π) + βu′ (0) u (0) = 0, |β| ≤ |α|} ,

wheref ∈ X satisfy the inequality

−2
(
β/α + 1

)
u′ (0) u (0) + |u′ (0) u (0) |p ‖f‖p ≤ 0.

2. GSIP Space

In order to carry over Hilbert space arguments to the theory of Banach space, Lumer
[31] introduced the concept of SIP space which has a more general axiom system than
that of Hilbert space. Furthermore, Nath [1] introduced the GSIP space. From [1], a
complex Banach spaceX is called a complex generalized semi-inner product (GSIP)
space if corresponding to an arbitrary pair of elementsx, y ∈ X, there exists a complex
number[x, y]p in X × X which satisfies the following properties for anyx, y, z ∈ X,
andλ ∈ C (C denotes the complex field):

(1) [αx + βy, z]p = α [x, z]p + β [y, z]p ,
(2) [x, x]p > 0, for x =6 0; x = 0 iff [x, x]p = 0,

(3) | [x, y]p | ≤ [x, x]1/p
p [y, y]1/q

p , 1 < p, q < +∞, 1/p + 1/q = 1.

A GSIP[x, y]p, 1 < p < +∞, generates the norm‖·‖ that forx ∈ X, ‖ x ‖= [x, x]1/p
p .

If p = 2, the GSIP space is the SIP space. Then we denote the SIP to[·, ·].
From [2, 3], ifX is a complex Banach space with norm‖·‖, for eachp ∈ (1, +∞),

then there exists a GSIP[x, y]p which generates the norm‖·‖, and in this case we have
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[x, λy]p = |λ|p−2λ [x, y]p , for anyx, y ∈ X, λ ∈ C,

[tx, y]p =
[
x, |t|(2−p)/(p−1)ty

]
p
, for t ∈ C.

Moreover if p =6 p′, p, p′ ∈ (1, +∞) and [·, ·]p , [·, ·]p′ are respectively the cor-
responding GSIP which generalized the norm|| · || in Banach spaceX, then for all
x, y ∈ X, y =6 0:

[x, y]p =‖ y ‖p−p′
[x, y]p′ .

Supposep ∈ (1, +∞) , T ∈ L (X) (L (X) denotes all bounded linear operators).
Papers [2, 3] proved that ifX is a smooth strictly convex and reflexive Banach space,
then there is a unique GSIP[·, ·]p which generates the norm and for eachf ∈ X∗ there
is a uniquey ∈ X such thatf (x) = [x, y]p for all x ∈ X, and in this case we have

‖f‖ = ‖y‖p−1.
From [3] we have that for eachf ∈ X∗ andp ∈ (1, +∞) there is a uniquey′ ∈ X such

thatf (x) =
[
x, y′]

p
, for all x ∈ X, where GSIP[·, ·]p generates the norm. Throughout

the paper, we shall always assume thatX is a Banach space which is smooth strictly
convex and reflexive.

Definition 2.1 (see [2, 3]). Supposep ∈ (1, +∞),T ∈ L (X), andy ∈ X, by[Tx, y]p =
[x, y∗]p, we obtainT ∗

p satisfyingT ∗
p y = y∗, defines a mapping which mapsX into X,

T ∗
p is called a generalizedp adjoint operator. IfT ∗

p = T , T is called a generalized
p selfadjoint operator. Ifp = 2, the generalized 2 selfadjoint operator also is called
generalized selfadjoint operator. IfT satisfies[Tx, x]p ≥ 0,∀x ∈ X, T is called a
generalized positive operator. If forT, [Tx, x]p is real, call it generalized Hermite
operator.

Of course the generalized adjoint operator and the generalizedp selfadjoint operator
depend onp. Generalized positive operators under GSIP[·, ·]p′ , 1 < p′ < ∞, are
generalized positive operators under GSIP,[·, ·]p , p =6 p′, 1 < p < ∞. If T ∈ L (X), is
both a generalizedp selfadjoint operator and generalized positive operator, then we call
it generalized positivep selfadjoint operator (GPpS operator).

Example 2.1.There exists an operator, which is a generalized positivep selfadjoint
(GPpS) operator in Banach space, but isn’t both a generalized selfadjoint operator in
SIP space and a selfadjoint operator in Hilbert space.

SupposeX = lp, 1 < p < ∞, p =6 2. Define the unique GSIP[·, ·]p in X following
that:

[x, y]p =
∞∑
i=1

xi|yi|p−2yi, wherex = {xi} , y = {yi} ∈ lp.

Define the operatorT : lp → lp, such thatT {xi} =
{

x
′
i

}
, wherex

′
1 = x1, x

′
i = 0, i =6 1.

Then[Tx, x]p = |x1|p ≥ 0. T is a generalized positive operator. Since

[Tx, y]p = x1y1 |y1|p−2 = [x, Ty]p ,

we also have thatT is a generalizedp selfadjoint operator. HenceT is a GPpS operator
in X. Notice that the unique SIP[·, ·] in X is

[x, y] = ‖y‖2−p
∞∑
i=1

xi |yi|p−2
yi, wherex = {xi}, y = {yi} ∈ X.
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Then
[Tx, y] = x1y1|y1|p−2/ ‖y‖p−2

, [x, Ty] = x1y1|y1|p−2/ ‖Ty‖p−2
,

wherex = {xi},y = {yi} ∈ X. HenceT isn’t a generalized selfadjoint operator in SIP
space. Sincelp, p =6 2 isn’t Hilbert space,T also isn’t a selfadjoint operator in Hilbert
space.

Example 2.2.There exists an operatorT in Banach space such thatT is a generalized
p selfadjoint operator but isn’t both a generalized Hermite operator and a generalized
positive operator. Hence the generalizedp selfadjoint operator in Banach space differs
from the selfadjoint operator in Hilbert space.

Let X = Y ⊕ Y , ⊕ is l3-sum,Y is a two dimensional Hilbert space, inner product
(·, ·) in Y . Define the GSIP following that, for 1< p < ∞,[〈y1, y2〉 , 〈y′

1, y
′
2〉
]
p

= ‖〈y′
1, y

′
2〉‖p−3 {(y1, y

′
1) ‖y′

1‖ + (y2, y
′
2) ‖y′

2‖}.

Define the operatorT =

0 0 −i 0
0 0 0 i
i 0 0 0
0 −i 0 0

 in X. We easily prove that

[Tx, y]p = [x, Ty]p , x, y ∈ X.

HenceT is a generalizedp selfadjoint operator. But, forx = 〈y1, y2〉 ∈ X, y1 =
� x11, x12 �, y2 =� x21, x22 � ∈ Y, has

[Tx, x]p = ‖〈y1, y2〉‖p−3 {(−ix21x11 + ix22x12) ‖y1‖
+ (−ix11x21 + ix12x22) ‖y2‖}.

This is a complex number. SoT is not a generalized Hermite operator and generalized
positive operator.

Example 2.3.There exists an operatorT such thatT is a generalized Hermitz operator
but isn’t a generalizedp selfadjoint operator in Banach space.

Let X = lp
′
, 1 < p′ <,∞, p′ =6 2. There exists a unique GSIP[·, ·]p, 1 < p < ∞,

p =6 p′, following that

[x, y]p = ‖y‖p−p′
∞∑
i=1

xi|yi|p′−2yi, x = {xi}, y = {yi} ∈ X.

The same operatorT is defined as in Example 2.1. Then[Tx, x]p is a real number andT
is a generalized Hermite operator. Asp =6 p′, we easily prove that[Tx, y]p =6 [x, Ty]p.
HenceT isn’t a generalizedp selfadjoint operator.

Definition 2.2. LetT ∈ L(X), and satisfy the following the inequality:∣∣[Tx, y]p
∣∣ ≤ ∣∣[Tx, x]p

∣∣1/p ∣∣[Ty, y]p
∣∣1/q

, 1 < p, q < ∞, 1/p + 1/q = 1,

then we say thatT satisfies the generalized Schwarz inequality.
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Proposition 2.1 (see [4] Lemma 1). If T ∈ L(X),Tn = I (I is a unit operator inX)

n is a integral. ThenT is a scalar type operator andT =
n∑

i=1
ωiEi, whereEiEj =

δijEi, i = 1, 2, · · · , n,
n∑

i=1
Ei = I, ωi is a root of unity,i = 1, 2, . . . , n.

Because GSIP isn’t bilinear in Banach space, the proof of the generalized Schwarz
inequality of GPpS operator of Banach space is more difficult than for the selfadjoint
operator of Hilbert space (see [6]).

Theorem 2.1. If T ∈ L(X) andT is a GPpS operator, thenT satisfies the generalized
Schwarz inequality.

Proof. We prove the theorem in four steps.

(1) Step one.Let 1/2 ≤ ‖T‖ < 1, N (T ) = {0}, whereN (T ) is the kernel space ofT .
First we prove that there existsA ∈ L(X) such thatA2 = T andA is a GPpS

operator.
If x ∈ X, ‖x‖ = [x, x]1/p

p = 1, then[(I − T )x, x]p = 1 − [Tx, x]p ≥ 0 by using
‖T‖ < 1. ThenI − T is a generalized positive operator.

As (I − T )∗T = (T (I − T ))∗ = ((I − T )T )∗ = T (I − T )∗, from [3] then
|σ(I − T )| = ‖I − T‖, whereσ(I−T ) is the spectrum ofI−T . Because of|σ(I − T )| ≤
|W (I − T )| ≤ ‖I − T‖, where the set of numbersW (I − T ) = {[(I − T )x, x]p :
‖x‖ = 1} is called the numerical range of the operatorI − T , and|σ(I − T )| denote
the spectral radius,|W (I − T )| = sup{|λ|, λ ∈ W (I − T )} is called the numerical
range’s radius respectively, then|σ(I − T )| = |W (I − T )| = ‖I − T‖ (see [3]). As
sup‖x‖=1 [(I − T ) x, x]p = 1− inf ‖x‖=1 [Tx, x]p ≤ 1/2, then‖I − T‖ ≤ 1/2.

Let A0 = I, 2An+1 = T + 2An − A2
n or An+1 = (T − A2

n)/2 + An. We can easily
prove that{An} is the sequence of bounded linear operators. As

I − A0 = 0, ‖I − A1‖ = ‖I − T‖ /2 ≤ 1/4,

‖I − A2‖ ≤ ∥∥(I − T ) + (I − A1)2
∥∥ /2 ≤ (1/2 + (1/4)2)/2 ≤ 1/2, · · · ,

‖I − An‖ ≤ 1/2,

then‖(I − An+1) + (I − An)‖ ≤ 1. Hence

‖An+1 − An‖ ≤ ‖(I − An) + (I − An−1)‖ ‖An − An−1‖ /2

≤ ‖An − An−1‖ /2 ≤ · · · ≤ ‖A1 − A0‖ /2n ≤ 1/2n+2 → 0, asn → ∞.

It follows that{An} is a Cauchy sequence. Hence there existsA ∈ L(X) such that{An}
converge toA by using the completion ofL(X). ThereforeA = (T −A2)/2+A, T = A2.

Next, we prove that A is a generalized positive operator. As‖I − An‖ ≤ 1/2 it fol-
lows that‖I − A‖ ≤ 1/2. BecauseT is a GPpS operator, then

[
T ix, x

]
p
, i ∈ N

is a real number. From the construction ofAn,we have[Anx, x]p is a real num-
ber. Hence[Ax, x]p is a real number. As‖x‖ = 1,−1/2 ≤ − [Ax, x]p + [x, x]p ≤
1/2, then[Ax, x]p = [x, x]p − {[x, x]p − [Ax, x]p} ≥ 0. If x ∈ X,[Ax, x]p =

‖x‖p−1
[
A x

‖x‖ , x
‖x‖
]

p
≥ 0. ThenA is a generalized positive operator.

Third, we prove thatA is a generalizedp selfadjoint operator.
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As T = A2, T = T ∗, then(A∗)2 = A2. From the hypothesisN (T ) = {0}of the first
step, we haveN (A) = N (A∗) = {0} and there exists the inverse operator ofA andT
exchanges toA andA∗.

Because ofA0 = I, A1A
∗ = 1

2(I + T )A∗ = A∗A1, A2A
∗ = { 1

2(T − A2
1) + A1}A∗ =

A∗A2, · · · , AnA∗ = A∗An, · · · , n ∈ N , thenAA∗ = A∗A. We haveA∗ = A−1A∗A
, A∗2 = A2 = A∗A−1A∗A, (A − A∗A−1A∗)A = 0 or (A − A∗A−1A∗)T = 0. Hence
T (A − A∗A−1A∗) = 0. FromN (A) = {0} andA2 = A∗2, we have (A−1A∗)2 = I.
Using Proposition 2.1, then

A−1A∗ = E1 − E2, whereEiEj = δijEi, i, j = 1, 2, E1 + E2 = I.

Thus
A∗ = A(E1 − E2), A∗E2 = −AE2,

TE2x = A∗2E2x = A∗(−AE2)x = −AA∗E2x0 ≤ [TE2x, E2x]p
= − [AA∗E2x, E2x

]
p

= − [A∗E2x, A∗E2x
]
p

≤ 0,

for arbitraryx ∈ X.
[A∗E2x] = 0, for arbitraryx ∈ X. A∗E2x = 0. SinceN (A) = N (A∗) = {0}, we

haveE2x = 0, for arbitraryx ∈ X. ThusE2 = 0. A−1A∗ = E1 = I. A = A∗. HenceA
is a GPpS operator. Then

| [Tx, y]p | = | [A2x, y
]
p
| =
∣∣[Ax, Ay]p

∣∣ ≤ |[Ax, Ax]|1/p [Ay, Ay]1/q
p

=
∣∣[Tx, x]p

∣∣1/p ∣∣[Ty, y]p
∣∣1/q

, for arbitraryx, y ∈ X, 1/p + 1/q = 1.

(2) Step two.Let 1/2 ≤ ‖T‖ < 1, N (T ) =6 {0}.
Now we denote the quotient spaceY = X/N (T ).
According to [2] Theorem 2.22, for the generalizedp selfadjoint operatorT , X =

N (T ) ⊕ R(T ) = N (T ) ⊕ R(T ), and for∀x ∈ N (T ), ∀y ∈ R(T ), we have[y, x]p = 0.
Hence the spaceY exists.

Let x ∈ Y , thenx = x0 + x1, wherex1 ∈ N (T ).If xo ∈ N (T ), we havex ∈ N (T )
andx is zero element ofY ; if x0 /∈ N (T ), thenTx = Tx0 =6 0 and the kernel space of
T onY is {0}.

According to the projection properties of GSIP space in[5], there exist the projection
operatorP : X → N (T ) andQ : X → R (T ).

Define GSIP inY the following:

[x, y]Y = [Qx, Qy]p ,∀x, y ∈ Y.

As Q is a linear operator and[·, ·]p is a GSIP, the definition of[·, ·]Y has the sig-
nificance and it is easy to prove that[·, ·]Y is a GSIP inY . As PTx ∈ N (T ), then
[PTx, Qy]p = 0, we have

[QTx, Qy]p = [QTx + PTx, Qy]p = [Tx, Qy]p
= [T (Qx + Px), Qy]p = [TQx, Qy]p ,

for x, y ∈ X. Then
[(QT − TQ)x2, z]p = 0,∀x2, z ∈ R(T ). (2.1)
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According to the Riesz Representation Theorem in GSIP space in [2–5] and the
formula (2.1), it follows that

(QT − TQ)x2 = 0,∀x2 ∈ R(T ) or QTx2 = TQx2, ∀x2 ∈ R(T ).

As x1 ∈ N (T ), thenTx1 = Qx1 = 0, (QT − TQ)x1 = 0.X = N (T ) ⊕ R(T ) for the
generalizedp selfadjoint operatorT ([2]). Whenx ∈ X, x = x1 + x2, x1 ∈ N (T ), x2 ∈
R(T ), then

QTx = QTx1 + QTx2 = TQx1 + TQx2 = TQx.

So

[Tx, y]Y = [QTx, Qy]p = [Qx, TQy]p = [Qx, QTy]p = [x, Ty]Y .

As a resultT is a generalizedp selfadjoint operator inY . Because[Tx, x]Y =
[TQx, Qx]p = 0, T is a generalized positive operator inY . From the condition
1/2 ≤ ‖T‖ < 1, we can obtain thatT satisfies the generalized Schwarz inequality
in the space (Y, [·, ·]Y ) by Step (1):

|[Tx, y]Y | ≤ |[Tx, x]Y |1/p |[Ty, y]Y |1/q
.

Thus, we have the following:

[Tx, y]Y = [QTx, Qy]p = [Tx, Qy]p = [x, TQy]p
= [x, TQy + TPy]p = [x, Ty]p = [Tx, y]p ,

for ∀x ∈ x, y ∈ y, x, y ∈ Y,∣∣[Tx, y]p
∣∣ = |[Tx, y]Y | ≤ |[Tx, x]Y |1/p |[Ty, y]Y |1/q

=
∣∣[Tx, x]p

∣∣1/p ∣∣[Ty, y]p
∣∣1/q

.

(3) Step three.Let 0 < ‖T‖ < 1/2.
SupposeK = αT , α > 0. Chooseα such that 1/2 ≤ ‖K‖ ≤ 1. From Step (1), there

is the generalized positive operatorA, K = A2. By using[αTx, y]p =
[
x, α1/(p−1)Ty

]
p
,

we have

αT = K = A2, (αT )∗ = K∗ = α1/(p−1)T. (2.2)

Then

(A∗)2 = K∗ = α(2−p)/(p−1)A2 or A2 = α(p−2)/(p−1)(A∗)2.

Analogously to the discussion in Steps (1) and (2), whenN (T ) = {0} then we have

α(p−2)/2(p−1)A−1A∗ = E1 − E2.
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As in the discussion in Step (1), we haveE2 = 0. Thenα(p−2)/2(p−1)A∗ = A. Thus∣∣[Tx, y]p
∣∣ =
∣∣α−1 [αTx, y]p

∣∣ =
∣∣α−1 [Kx, y]p

∣∣
= α−1

∣∣∣[A2x, y
]
p

∣∣∣ = α−1
∣∣∣[Ax, A∗y

]
p

∣∣∣
= α−1

∣∣∣∣[Ax, α(p−2)/2(p−1)Ay
]

p

∣∣∣∣ = α−1(α(p−2)/2(p−1))p−2
∣∣∣[Ax, A∗y

]
p

∣∣∣
≤ α−1(α(p−2)/2)1/p(α(p−2)/2)1/q

∣∣[Ax, Ax]p
∣∣1/p ∣∣[Ay, Ay]p

∣∣1/q

= α−1
∣∣∣[Ax, A∗x

]
p

∣∣∣1/p ∣∣∣[Ay, A∗y
]
p

∣∣∣1/q

= α−1
∣∣∣[A2x, x

]
p

∣∣∣1/p ∣∣∣[A2y, y
]
p

∣∣∣1/q

= α−1
∣∣[Kx, x]p

∣∣1/p ∣∣[Ky, y]p
∣∣1/q

= α−1
∣∣[αTx, x]p

∣∣1/p ∣∣[αTy, y]p
∣∣1/q

=
∣∣[Tx, x]p

∣∣1/p ∣∣[Ty, y]p
∣∣1/q

.

When N (T ) =6 {0}, the same result can be obtained by the same method as in
Step (2). Hence the generalized Schwarz inequality ofT is satisfied.

(4) Step four.Let ‖T‖ ≥ 1.
We supposeK = αT , α > 0, choosingα such that 0< ‖K‖ < 1. By using the

following formula:
(I − αT )∗(αT ) = (αT )(I − αT )∗

and similarly to Steps (1), (2) and (3) we easily prove thatT satisfies the generalized
Schwarz inequality.

From Step (1)–(4), we prove that the GPpS operator satisfies the generalized Schwarz
inequality.

Corollary 2.1. WhenT is a GPpS operator andT ∗ = αT , α > 0, then the generalized
Schwarz inequality ofT is satisfied.

Theorem 2.2. WhenT is a GPpS operator, then there exists a GPpS operatorP such
thatT = P 2 andP is unique.P is called a positive square root ofT .

Proof. When 1/2 ≤ ‖T‖ ≤ 1, by the result of Steps (1), (2) in Theorem 2.1, there exists
a GPpS operator such thatP 2 = T .

When 0< ‖T‖ < 1/2, supposeK = (2‖T‖)−1T , then‖K‖ = 1/2. By Steps (1),
(2) in Theorem 2.1, there exists the generalized positive operatorA, such thatK = A2,
butA is not a generalizedp selfadjoint operator. SupposeP =

√
2‖T‖A. Because

[Px, y]p =
[√

2‖T‖Ax, y
]

p
=
[√

2‖T‖x, A∗y
]

p
=
[
x, (2‖T‖)1/2(p−1)A∗y

]
p

=
[
x, (2‖T‖)1/2(p−1)(2‖T‖)(p−2)/2(p−1)Ay

]
p

=
[
x,
√

2‖T‖Ay
]

p

= [x, Py]p .

ThusP is a GPpS operator andT = P 2.
When‖T‖ > 1, the same result forP is obtained by similar reasoning.
Now we proveP is unique.
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If P, Q are the GPpS operators andT = P 2 = Q2, we proveP = Q.
By the above discussion of this theorem, for the GPpS operatorsP, Q, there exist

respectively the GPpS operatorsP ′ andQ′ such thatP ′2 = P ,Q′2 = Q. Lety = (P−Q)x,
then

‖P ′y‖p + ‖Q′y‖p =
[
P ′y, P ′y

]
p

+
[
Q′y, Q′y

]
p

=
[
P ′2y, y

]
p

+
[
Q′2y, y

]
p

= [Py, y]p + [Qy, y]p = [(P + Q)y, y]p

= [(P + Q)(P − Q)x, y]p =
[
(P 2 + QP − PQ − Q2)x, y

]
p
.

From the construction ofP andQ, PT = TP = P 3, QT = TQ = Q3, and it easily
follows thatQP = PQ. Thus

‖P ′y‖p + ‖Q′y‖p =
[
(P 2 − Q2)x, y

]
p

= 0, andP ′y = Q′y = 0; Py = Qy = 0.

Then
∥∥(P − Q)2x

∥∥p
=
[
(P − Q)2x, (P − Q)2x

]
p

=
[
(P − Q)y, (P − Q)2x

]
p

=[
Py − Qy, (P − Q)2x

]
p

= 0,∀x ∈ X. (P − Q)2x = 0,∀x ∈ X, or (P − Q)2 = 0.
Hence

T − PQ = 0, P (P − Q) = 0, Q(P − Q) = 0

Because
‖(P − Q)x‖p = [(P − Q)x, (P − Q)x]p

= [x, P (P − Q)x]p − [x, Q(P − Q)x]p = 0,

then (P − Q)x = 0,∀x ∈ X. ThereforeP = Q. The theorem is proved. �

Corollary 2.2. If T is a generalized positive operator andT ∗ = αT , α > 0, then there
exists a unique generalized positive operatorP such thatT = P 2 andP ∗ = α1/2P.

Definition 2.3. If U, U∗ ∈ L(X), andUU∗ = U∗U = I, U is called a generalizedp
unitary operator (see [3]).

It is easy to prove that the generalizedp unitary operator is an isometric operator.
From Theorem 2.1, 2.2 and simulating to the result of Hilbert space, the following
theorem can be obtained.

Theorem 2.3. (1) If (T ∗)∗ = T ,T ∈ L(X), there existU ,P ∈ L(X) such thatT = UP ,
whereU is a generalizedp unitary operator andP is a GPpS operator.

(2) If (T ∗)∗ = MpT , Mp > 0, T ∈ L(X) (the definition of the operator is seen in [3]),

there existU, P ∈ L(X), T = UP andU∗U = UU∗ = M
−(p−1)/2
p I, P ∗ = M

1/2
p P

onPX. ThenT = UP is called a polar decomposition ofT .

3. Generalized Indefinite Inner Product (GIIP) Space

In order to investigate thep dissipative operator in Banach space, we set up the GIIP
space in this section. Using the new space we can give the maximal dissipative extension
representation of thep dissipative operator by the negative subspace in the space. The
GIIP space comes from the indefinite inner product space but differs from it. Many
results on indefinite inner product space have been published, for example, see [9, 10,
11, 14]. It attracted great attention because the indefinite inner product space caused
some important applications in quantum field theory [9], scattering theory [10] and
control theory [14]. Here we will set up the GIIP space by means of GSIP.
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Definition 3.1. Let R be a complex (or real) linear space,y, z ∈ R, define a complex
(or real) number〈y, z〉:
(1) 〈x + y, z〉 = 〈x, z〉 + 〈y, z〉 , 〈λx, y〉 = λ 〈x, y〉;
(2) If 〈x, y〉 = 0 for arbitrary y thenx = 0.

The space(R, 〈·, ·〉) satisfying (1), (2) is called a generalized indefinite inner product
(GIIP) space,〈·, ·〉 is called the generalized indefinite inner product (GIIP) inR.

Definition 3.2. Let (R, 〈·, ·〉) be GIIP space. If it includes two subspacesH+ andH−
with the properties below:

(1) R = H+ ⊕ H− where⊕ is an orthogonal direct sum for〈·, ·〉, that is, for arbitrary
x ∈ H+,y ∈ H−, 〈x, y〉 = 0, whereH+,H− are linear subspaces with the following:

H+ = {x ∈ R| 〈x, x〉 ≥ 0, x =6 0}; H− = {x ∈ R| 〈x, x〉 ≤ 0, x =6 0}.

(2) For 1 < p < ∞, spaces(H+, 〈·, ·〉) and(H−, 〈·, ·〉) are GSIP spaces. Then we call
(R, 〈·, ·〉) a generalized Krein space. Here〈·, ·〉 is a GIIP.

If (H+, 〈·, ·〉), (H−,− 〈·, ·〉) become Banach spaces and‖·‖ is the norm of the spaces
H+,H−, we call the space (R, 〈·, ·〉) a complete generalized Krein space andH+, H−
are called a regular decomposition of (R,〈·, ·〉). Considering generality, we suppose
H± =6 {0}.

Theorem 3.1. In the generalized Krein space(R, (·, ·)), for x, y ∈ R, x = x+ + x−,
y = y+ + y− andx+, y+ ∈ H+, x−, y− ∈ H− denote

[x, y]p = 〈x+, y+〉 − 〈x−, y−〉 , for 1 < p < +∞.

Then(R, [·, ·]p) is a GSIP space.

Proof. We only need to verify that[·, ·]p meets with the following inequality:∣∣[x, y]p
∣∣ ≤ [x, x]1/p

p [y, y]1/q
p , 1/p + 1/q = 1, (3.1)

or
|〈x+, y+〉 − 〈x−, y−〉|p

≤ |〈x+, x+〉 − 〈x−, x−〉| · |〈y+, y+〉 − 〈y−, y−〉|p−1

= {‖x+‖p + ‖x−‖p} · {‖y+‖p + ‖y−‖p}p−1.

Noticing the basic Young’s inequality, forp > 1, a > 0, b > 0, we have

ab ≤ 1
p
ap +

1
q
bq, 1/p + 1/q = 1. (3.2)

Let x+ =6 0, y+ =6 0 (otherwise formula (3.1) can easily be proved). Thus

|〈x+, y+〉 − 〈x−, y−〉|p ≤ (|〈x+, y+〉| + |〈x−, y−〉|)p
≤ (‖x+‖ ‖y+‖p−1 + ‖x−‖ ‖y−‖p−1)p

= ‖x+‖p ‖y+‖p(p−1)

(
1 +

‖x−‖
‖x+‖

(‖y−‖
‖y+‖

)p−1
)p

.

(3.3)
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Let k = ‖x−‖ / ‖x+‖, m = ‖y−‖ / ‖y+‖. We might as well assumek ≥ 1, otherwise we
only letk = ‖x+‖ / ‖x−‖. Then the right side of (3.3) =‖x+‖p ‖y+‖p(p−1) (1+kmp−1)p.
Thus

[x, x]1/p
p [y, y]1/q

p = (‖x+‖p + ‖x−‖p)1/p(‖y+‖p + ‖y−‖p)1/q

= ‖x+‖
(

1 +

(‖x−‖
‖x+‖

)p)1/p

‖y+‖p−1
(

1 +

( ‖y+‖
‖y−‖

)p)1/q

= ‖x+‖ ‖y+‖p−1 (1 +kp)1/p(1 +mp)1/q.

Therefore, proving formula (3.1) is equal to proving the following:

(1 +kmp−1)p ≤ (1 +kp)(1 +mp)p−1.

Considering the inequality (3.2), then we have

abp−1 ≤ ap/p + bp(p − 1)/p, a > 0, b > 0.

Thus

knmn(p−1) ≤ 1
p
knp +

p − 1
p

mnp, 1 < p < +∞,

p
knmn(p−1)

n
≤ knp

n
+ (p − 1)

mnp

n
, n = 1, 2, 3, · · · .

By summing the above formula, we can obtain

p

∞∑
i=1

knmn(p−1)

n
≤

∞∑
i=1

knp

n
+ (p − 1)

∞∑
i=1

mnp

n
,

or
p ln(1 +kmp−1) ≤ ln(1 +kp) + (p − 1) ln(1 +mp),

(1 +kmp−1)p ≤ (1 +kp)(1 +mp)p−1.

This theorem has been proved.�

Example 3.1.Let H = H+ ⊕ H− andH± respectively are GSIP spaces in which the
GSIP are[·, ·]± respectively. We construct the GIIP as following that

〈x+ + x−, y+ + y−〉 = [x+, y+]+ − [x−, y−
]
− ,

wherex = x++x−, y = y++y− ∈ H. Easily, we can prove that (H, 〈·, ·〉) is a generalized
Krein space.

Example 3.2.Let (X, [·, ·]) be a GSIP space (for exampleX = C(K) or Lp′
, 1 <

p′ < ∞). SupposeT is a generalizedp selfadjoint operator andN (T ) =6 {0} (such
T exists in general, for example, the paper [15] gives the functional models of the
adjoint Abelian operators inC(K) andLp′

(1 < p′ < ∞)). From [2] Theorem 2.22,
X = Rp(T ) ⊕ Np(T ) = Rp(T ) ⊕ Np(T ), whereRp(T ), Np(T ) are the numerical range
and kernel space, respectively. ThenRp(T ), Np(T ) are closed subspaces inX and
(Rp(T ), [·, ·]), (Np(T ), [·, ·]) are GSIP spaces. Let the GIIP inX be the following

〈x1 + x2, y1 + y2〉 = [x1, y1] − [x2, y2] , for x1, y1 ∈ Rp(T ), x2, y2 ∈ Np(T ).
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Being proved easily, (X, 〈·, ·〉) is a generalized Krein space andRp(T ),Np(T ) is
a regular decomposition ofX. For 1 < p < +∞, we can obtain different regular
decompositions ofX because there exist a lot of different generalizedp selfadjoint
operators in GSIP spaceX. Hence the regular decomposition ofX is not unique.

Definition 3.3. Define projection operatorsP± :
∏

= (R, 〈·, ·〉) → H± such that
x = x+ + x− ∈∏→ x± ∈ H±. DenoteJ = P+ − P−.

Theorem 3.2. (1) J2 = I, J = J∗, whereJ∗ is a generalizedp adjoint operator in
generalized Krein space(R, [·, ·]p).

(2) 〈x, y〉 = [Jx, y]p,[x, y]p = 〈Jx, y〉.
Proof. We only proveJ = J∗, the others may be obtained easily:

[Jx, y]p =
[
P+x − P−x, y

]
p

= [P+x, y]p − [P−x, y
]
p

= 〈P+x, y+〉 + 〈0, y−〉 − {〈0, y+〉 + 〈P−x, y−〉}
= 〈P+x, y+〉 − 〈P−x, y−〉
= 〈P+x, y+〉 − [P−x, y−

]
p

= 〈P+x, y+〉 +
[
P−x,−y−

]
p

= 〈P+x, y+〉 + 〈P−x,−y−〉 =
[
P+x + P−x, y+ − y−

]
p

= [x, Jy]p .

HenceJ is a generalizedp selfadjoint operator in (R, [·, ·]p).
�

We remark that the GSIP in Theorem 3.1 depends on the regular decomposition of
R. In general the GSIP isn’t unique.

Definition 3.4. Let(R, 〈·, ·〉) be a GIIP space, andx ∈ R. If 〈x, x〉 ≥ 0 (or 〈x, x〉 ≤ 0),
x is called asemipositive (or seminegative) vectorin R. If 〈x, x〉 > 0 (or 〈x, x〉 < 0),
x is called apositive (or negative) vectorin R. If 〈x, x〉 = 0, x is called a neutral vector
or isotropic vector.

Definition 3.5. L is called apositive (or negative, semi-positive, semi-negative, neu-
tral, respectively) subspaceif all vectors in linear subspaceL in R are positive (or
negative, semi-positive, semi-negative, neutral, respectively). Suppose thatL is a posi-
tive (or negative, semi-positive, semi-negative, neutral) subspace, and there is not any
positive (or negative, semi-positive, semi-negative, neutral) subspaceL such thatL is
a proper subspace ofL′. ThenL is called amaximal positive (or maximal nega-
tive, maximal semi-positive, maximal semi-negative, maximal neutral) subspacein
(R, 〈·, ·〉).

According to the related results on indefinite inner product space (see [9–12]) we can
easily obtain: Any positive (or negative, semi-positive, semi-negative, neutral) subspace
of GIIP spaceR can be extended as a maximal positive (or negative, semi-positive,
semi-negative, neutral) subspace but the extension isn’t unique.

Theorem 3.3. Suppose thatL is a semi-positive subspace in5 = (R, 〈·, ·〉). Then there
exist an orthogonal projectionPL

+ in H+ and a contraction linear operatorT : PL
+ H+ →

H− such that
L = {x+ + Tx+ | x+ ∈ PL

+ 5} (or ‖T‖ < 1), (3.3)

where the orthogonal projectionPL
+ : L → H+ means thatx → x+, for arbitrary

x = x+ + x− ∈ L, 〈x+, x−〉 = 0. L satisfying Eq. (3.3) is a semi-positive (or positive)
subspace in5 if and only if‖Tx+‖ ≤ ‖x+‖, for arbitrary x ∈ P+5( or ‖T‖ < 1).
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Proof. For arbitraryx ∈ L, − ‖P−x‖p + ‖P+x‖p = 〈x, x〉 ≥ 0, then‖P−x‖ ≤ ‖P+x‖.
‖P−x‖p ≤ ‖x‖p = [x, x]p = [P+x, P+x]p +

[
P−x, P−x

]
p

= ‖P+x‖p + ‖P−x‖p ≤
2‖P+x‖p. ThusP+ |L is reversible. Let the reversibility beEx+ = x, x ∈ L. Then
P+x = x+. DenotePL

+ : H+ → P+L a projection operator. WritingT : PL
+ H+ →

H− : P+x = PL
+ x+ → P−EP+x, for arbitraryx ∈ L, then we easily get thatPL

+ is
an orthogonal projection operator. From the semi-positive ofL we obtain thatT is a
contraction linear operator, or,〈Tx, x〉 ≤ 〈x, x〉, x ∈ D(T ). ThenL = {x+ +Tx+ : x+ ∈
PL

+ 5}.
The other conclusions in the theorem are omitted because their proofs are easy.�

Corollary 3.1. The semi-positive subspaceL is a maximal semi-positive subspace if
and only if P+L = H+; any semi-positive subspaces are contained in one maximal
semi-positive subspace.

Corollary 3.2. All maximal semi-positive (or semi-negative) subspaces in generalized
Krein space have identical dimension.

Theorem 3.4. In Banach space(R, [·, ·]p), if the GSIP[·, ·] p is continuous to the first
variable, any norms inR are equivalent to each other.

Proof. Suppose‖·‖ , ‖·‖′ are two norms inR and denote‖x‖′′ = ‖x‖ + ‖x‖′. Now we
prove‖x‖′′ is also the norm ofR. In fact we only need to prove the completeness inR.
For arbitrary{xn} ∈ R, if ‖xn − xm‖′′ → 0, m, n → ∞, then there existx0, x

′
0 ∈ R

such that‖xn − x0‖ → 0, ‖xn − x′
0‖ → 0, asn → ∞. Hence

[
xn − x′

0, y
]
p

→ 0

(from the continuous condition),
[
xn − x′

0, y
]
p

→ 0, for arbitraryy ∈ R. Therefore for
arbitraryy ∈ R,∣∣∣[x0 − x′

0, y
]
p

∣∣∣ ≤ ∣∣∣[xn − x′
0, y
]
p

∣∣∣ +
∣∣[xn − x0, y]p

∣∣→ 0, asn → ∞.

Becausey is arbitrary thenx0 = x′
0 and

‖xn − x0‖′′ = ‖xn − x0‖ + ‖xn − x0‖′ → 0, asn → ∞.

If ‖·‖′′ is a norm in (R, [·, ·]p), the space is still complete. We get‖·‖′′is also a
norm inR and‖x‖ ≤ ‖x‖′′. From the Banach Inverse Theorem’s Corollary (see [50])
in Banach space, we have that‖·‖ is equivalent to‖·‖′′. For the same reason,‖·‖ is
equivalent to‖·‖′. Therefore‖·‖ is equivalent to‖·‖′′. The proof is complete. �

4. The Construction of Natural Boundary Space

In the section we set up the natural boundary space ofp dissipative operators in Banach
space. The natural boundary space is a GIIP space. In the next section we will give the
natural boundary space’s application. For similar results in Hilbert space and indefinite
inner product space see M. G. Crandall and R. S. Phillips [12]. Because there doesn’t
exist an inner product in Banach space, it is very difficult to extend the results. Using
GSIP space and GIIP space, we solve this difficulty.

(i) Hypotheses of spacesH0, H1, H2. H0 : Let (H0, [·, ·]p), 1< p < ∞ be a GSIP space

and the norm ofH0 is ‖x‖ = [x, x]1/p
p . Suppose thatS is a GPpS operator inH0 (S

may be an unbounded operator). And supposeF is a linear operator with the following
conditions:



p Dissipative Operator 533

(1) domainD (F ) = D (S),
(2) R (F ) = H0,
(3) F is a generalizedp selfadjoint operator,
(4) [Fu, u]p ≥ [u, u]p, for arbitraryu ∈ D(S) or denoteF − I ≥ 0.

The operatorF exists. For example, in SIP spaceX, let S be the GPpS operator then
X = R(S) ⊕ N (S) (see [2] Theorem 2.22). We assume thatFx = αSx, x ∈ R(S)
;Fx = βx, x ∈ N (S)andF is a linear operator inX. If S is a bounded operator, choose
α andβsuch thatα ≥ 1

‖S‖ , β ≥ 1; if S is an unbounded operator, chooseα andβsuch
that α = 1, β ≥ 1. Then we easily prove thatF is a GPpS operator inX. From [2]
Theorem 2.22, we have

X = R (F ) ⊕ N (F ).

Because ofN (F ) = 0, thenX = R(F ). ThereforeF satisfies the above (1)–(4).

Remark 4.1.It is evident that‖F‖ ≥ 1,
∥∥F−1

∥∥ ≤ 1. From Theorem 2.2S, F have
unique positive square roots respectively: we denoteS1/2, F 1/2 and S1/2, F 1/2 are
GPpS operators andD(S1/2) = D(F 1/2).

H1 : Let (H1, [·, ·]1) be a GSIP space with GSIP[·, ·]1 such that

[u, v]1 =
[
F 1/2, F 1/2

]
p
, u, v ∈ D(F 1/2)

and the norm inH1 is denoted‖x‖1 = [x, x]1/p
1 , x ∈ H1. It is easy to see thatH1 is a

dense set ofH0.

H2 : Let (H2, [·, ·]2) be a GSIP space and the GSIP is:

[u, v]2 =
[
F−1/2u, F−1/2v

]
p

=
[
F−1u, v

]
p
, u, v ∈ H0

and the norm inH2 is denoted‖x‖2 = [x, x]1/p
2 .

Remark 4.2.(1) For arbitraryu ∈ H0, ‖u‖ ≤ ‖u‖1. In fact

‖u‖ = [u, u]1/p
p ≤ ([Fu, u]p

)1/p
=

([
F 1/2u, F 1/2u

]
p

)1/p

= ‖u‖1 .

(2) For arbitraryu ∈ H0, generates a continuous functionallu(v) on H1 according to
the formula:

lu(v) = [v, u]p , for arbitraryv ∈ H1.

Its continuity follows from the estimate:

|lu(v)| =
∣∣[v, u]p

∣∣ ≤ ∣∣[v, v]p
∣∣1/p ∣∣[u, u]p

∣∣1/q

= ‖v‖ ‖u‖p−1 ≤ ‖v‖1 ‖u‖p−1
.

(3) Letu0 ∈ H0, then‖u‖2 = ‖lu‖1/(p−1)and‖u‖2 ≤ ‖u‖. In fact

‖lu‖1/(p−1) =

(
sup

v∈H1

∣∣[v, u]p
∣∣

‖v‖1

)1/(p−1)

=

(
sup

v∈H1

[
F−1/2v, F−1/2u

]
p∥∥F−1/2v

∥∥
)1/(p−1)

=
∥∥∥F−1/2u

∥∥∥ = ‖u‖2 .
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From Remark 4.1
∥∥F−1

∥∥ ≤ 1, then

‖u‖p
2 =
[
F−1u, u

]
p

≤ ∥∥F−1u
∥∥ ‖u‖p−1 ≤ ‖u‖p

, ‖u‖2 ≤ ‖u‖ .

Hence{lu, u ∈ H0} is a dense subset ofH∗
1 , whereH∗

1 is a dual space ofH1.

Remark 4.3.By using Remarks 4.1 and 4.2, then

‖u‖1 ≤ ‖u‖ ≤ ‖u‖2 , u ∈ H0; H1 ⊂ H0 ⊂ H2

in the topological sense. Ifu ∈ H1, v ∈ H2, we define[·, ·]p in H1 × H2 satisfying the
following formula:

[u, v]p =
[
F 1/2u, F−1/2v

]
p

= [Fu, v]2 =
[
u, F−1v

]
1
, u ∈ H1, v ∈ H2.

If u ∈ H2, v ∈ H1, define[u, v]p=
[
F−1/2u, F 1/2v

]
p
.

Example 4.1.For 1< p < ∞, p =6 2, if H0 = Lp(R), denote the unique SIP[·, ·] in H0:

[f, g] = ‖g‖
∫

R

f

( |g|
‖g‖

)p−1

sgngdx, f, g ∈ Lp(R).

Let F = αI, α > 1. ThenH1 = Lp(R, αdx), H2 = Lq(R, α−1dx), q−1 + p−1 = 1.

Proposition 4.1. (H1, [·, ·]1), (H2, [·, ·]2) are GSIP spaces.

Proposition 4.2. H2 = (H1)′, where(H1)′ is a dual space ofH1.

Proof. It is easy to see thatH2 ⊂ (H1)′. For arbitraryl ∈ (H1)′, there existsa ∈ H1
such thatl(u) = [u, a]1 from the Riesz Representation Theorem in GSIP space. Then

l(u) = [u, a]1 = [u, Fa]p , u ∈ H1.

Let α = Fa ∈ H2. Thus l(u) = [u, α]p , u ∈ H1. From the Riesz Representation
Theorem in GSIP space,l ∈ H2. Then (H1)′ ⊂ H2. Hence (H1)′ = H2. �

Proposition 4.3. (1) If u ∈ H1, v ∈ H2, then∣∣[u, v]p
∣∣ ≤ ∥∥∥F 1/2u

∥∥∥∥∥∥F−1/2v
∥∥∥p−1

≤ ‖u‖1 ‖v‖p−1
2 .

(2) u ∈ H2, v ∈ H1, then
∣∣[u, v]p

∣∣ ≤ ‖u‖2 ‖v‖p−1
1 .

(3) u, v ∈ H1, then[Su, v]p =
[
S1/2u, S1/2v

]
p

= [u, Sv]p, andS1/2 defines a bounded
mappings onH1 to H2 and onH to H2. S defines a bounded mapping onH1 to H2.

(ii) The definition ofp dissipative operator.

Definition 4.1. LetL be a linear operator onH1 to H2 with domainD(L) dense inH1.
We defineL∗, the generalizedp adjoint operator toL, as the operator onH1 toH2 given
by: v in D(L∗) andL∗v = f if [Lu, v]p = [u, f ]p for all u in D (L).

Definition 4.2. Let L be a densely defined linear operator onH1 to H2. ThenL is (1)
p symmetric ifL∗ ⊃ L; (2)p skew-symmetric ifL∗ ⊃ −L; (3) generalizedp selfadjoint
if L∗ = L.



p Dissipative Operator 535

Definition 4.3. Let L be a densely defined linear operator onH1 to H2. L is called
dissipative operator ifRe[Lu, u]p ≤ 0, u ∈ D(L). L is maximal dissipative if it is
dissipative and not a proper restriction of ap dissipative operator.

Remark 4.4.For 1< p < +∞, if the spaceH0 has GSIP[·, ·]p andL is ap dissipative
operator fromH1 to H2, thenL is ap′ dissipative operator wherep =6 p′, 1 < p′ < +∞
by using the formula

‖y‖p−p′
[x, y]p′ = [x, y]p , 1 < p, p′ < +∞,

and[x, y]p′ is a GSIP ofH0. Hence, for thep dissipative operator in Definition 4.3,p
means that the spaceH0 has GSIP[·, ·]p,1 < p < +∞.

Let L0 = A − S on H1 to H2, whereA is ap skew-symmetric operator,D(A) is
dense inH1, Re[Au, u]p = 0 for anyu ∈ D(L0) andS is a GPpS operator. ThenL0
is ap dissipative operator because Re[L0u, u]p = − [Su, u] ≤ 0. In this and the next
section we investigate the very important operatorL0 in Banach space.

(iii) The construction of natural boundary spacêH of L0. We introduce the product
spaceH12 = H1 × H2 with elementu = {u1, u2} andQ(·, ·):

Q(u, v) = Re
[
u2, v1

]
p

+ Re
[
Su1, v1

]
p
,

for anyu = {u1, u2}, v = {v1, v2} ∈ H1 × H2. Let the graph ofL0 be

G(L0) = {{u, L0u} | u ∈ D(L0)}.

As u = {u, L0u} ∈ G(L0), then

Q(u, u) = Re[L0u, u]p + Re[Su, u]p = 0.

Let L1 = A∗ − S; we have the setspanG(L1), whereG(L1) is a graph ofL1. If
u, v ∈ G(L1) then

Q(u, v) = Re[L1u, v]p + Re[Su, v]p = Re
[
A∗u, v

]
p
.

The setsH+, H− are defined by

H+ = {u : Q(u, u) ≥ 0, u ∈ G(L1)} ⊂ G(L1),

H− = {u : Q(u, u) ≤ 0, u ∈ G(L1)} ⊂ G(L1).

BecauseH+, H− may not be linear spaces, we defineH+, H− as follows:

H+ = spanH+, H− = spanH−.

ThenH+, H− are closed linear subspaces ofspanG(L1) andG(L0) ⊂ H+ ∩ H−.
DefineQ+(·, ·) in H+:

Q+(u, v) = Q(u, v) sgnQ(v, v), u, v ∈ H+.

DefineQ− (·, ·) in H−:

Q−(u, v) = Q(u, v)(− sgnQ(v, v)), u, v ∈ H−.
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LetH be the direct sum spaceH = H+ ⊕H−; ⊕ means direct sum. Define the form

Q (·, ·) in H, for u = u+ + u−, v = v+ + v− ∈ H:

Q
(
u, v
)

= Q+ (u+, v+) + Q−
(
u−, v−

)
.

Let Ĥ = H/G(L0) = H+/G(L0) ⊕ H−/G(L0). Introduce the formQ̂
(
û, v̂
)
, û,

v̂ ∈ Ĥ , such that

Q̂(û, v̂) = Q(u, v), whereu, v belong to the coset̂u, v̂ in Ĥ.

Theorem 4.1. (H+, Q+(·, ·)), (H−,−Q−(·, ·)) are GSIP spaces. LetH+/G(L0),
H−/G(L0) be quotient spaces, then

(H+/G(L0), Q+), (H−/G(L0),−Q−)

are GSIP spaces.

Theorem 4.2. Q̂(û, v̂) = Q(u, v), for anyu ∈ û, v ∈ v̂, whereu, v ∈ H, û, v̂ ∈ Ĥ.

Theorem 4.3. (Ĥ, Q̂ (·, ·)) is a GIIP space.

Let H̃ = Ĥ ⊕ Ȟ, ⊕ is a direct sum, wherěH is a GSIP space with GSIP[·, ·]p . For any

ũ = {ûǔ} ∈ H̃, defineQ̃:

Q̃(ũ, ṽ) = Q̂(û, v̂) + [ǔ, v̌]p .

It is easy to see that (̃H, Q̃) is a GIIP space.
Let Ñ be a negative subspace on (H̃, Q̃). SupposeN̂ is a projection subspace of̃N

in Ĥ. From the definition of̃Q, thenN̂ is a negative subspace on (Ĥ, Q̂) and

‖ǔ‖p ≤ −Q̂(û, û) = −Q(u, u) ≤ C ‖û‖p
, for any{û, ǔ} ∈ Ñ .

Theorem 4.4. If Ñ is a maximal negative subspace on(H̃, Q̃), thenN̂ is a maximal
negative subspace on(Ĥ, Q̂).

Theorem 4.5. If Ñ is a maximal negative subspace oñH, then‖ǔ‖p ≤ −Q̂(û, û), for
ũ = {û, ǔ} ∈ Ñ . Define a transformationϕ : û → ǔ , ũ = {û, ǔ} ∈ Ñ . Then it is a
linear contraction transformation with respect to the form−Q̂ on the maximal negative
subspacẽN to Ȟ. Conversely, if the transformationϕ is a contraction (in this sense) on
the maximal negative subspace ofH̃ to Ȟ, then the graph ofϕ is a maximal negative
subspace of̃H.

(iv) The proof of Theorem 4.1–Theorem 4.5.

Proof of Theorem 4.1.Because ofQ± (u, u) = Q(u, u)(±sgnQ(u, u)) = |Q(u, u)| > 0
for u =6 0. Now to prove(H+, Q+) is a GSIP space, we only need to prove:∣∣Q+(u, v)

∣∣ ≤ ∣∣Q+(u, u)
∣∣1/p ∣∣Q+(v, v)

∣∣(p−1)/p
, for anyu, v ∈ H+. (4.1)
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In fact, ∣∣Q+(u, v)
∣∣ = |Q(u, v)| =

∣∣∣Re
[
A∗u, v

]
p

∣∣∣
= 0.5

∣∣∣Re
[
A∗u, v

]
p

+ Re
[
A∗u, v

]
p

∣∣∣
= 0.5

∣∣∣Re
[
A∗u, v

]
p

+ Re
[
u, A∗∗v

]
p

∣∣∣ .
As A∗ ⊃ −A,−A∗∗ ⊂ A∗, then∣∣Q+(u, v)

∣∣ = 0.5
∣∣∣Re

[
A∗u, v

]
p

+ Re
[
u, −A∗v

]
p

∣∣∣ .
Construct a new GSIP spaceH1 × H2 with GSIP[·, ·]12 as follows:

[u, v]12 = Re
[
u1, v1

]
1

+ Re
[
u2, v2

]
2
,

∀u = {u1, u2}, v = {v1, v2} ∈ H1 × H2.

Imitating Theorem 3.1,[·, ·]12 is a GSIP inH1 × H2. Let

Wu = W{u1, u2} = {F−1u2, Fu1}, ∀u ∈ H1 × H2.

ThenW 2 = I and[Wu, v]12=[u, Wv]12, orW is a generalizedp selfadjoint operator in
GSIP space (H1 × H2, [·, ·]12).

Next we prove thatW satisfies the generalized Schwarz inequality in (H1 ×
H2, [·, ·]12):

|[Wx, y]12| ≤ |[Wx, x]12|1/p |[Wy, y]12|1/q
, for x, y ∈ H1 × H2. (4.2)

As W 2 = I, from Proposition 2.1, there exist linear operatorsE1, E2 satisfying

EiEj =

{
0, i =6 j

Ei, i = j
andE1 + E2 = I, W = E1 − E2.

Then, for any

f, g ∈ H1 × H2, f = f1 + f2, g = g1 + g2,

f1, g1 ∈ E1(H1 × H2), f2, g2 ∈ E2(H1 × H2).

Wf = f1 − f2, Wg = g1 − g2.

Thus

E1(H1 × H2), E2(H1 × H2), W (H1 × H2) = (E1 − E2)(H1 × H2)

are linear subspaces inH1 × H2.
Construct a new GSIP[·, ·]E1

in the product space (E1(H1 ×H2)) × (W (H1 ×H2))
as follows:

[f1, z]E1
= [f1, h − g]12 ,

where
f1, h ∈ E1(H1 × H2) ⊂ H1 × H2, g ∈ E2(H1 × H2),

z = h − g ∈ (E1 − E2)(H1 × H2) = W (H1 × H2) ⊂ H1 × H2.
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Construct a new GSIP[·, ·]E2
in the product space (E2(H1 × H2)) × (W (H1 × H2)) as

follows:

[f2, z]E2
= [f2, h − g]12 ,

where
f2, g ∈ E2(H1 × H2) ⊂ H1 × H2, h ∈ E1(H1 × H2),

z = h − g ∈ (E1 − E2)(H1 × H2) = W (H1 × H2) ⊂ H1 × H2.

Because[·, ·]12 is a GSIP, then it is easy to prove that[·, ·]E1
, [·, ·]E2

are GSIPs in spaces
(E1(H1 × H2)) × (W (H1 × H2)), (E2(H1 × H2)) × (W (H1 × H2)) respectively.

Construct a new GSIP[·, ·]E3
in the space (H1 × H2) × W (H1 × H2) such that[

f̂ , ĝ
]

E3

= [f1, g1 − g2]E1
+ [f2, g1 − g2]E2

,

where
f̂ = f1 + f2, ĝ = g1 + g2 ∈ H1 × H2, W ĝ = g1 − g2.

Similar to Theorem 3.1,[·, ·]E3
is a GSIP in the space (H1 × H2) × (H1 × H2) because

[·, ·]E1
, [·, ·]E2, are GSIP in the spaces (E1(H1 × H2)) × (W (H1 × H2)), (E2(H1 ×

H2)) × (W (H1 × H2)) respectively. Hence we have the generalized Schwarz inequality
in ((H1 × H2) × (H1 × H2), [·, ·]E3

):∣∣∣∣[f̂ , ĝ
]

E3

∣∣∣∣ ≤ ∣∣∣∣[f̂ , f̂
]

E3

∣∣∣∣1/p ∣∣∣[ĝ, ĝ
]
E3

∣∣∣1/q

, f̂ , ĝ ∈ (H1 × H2) × (H1 × H2).

It is enough to remark that since for anŷf ,ĝ,∣∣∣∣[f̂ , ĝ
]

E3

∣∣∣∣ =
∣∣[f1, g1 − g2]E1

+ [f2, g1 − g2]E2

∣∣
= |[f1, g1 − g2]12 + [f2, g1 − g2]12|
=
∣∣∣[f̂ , W ĝ

]
12

∣∣∣ =
∣∣∣[Wf̂, ĝ

]
12

∣∣∣ ,
the generalized Schwarz inequality follows:∣∣∣∣[f̂ , ĝ

]
E3

∣∣∣∣ ≤ ∣∣[f1, f1−f2]E1
+[f2, f1−f2]E2

∣∣1/p
∣∣∣[g1, g1−g2]E1

+
[
g1,g1−g2

]
E2

∣∣∣1/q

= |[f1, f1−f2]12+[f2, f1−f2]12|1/p |[g1, g1−g2]12+[g2, g1−g2]12|1/q

=
∣∣∣[f̂ , W f̂

]
12

∣∣∣1/p ∣∣[ĝ, W ĝ
]

12

∣∣1/q
=
∣∣∣[Wf̂, f̂

]
12

∣∣∣1/p ∣∣[Wĝ, ĝ
]

12

∣∣1/q
.

Hence the formula (4.2) is proved. And we easily prove that∣∣Q+(u, v)
∣∣ = 0.5

∣∣∣Re
[
A∗u, v

]
p

+ Re
[
u, A∗∗v

]
p

∣∣∣ = 0.5
∣∣[Wu′, v′]

12

∣∣ ,
whereu′ = {u, A∗u}, v′ = {v, A∗∗v} ∈ H1 × H2. By using Eq. (4.2),

|Q+(u, v)| ≤ 0.5
∣∣[Wu′, u′]

12

∣∣1/p ∣∣[Wv′, v′]
12

∣∣1/q

= 0.5
∣∣∣Re

[
A∗u, u

]
p

+ Re
[
u, A∗∗u

]
p

∣∣∣1/p ∣∣∣Re
[
A∗v, v

]
p

+ Re
[
v, A∗∗v

]
p

∣∣∣1/q

=
∣∣Q+ (u, u)

∣∣1/p ∣∣Q+ (v, v)
∣∣1/q

.
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Therefore (H+, Q+) is a GSIP space. By similar reasoning we also conclude that
(H−,−Q−) is a GSIP space.

Then the quotient spacesH±/G(L0) exist. The formsQ± of H± bring about the
forms of the quotient spacesH±/G(L0). It is easy to see that

(
H±/G (L0) ,±Q±

)
are

GSIP spaces. This completes the proof.�

Proof of Theorem 4.2.ObviouslyQ̂(û, û) = 0 whenû ∈ G(L0). As û,v̂ ∈ Ĥ, u0 ∈
G(L0), first we prove that̂Q

(
û + u0, v̂

)
= Q̂

(
û, v̂
)
,

Q̂(û + u0, v̂) = Q+(u+ + u0, v+) + Q−(u−, v−), (4.4)

Q+(u+ + u0, v+) = Q(u+ + u0, v+) sgnQ(v+, v+)

= Re
[
A∗(u+ + u0), v+

]
p

sgnQ(v+, v+)

= Re
[
A∗u+, v+

]
p
sgnQ(v+, v+) + Re[Au0, v+]p sgnQ(v+, v+)

= Q+(u+, v+) + Re[Au0, v+]p sgnQ(v+, v+),

whereu+ = {u+, L1u+}, v+ = {v+, L1v+} ∈ H+, u0 = {u0, L0u0} ∈ G(L0).
Now we need to prove Re[Au0, v+]p = 0. By using the same notation forW and the

form (4.2) of Theorem 4.1 we have∣∣Re[Au0, v+]p
∣∣ =
∣∣Q(u0, v+)

∣∣ = 0.5
∣∣[Wu′

0, v
′
+

]
12

∣∣
≤ 0.5

∣∣[Wu′
0, u

′
0

]
12

∣∣1/p ∣∣[Wv′
+, v

′
+

]
12

∣∣1/q

= 0.5 |Re[Au0, u0]12|1/p ∣∣[Wv′
+, v

′
+

]
12

∣∣1/q
= 0,

whereu′ = {u, A∗u}, u0 = {u, L0u}, v+ = {v+, L1v+}, v′ = {v+, A
∗∗v+}. Hence

Re[Au0, v+]p = 0. ThenQ+(u+ + u0, v+) = Q(u+, v+). The form (4.4) changes into

Q̂(û + u0, v̂) = Q(u + u0, v) = Q+(u+, v+) + Q−(u−, v−) = Q(u, v).

Next we prove

Q̂(û, v̂ + v0) = Q(u, v), u, v ∈ H+ ⊕ H−, v0 ∈ G(L0), u = u+ + v−.

It suffices to note thatQ(û, v̂ + v0) = Q(u, v) by similar reasoning as in the preceding
proof. Obviouslyv+ + v0 ∈ H+, v− + v0 ∈ H−. We obtain

Q(u, v + v0) = Q+(u+, v+ + v0) + Q−(u−, v−)

= Q(u+ + 0, v+ + v0) + Q−(u−, v−)

= Q+(u+, v+) + Q−(0, v0) + Q−(u−, v−)

= Q+(u+, v+) + Q−(u−, v−) = Q(u, v).

Then
Q̂(û, v̂ + v0) = Q(u, v + v0) = Q(u, v).

Therefore
Q̂(û, v̂) = Q(u, v), û, v̂ ∈ Ĥ, ∀ u ∈ û, v ∈ v̂,

whereû, v are the cosets ofu, v respectively. This completes the proof. �
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Proof of Theorem 4.4.Let P− : Ĥ → H−/G(L0) be a projection operator such that

u = u+ + P−u, P−u = u−, u ∈ Ĥ, u+ ∈ H+/G(L0), u− ∈ H/G(L0).

First we prove that a necessary and sufficient condition forN̂ to be a maximal neg-
ative subspace is thatP−N̂ = H−/G(L0). If N̂ is a maximal negative subspace,
then P−N̂ ⊂ H−/G(L0). If P−N̂ does not fill outH−/G(L0) then there exists
û ∈ (H−/G(L0))\(P−N̂ ). Hencêu /∈ N̂ and{û} ∪ N̂ is a negative subspace in̂H and
properly containN̂ . This is a contradiction. Conversely, ifP−N̂ = H−/G(L0) andN̂

is not maximal negative, there existsû /∈ N̂ , Q̂(û, û) < 0. HenceP−û ∈ H−/G(L0),
P−û ∈ P−N̂ . As û = (I − P−)û + P−û, then (I − P−)û ∈ P+N̂ , whereP+ = I − P−.
Thenû ∈ (P+ + P−)N̂ = N̂ , but û /∈ N̂ ; this is a contradiction. HencêN is a maximal
negative subspace.

Now to prove that ifÑ is a maximal negative subspace iñH, thenÑ is a maximal
negative subspace in̂H. As N̂ is a closed negative subspace, thenP−N̂ is a closed sub-
space inH−/G(L0). If P−N =6 H−/G(L0), then the set{(H/G(L0))\(P−N̂ ), 0}∪Ñ is
a negative subspace relative toQ̃ in Ñ and properly contains̃N . This is a contradiction.
ThereforeN̂ is a maximal negative subspace.

This completes the proof. �
Proofs of Theorem 4.3 and Theorem 4.5, follow from the above, so we omit the

proofs.

5. The Maximal Dissipative Extension Representation ofp Dissipative Operator

Theorem 5.1. Let L0 = A − S, A is a p skew-symmetric operator, and satisfty
Re[Au, u]p = 0, S is an reversible GPpS operator. Suppose the maximal dissipative
extension ofL0 is L. Then, there is a one to one correspondence between the maximal
dissipative extensionL of L0 and the maximal negative subspaceÑ of GIIP spaceH̃,
and

Lu = L1u + S1/2ϕ(û), L1 = A∗ − S, (5. 1)

D(L) = {u ∈ D(L1) | û ∈ N̂ , N̂ is the projection ofÑ from H̃ to Ĥ}. (5. 2)

Proof. Assume thatL is the maximal dissipative extension, then

Re[Lu, u]p ≤ 0, u ∈ D(L).

If u ∈ D(L0),v ∈ D(L), then

Re[L0u, v]p = Re[Au, v]p − Re[Su, v]p ,

Re[Au, v]p = Re[L0u, v]p + Re[Su, v]p ,∣∣Re[Au, v]p
∣∣ ≤ ∣∣Re[L0u, v]p

∣∣ +
∣∣Re[Su, v]p

∣∣
≤ (‖L0u‖ + ‖Su‖) ‖v‖p−1

,∣∣[Au, v]p
∣∣ =
∣∣Re[Au, v]p + i Re[Au, iv]p

∣∣
≤ ∣∣Re[Au, v]p

∣∣ +
∣∣Re[Au, iv]p

∣∣
≤ 2(‖L0u‖ + ‖Su‖) ‖v‖p−1

.
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Thenv ∈ D(A∗). AsS : H1 → H is a bounded operator andL1 = A∗ −S, we have
D(L1) ⊃ D(L). As the operatorS is inversive, for arbitraryv ∈ D(L0) andu ∈ D(L),
then we have∣∣[v, Lu − L1u]p

∣∣ =

∣∣∣∣[S1/2v, S−1/2(Lu − L1u)
]

p

∣∣∣∣
≤
∥∥∥S1/2v

∥∥∥(∥∥∥S1/2Lu
∥∥∥

2
+
∥∥∥S1/2L1u

∥∥∥
2

)p−1
.

From the Riesz Representation Theorem of GSIP space, there existsf̌ ∈ Ȟ, so that
for anyv ∈ D(L0), we have

[v, Lu − L1u]p =
[
S1/2v, f̌

]
p

=
[
v, S1/2f̌

]
p
.

HenceLu − L1u = S1/2f̌ , or Lu = L1u + S1/2f̌ . As H0 = D(L0) ⊃ H1, then
Lu = L1u + S1/2f̌ , u ∈ H1.

Let û, v̂ ∈ Ĥ, û, v̂ are the cosets ofu, v andu = u+ +u−, v = v+ +v−, u+, v+ ∈ H+,
u−, v− ∈ H−. From Theorem 4.2 we obtain

Q̂(û, v̂) = Q(u, v) = Q+(u+, v+) + Q−(u−, v−).

The following inequality holds:

Q̂(û, v̂) − m
∥∥∥S1/2u − f̌

∥∥∥p

+
∥∥f̌∥∥p ≤ 0, (5.3)

wherem is an fixed constant,u = {u, L1u} ∈ G(L1), û is a coset ofu. First, we prove

Q(u, u) − m
∥∥∥S1/2u − f̌

∥∥∥p

+
∥∥f̌∥∥p ≤ 0, u ∈ G(L1). (5.4)

As Q(u, u) = Re[L1u, u]p − Re[Su, u]p, then Re[L1u, u]p = Q(u, u) − Re[Su, u]p.
As Re[Lu, u]p ≤ 0, then Re

[
L1u + S1/2f̌ , u

]
p

≤ 0,

Q(u, u) − Re[Su, u]p + Re
[
S1/2f̌ , u

]
p

≤ 0.

Hence, to prove (5.2), we only have to prove

−m
∥∥∥S1/2u − f̌

∥∥∥p

+
∥∥f̌∥∥p ≤ − [Su, u]p + Re

[
S1/2f̌ , u

]
p
. (5.5)

In fact

Re
[
−S1/2u + f̌ , S1/2u

]
p

≤
∣∣∣∣[−S1/2u + f̌ , S1/2u

]
p

∣∣∣∣
≤
∥∥∥S1/2u − f̌

∥∥∥∥∥∥S1/2u
∥∥∥p−1

≤ 1
p

∥∥∥S1/2u − f̌
∥∥∥p

+
1
q

∥∥∥S1/2u
∥∥∥q(p−1)

,

where 1/p + 1/q = 1,p > 1.
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The left-hand side of the above inequality is equal to− [Su, u]p + Re
[
f̌ , S1/2u

]
p
. So

[Su, u]p − Re
[
f̌ , S1/2u

]
p

≥ −1
p

∥∥S1/2u − f̌
∥∥p − 1

q

∥∥∥S1/2u
∥∥∥p

.

By using the above inequality in (5.5), we have to prove

−m
∥∥∥S1/2u − f̌

∥∥∥p

+
∥∥f̌∥∥p − 1

p

∥∥∥S1/2u − f̌
∥∥∥p

− 1
q

∥∥∥S1/2u
∥∥∥p

≤ 0

or

(−m − 1
p

)
∥∥∥S1/2u − f̌

∥∥∥p

+
∥∥f̌∥∥p ≤ 1

q

∥∥∥S1/2u
∥∥∥p

. (5.6)

Note that

Re
[
−S1/2u + f̌ , f̌

]
p

≤
∣∣∣∣[−S1/2u + f̌ , f̌

]
p

∣∣∣∣
≤
∥∥∥−S1/2u + f̌

∥∥∥∥∥f̌∥∥p−1

≤ r

p

∥∥∥S1/2u − f̌
∥∥∥p

+
1
qr

∥∥f̌∥∥p
, 1/p + 1/q = 1, p > 1, r > 0.

Then

q Re
[
−S1/2u + f̌ , f̌

]
p

≤ qr

p

∥∥∥−S1/2u + f̌
∥∥∥p

+
1
r

∥∥f̌∥∥p
,

−q Re
[
S1/2u, f̌

]
p

+ (q − 1/r)
∥∥f̌∥∥p ≤ qr

p

∥∥∥S1/2u − f̌
∥∥∥p

,

− q

q − 1
Re
[
S1/2u, f̌

]
p

+
rq − 1

r (q − 1)

∥∥f̌∥∥p ≤ qr

p (q − 1)

∥∥∥S1/2u − f̌
∥∥∥p

,

− q

q − 1
Re
[
S1/2u, f̌

]
p

≤ qr

p (q − 1)

∥∥∥S1/2u − f̌
∥∥∥p

− rq − 1
r (q − 1)

∥∥f̌∥∥p
.

As 1/p + 1/q = 1, q = p(q − 1), p = q/(q − 1), then

1 − rq

r (q − 1)

∥∥f̌∥∥p − r
∥∥∥S1/2u − f̌

∥∥∥p

≤ p Re
[
−S1/2u, f̌

]
p

≤ p
∥∥∥S1/2u

∥∥∥∥∥f̌∥∥p−1

≤ p

(
l

p

∥∥∥S1/2u
∥∥∥p

+
1
ql

∥∥f̌∥∥(p−1)q
)

= l
∥∥∥S1/2u

∥∥∥p

+
p

ql

∥∥f̌∥∥p
,

wherel > 0. By simplifying, we get(
1 − rq

r (q − 1)
− p

ql

)∥∥∥∥∨
f

∥∥∥∥p

− r
∥∥∥S1/2u − f̌

∥∥∥p

≤ l
∥∥∥S1/2u

∥∥∥p

.

Let r be such that 0< r < min{ 1
q , 1√

2q(q−1)+q
, 1

ql+1}. Then we have

t =
1 − rq

r (q − 1)
− p

ql
> 0,∥∥f̌∥∥p ≤ r

t

∥∥∥S1/2u − f̌
∥∥∥p

+
l

t

∥∥∥S1/2u
∥∥∥p

.
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Using Inequality (5.6) it follows that(
−m − 1

p
+

r

t

)∥∥∥S1/2u − f̌
∥∥∥p

≤
(

1
q

− l

t

)∥∥∥S1/2u
∥∥∥p

. (5.7)

Next we choosel > 0 such that1q − l
t > 0. In fact

1
q

− l

t
=

r (q − 1)
[
l2 + 1−rq

qr(q−1) l + 1
q(q−1)

]
(rq − 1)

[
l + 1

rq−1

] .

Because

rq − 1 < 0, r <
1√

2q (q − 1) + q
,

then the equation

l2 +
1 − q

qr (q − 1)
l +

1
q (q − 1)

= 0

exists with two real solutionsa1anda2 such that

a1, a2 = − 1 − rq

qr (q − 1)
±
√

1
q (q − 1)

[
(1 − rq)2

q (q − 1) r2
− 4

]
.

Let a3 = 1
1−rq . Then we change (5.7) into

1
q

− l

t
=

r(q − 1)(l − a1)(l − a2)
(rq − 1) (l − a3)

.

Hence we can choosel > 0 such that1q − l
t > 0.

We takem = − 1
p + r

t . At this time, the left-hand of (5.7) is 0 and the coefficient of

the right-hand =1
q − l

t > 0. Therefore (5.7) holds naturally. Hence (5.4) holds. So

Q (u, u) − m
∥∥∥S1/2u − f̌

∥∥∥p

+
∥∥f̌∥∥p ≤ 0, u = {u, L1u} ∈ G(L1). (5.8)

It follows thatQ (u, u) ≤ 0 andu ∈ H−, Q (u, u) = Q− (u, u) .Hence Q̂
(
û, û

)
=

Q (u, u) = Q− (u, u). Equation (5.3) holds.
Analogous to the discussion of the form (1. 20) in[12], if v lies in D(L0), then

Lv = L1v = L0v; it follows from this thatf̌ in Lu = L1u + S1/2 f̌depends only on the
Ĥ boundary coset to which a belongs; that is,f̌ = ϕ

(
û
)
. SinceD(L0) is dense inH1 and

S1/2 is bounded onH1 to H, we see thatS1/2 D(L0) will be dense inȞ and so will the
image ofS1/2 acting on the first components of any boundary coset. Consequently, (5.3)
holds for allu in a given boundary coset only if it holds with the middle term omitted.
In other words,

Q̂
(
û, û

)
+
∥∥ϕ (û)∥∥p ≤ 0, u ∈ D(L).

Therefore{{û, ϕ(û)}, û ∈ D(L)} forms a negative subspace corresponding toQ̃ in H̃.
On the other hand if

Lu = L1u + S1/2ϕ(û), D(L) = {u ∈ D(L1), û ∈ N̂}
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andL is the extension ofL0 and{{û,ϕ
(
û
)}|u ∈ D(L)} is a maximal negative subspace

of H̃, then we can show that (5.3) holds. SoL is ap dissipative operator.
Therefore there exists one to one correspondence between the maximal negative

subspace of̃H and the maximal dissipative extension representation (5.1), (5.2).
This completes the proof. �

6. Application and Remark

In this section we study the maximal dissipative extension of the Schr¨odinger operator
by means of the above theory.

According to[19], the Schr¨odinger operator is−h1 +V (x), defined inC∞(M ), M
is C∞ compact Riemann manifold. The Schr¨odinger operator has a unique dissipative
extension in Sobolev spaceH2(M ). But if the domain isn’t a Riemann manifold, the
operator becomes complex and the study of the Schr¨odinger equation becomes difficult
(see [8, 9]. For this reason, we study the operator for the domain in Banach space, and
give the maximal dissipative extension representation of the operator. SupposeX =
Lp′

[0, 2π] , p′ =6 2, 1 < p′ < ∞, its GSIP ,[·, ·]p as follows:

[f, g]p =
∫ 2π

0
fg |g|p−2

dx, 1 < p < ∞,

wherep may be different fromp′. Obviously the norm inX is‖f‖ = [f, f ]1/p,

L0f = if ′′ − f,

D(L0) = {f : f, f ′, f ′′ ∈ Lp′
[0, 2π] , f (0) = f (2π),

f ′(0) = f ′(2π), 1 < p′ < ∞},

L0 is a certain type of Schr¨odinger operator which will be studied.
SupposeA : D(L0) → X, Af = if ′′. Let G(L0) = {{f, L0f} : f ∈ D(L0)}. In

X × X, constructQ(·, ·) such that

Q(f, g) = (fg)′(2π) − (fg)′(0)

= f ′(2π)g(2π) − f ′(0)g(0) +f (2π)g′(2π) − f (0)g′(0).

Let H = H+ ⊕ H−, where

H+ = span{f ∈ X, Q(f, f ) ≥ 0}, H− = span{f ∈ X, Q(f, f ) ≤ 0}.

DenoteĤ=H/G(L0). ConstructQ̂=Q̂++Q̂−in Ĥ, where

Q̂+(f̂+, ĝ+) = Q(f̂+, ĝ+) sgnQ(ĝ+, ĝ+), f̂+, ĝ+ ∈ H+/G(L0),

Q̂−(f̂−, ĝ−) = Q(f̂−, ĝ−)(− sgnQ((ĝ−, ĝ−)), f̂−, ĝ− ∈ H−/G(L0).

SupposeȞ = {f : f, f ′ ∈ X}, H̃ = Ĥ ⊕ Ȟ. For anyf̃ = {f̂ , f̌}, defineQ̃,

Q̃(f̃ , g̃) = Q̂(f̂ , ĝ) +
[
f̌ , ǧ
]
p
.

It is easy to see that
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Ĥ = {û = {u(0), u(2π), u′(0), u′(2π)}, u ∈ X}.

Let û ∈ N̂ , whereN̂ is a maximal negative subspace in (Ĥ, Q̂). ThenQ̂(û, û) ≤ 0
and

Q̂(û, û) = 2(u′ (2π) u(2π) − u′(0)u(0)) ≤ 0,

or
αu′(2π)u(2π) + βu′(0)u(0) = 0 and|β| ≤ |α| .

ThenN̂ is a two dimensional subspace.
Let Ñ be a maximal negative subspace iñH. From Theorem 4.4,̂N which is a

projection ofÑ in Ĥ, is a maximal negative subspace. Because

ǔ = ϕ(û), ǔ ∈ Ȟ, û ∈ Ĥ, ũ = {û, ǔ} ∈ Ñ

andϕ is a linear mapping, then thêH− component ofÑ is linearly dependent on the
Ĥ− component by using Theorem 4.5. ThusQ̃(ũ, u) ≤ 0, or

Q̃(ũ, ũ) = Q̂(û, û) + [ǔ, ǔ]p ≤ 0.

Then
−2(β/α + 1)u′(0)u(0) +‖ϕ(û)‖p

p ≤ 0.

Henceϕ(u) = u′(0)u(0)f , wheref satisfies

−2(β/α + 1)u′(0)u(0) +‖f‖p |u′(0)u(0)|p ≤ 0.

Theorem 6.1. The operatorA is ap symmetric operator in Banach spaceLp′
[0, 2π].

Proof. Let f, g ∈ D(L0), then

[Af, g]p =
∫ 2π

0
if ′′g |g|p−2

dx =
∫ 2π

0
if ′′g

(
(p − 2)

∫ |g|

0
αp−3dα

)
dx

=
∫ 2π

0
if ′′g (p − 2)

(∫ ∞

0
χ[0,|g|] (x) αp−3dα

)
dx

= (p − 2)
∫ ∞

0
αp−3

(∫ 2π

0
igχ[|g|>α] (x) df ′

)
dα

= (p − 2)
∫ ∞

0
αp−3

(
−
∫ 2π

0
ig′χ[|g|>α] (x) df

)
dα

= (p − 2)
∫ ∞

0
αp−3

∫ 2π

0
f
(−ig′′)χ[|g|>α] (x) dxdα

= −(p − 2)
∫ ∞

0
αp−3

(∫ 2π

0
f (−ig′′)χ[|g|>α] (x) dx

)
dα

= −
∫ 2π

0
f
(
ig′′) ∫ |g′′|

0
d
(
αp−2

)
dx

= −
∫ 2π

0
f
(
ig′′) |g′′|p−2

dxd = − [f, Ag]p ,

whereχE(x) denotes the characteristic function inE. Hence the operatorA is a p
symmetric operator. �
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Corollary 6.1. Re[Au, u]p = 0 andL0 is ap dissipative operator inLp′
[0, 2π].

Theorem 6.2.
(
H+/G (L0) , Q̂+

)
,
(
H−/G (L0) ,−Q̂−

)
are GSIP spaces.

Theorem 6.3. In X = Lp′ [0, 2π], 1 < p′ < ∞, suppose the Schr¨odinger operator

L0 = if ′′ − f, D(L0) = {f : f, f ′, f ′′ ∈ X, f (0) = f (2π) , f ′ (0) = f ′ (2π)}
If the maximal dissipative extension ofL0 is L, then there is one to one correspondence
between the operatorL and the maximal negative subspaceÑ of H̃ and

Lu = iu′′ − u + u′(0)u(0)f,

D(L) = {u|u, u′, u′′ ∈ X, αu′(2π)u(2π) + βu′(0)u(0) = 0, |β| ≤ |α|},

wheref ∈ X satisfies the following:

−2(β/α + 1)u′(0)u(0) + |u′(0)u(0)|p ‖f‖p ≤ 0.

By using Theorem 4.1, 4.3, 5.1, we easily prove Theorem 6.2, 6.3. Therefore we omit
the proofs.

Remark 6.1.In X = Lp [0, 2π], 1 < p < ∞, p =6 2, we may define the SIP (see [4, 15])
as follows:

[f, g] = ‖g‖
∫ 2π

0
f

( |g|
‖g‖

)p−2

sgngdx, g ∈ X.

Now consider following the operatorL1 in X:

L1f = if ′′ − αf, α > 0,

f ∈ D(L1) = {f : f, f,′ f ′′ ∈ X, f (0) = f (2π), f ′(0) = f ′(2π), 1 < p < ∞}.

Similar to Theorem 6.1 and Corollary 6.1 we have thatL1 is a dissipative operator in
X. Thus similarly we obtain Theorems 6.2 and 6.3.

Remark 6.2.Dissipative operators play an increasingly important role as research on
nonselfadjoint operators proceeds. Many interesting initial value problems in partial
differential equations are defined in Banach space. In the case considered here, we study
the maximal dissipative extension representation of the operator in Banach space by
introducing the GIIP space and researching the GSIP space. Especially we apply the
theory to the Schr¨odinger operator. The Schr¨odinger operator−h1 + V (or i1 − iV )
is considered, whereV (x) is the potential. IfV (x) doesn’t satisfy theL2 integrable,
it is Lp integrable orC [0, 2π](see [20, 21]). Then the particles in the Schr¨odinger
equation will cause collision and scattering. Especially, fori1− iV , V (x) is a complex
function inLp [0, 2π], and the particles cause scattering. It is difficult to study scattering
in quantum mechanics at present. In the paper we try to study one of the Schr¨odinger
operators inLp [0, 2π], whereV (x) is an imaginary number. Perhaps it is a new method
to study the scattering of the Schr¨odinger equation in Banach space. But we don’t know
how to connect the maximal dissipative extension representation of the Schr¨odinger
operator with the scattering of the Schr¨odinger equation in Banach space yet. This work
will be on-going. Moreover research on the operator theory in GIIP space will be very
meaningful.

Acknowledgement.This project is supported by the National Natural Science Foundation of China, the Science
and Technology Foundation of Ministry of Machine-building Industry of China, and the Jiangsu Natural
Science Foundation.



p Dissipative Operator 547

References

1. B. Nath: On a generalization of semi-inner product spaces. Math. J. Okayana Univ.15, 1–6 (1971/1972)
2. D.K. Sen: Generalizedp selfadjoint operators on Banach Spaces. Math. Japn.27 (1), 151–158 (1982)
3. Wei Gouqing, ShenYouqing: The generalizedp normal operators and hyponormal operators on Banach

space. Chin. Ann. Math. B88 (1), 70–79 (1987)
4. J.G. Stampel: Roots of scalar operators. Proc. Am. Math. Soc.13, 796–798 (1962)
5. P. V. Pethe, N. K. Thakare: Applications of Riesz representation theorem in semi-inner product space.

Indian J. Pure & Appli. Math.7 (9), 1024–1031 (1976)
6. P.R. Halmos:A Hilbert space problem book. Princeton, NJ: Von Nostrand, 1967
7. Tian Lixin, Liu Zengrong: The Schr¨odinger operator. Proc. Am. Math. Soc.126(1), 203–211 (1998)
8. Tian Lixin: The generalized indefinite inner product space. J. Jiangsu Univ. Sci. & Techno.16(1), 82–86

(1995)
9. L. Bongar:Indefinite inner product spaces. Ergeb. Math. Grenzgeb. vol.78, Heidelberg: Springer-Verlag,

1974
10. Yan Shaozong:Operator theory in indefinite inner product space.Adv. in Science of China: Mathematics

Edited by Gu Chahao,Wang Yuan) vol.3, China: Science Press, 1990, pp. 99–131
11. Langer, H.:Spectral functions of definitizable operators in Krein space. Lecture Notes in Math.948,

Berlin–Heidelberg–New York: Springer-Verlag, 1984, pp. 1–46
12. Crandall, M.G., Phillips, R.S.: On the extension problem for dissipative operators. J. Funct. Anal.2,

147–176 (1968)
13. Lumer, G., Phillips, R.S.: Dissipative operators in a Banach spaces. Pacific J. Math.11 (2), 679–698

(1961)
14. Branges, L.D.: Krein spaces of analytic functions. J. Funct. Analy.81 (2), 219–359 (1988)
15. Fleming, R.J., Jamison, J.E.: Adjoint abelian operators onLp andC(K). Trans. Am. Math. Soc.217,

87–98 (1976)
16. Yan Yin: Attractors and dimensions for discretizations of a weakly damped Schr¨odinger equation and a

sine-Gordon equation. Nonlinear Anal.20, 1417–1452 (1993)
17. Soffer, A., Weinstein, M.I.: Multichannel nonlinear scatting for nonintegrable equations. J. Diff. Eq.98,

376–390 (1992)
18. Nakao Hayashi: The initial value problem for the derivative nonlinear Schr¨odinger equation in the energy

space. Nonlinear Anal.20, 823–833 (1993)
19. Helffer, B.:Semiclassical analysis for the Schr¨odinger operator and applications. Lecture Note in Math.

1336, New York: Springer-Verlag, 1988
20. Olsen, P.A.: Fractional integration, Morrey spaces and a Schr¨odinger equation. Comm. Part. Diff. Eq.

20, 2005–2055 (1995)
21. Hoffmann Ostenhof, M., Hoffmann Ostenhof, T.: Interior Holder estimate for solutions of Schr¨odinger

equations and the regularity of nodal sets. Comm. Part. Diff. Eq.20, 1241–1273 (1995)
22. Simon, B., Zhu,Y.: The Lyapunov exponents for Schr¨odinger operators with slowly oscillating potentials.

J. Funct. Anal.140, 541–556 (1996)
23. Kuksin, S.B.: Growth and oscillations of solutions of nonlinear Schr¨od- inger equation. Commun. Math.

Phys.178, 265–280 (1996)
24. Tian Lixin: Spectra and inequality of generalizedp selfadjoint operators. J. Jiangsu Univ. Sci. & Tech.

12 (4), 121–127 (1991)
25. Tian Lixin, Lu Dianchen: The property of nonwandering operators. Appl. Math. Mech.17 (2), 155–162

(1996)
26. Tian Lixin, Lu Dianchen: The nonwandering operators in infinite dimensional linear space. Acta Math-

ematica Scientia15 (4), 455–460 (1995)
27. Tian Lixin: Properties of generalized semi-inner product space andp normal operator. J. Jiangsu Univ.

Sci. & Tech.9 (4), 96–106 (1988)
28. Tian Lixin: The generalizedp normal operator in Banach space. J. Jiangsu Univ. Sci. & Tech.8 (1),

103–109 (1987)
29. Sansuc, J.-J., Tkachenko, V.: Spectral parametrization of nonselfadjoint Hills operators. J. Diff. Eq.125,

366–384 (1996)
30. Tkachenko, V.: Spectral of nonselfadjoint Hills operators and a class of Riemann surfaces. Ann. Math.

143, 181–231 (1996)
31. Lumer, G.: Semi-inner product spaces. Trans. Am. Math. Soc.100, 29–43 (1961)



548 L.-X. Tian, Z.-R. Liu

32. Berkson, E.: Some types of Banach space, Hermition operators and bade functionals. Trans. Am. Math.
Soc.116, 376–385 (1975)

33. Giles, J.R.: Classes of Semi-inner product space. Trans. Am. Math. Soc.129(3), 436–446 (1967)
34. Pethe, P.V., Thakare, N.K.: Applications of the projection theorem and some results. Indian J. Pure &

Appli. Math.8, 898–902 (1977)
35. Unni, K.R., Pullamadaiah, C.: On ortheogonality in semi-inner product space. Tsukuba J. Math.5 (1),

15–19 (1981)
36. Antoine, J.-P., Gustafson, K.: Partial inner product and semi-inner product spaces. Adv. in Math.41 (3),

281–300 (1981)
37. G. Lumer: Isometries of Orlicz spaces. Bull. Am. Math. Soc.68 (1), 28–30 (1962)
38. Stampel, J.G.: Adjoint abelian operators on Banach space. Canad. J. Math.21, 505–512 (1969)
39. Faulkner, G.D.: Representation of linear functions in Banach space. Rocky Mountain J. Math.7 (4),

789–792 (1977)
40. Torrance, E.: Strictly convex spaces via semi-inner product spaces orthogonality. Proc. Am. Math. Soc.

76, 108–110 (1970)
41. Puttamadaiah, C., Huche, G.: On generalized adjoint abelian operators on Banach spaces. Indian J. Pure

& Appli. Math. 17 (7), 919–924 (1986)
42. Phillips, R.S.: Dissipative operators and hyperbolic system of partial differential equations. Trans. Am.

Math. Soc.90, 193–254 (1959)
43. Olubummo,A., Phillips, R.S.: Dissipative ordinary differential operators. J. Math. Mech.14(6), 929–949

(1965)
44. Phillips, R.S., Sarason, L.: Singular symmetric positive first order differential operators. J. Math. Mech.

15 (2), 235–271 (1966)
45. Tian Lixin, Xu Zhenyuan: The research of longtime dynamics behavior in weakly damped formed KdV

equation. Appli. Math. Mech.18 (10), 1021–1028 (1997)
46. Godefory, G., Shapiro, J.H.: Operators with dense,invariant, cyclic vector manifolds. J. Funct. Anal.98,

229–269 (1991)
47. Herrero, D.A.: Hypercyclic operator and chaos. J. Operator Theory28, 93–103 (1992)
48. Herrero, D.A.: Triangular operators. Bull. Lond. Math. Soc.23, 513–554 (1991)
49. Huijun Yang: Wave packet Chaos. Nonli. World1, 1–21 (1994)
50. Yosida, K.:Functional analysis. Berlin–Heidelberg–New York: Springer-Verlag, 1965
51. Shinsen Chang, Yuqing Chen, Byung Soo Lee: On the semi-inner product in locally convex spaces. Int.

J. Math. & Math. Sci.20 (2), 219–224 (1997)

Communicated by H. Araki


