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Avalanche Behavior and Statistical Properties in a Microcrack Coalescence Process
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Fracture owing to the coalescence of numerous microcracks can be described by a simple statistical
model, where a coalescence event stochastically occurs as the number density of nucleated microcracks
increases. Both numerical simulation and statistical analysis reveal that a microcrack coalescence
process may display avalanche behavior and that the final failure is catastrophic. The cumulative
distribution of coalescence events in the vicinity of critical fracture follows a power law and the
fracture profile has self-affine fractal characteristic. Some macromechanical quantities may be traced
back and extracted from the mesoscopic process based on the statistical analysis of coalescence events.
[S0031-9007(98)08252-0]

PACS numbers: 62.20.Mk, 46.50.+a

The catastrophic fracture in inhomogeneous materialdngs [9]. In this model, two important processes (mi-
such as rock and composite, etc. is the result of a sequenrocrack nucleation and coalescence) are involved. The
tial process of the nucleation, growth, and coalescence afucleated microcracks are simulated through a random
numerous microcracks or voids created in previously indistribution function which is often closely related to
tact media [1]. A classic example is the ductile failure ofthe distribution of microstructures, such as second-phase
a smooth bar in tension, where the failure occurs througlparticles, inclusions, and flaws, etc. The coalescence con-
the nucleation, growth, and coalescence of millions ofdition between two neighboring microcracks can be ap-
microscopic voids in the necking of the region. To under-proximately determined by mechanical calculation. Here,
stand the underlying physical mechanism in such a comas an example, we consider a simple dynamics of dam-
plex process, one must understand not only the thresholalye evolution, i.e., a load-sharing principle where the load
conditions (traditional fracture criteria) that trigger this supported by a broken part is shared by its two neighbor-
process, but also the dynamics by which it proceeds.  ingintact parts. The average stress on an intact segment is

As an important nonlinear dynamic phenomenon, fraco = (1 + ¢/d)o, whereo is the nominal stresg,is the
ture has been widely attracting much attention from physiaverage length of two microcracks, adds the Euclidean
cists [2]. More recently, several remarkably universaldistance between the closest tips of two neighboring mi-
features in fracture process have been discovered. For egrocracks. We suppose that two neighboring microcracks
ample, the fracture surface of metals is observed to exwill coalesce when the average stre@ssttains a critical
hibit fractal characteristics [3], and its topology is usuallyvalue o, then the critical coalescence condition can be
self-affine with a universal roughness exponent [4]. Studwritten as
ies of acoustic emission from the microfracturing process
reveal power-law behavior [5]. All these new discover- r= — . (1)
ies have suggested that a microfracturing process might ¢ o700 e = 00
display criticality or self-organized criticality [6]. Some Here, the probability for microcrack coalescence is inde-
conceptually simple models related to critical phenomenagpendent of the angle between the orientation of the cracks
such as fractals or multifractals, percolation, and renormaland the line joining their tips. The length of each coalesced
ization group, have been applied to fracture studies [7,8]crack is approximately represented by its projection normal
Although significant progress has been achieved, many a$s the loading direction. The time evolution of stress can
pects associated with fracture itself—in particular, a cobe indirectly calculated from the crack density.
alescence process which governs the finally catastrophic More details on the model were discussed in Ref. [9].
fracture—are still unclear. In this Letter, we will focus at- The dynamics used in numerical simulations can be briefly
tention on the statistical properties of a coalescence processmmarized as follows:
of microcracks and present a simple statistical model based (1) A newly nucleated microcrack is added randomly in
on numerical simulations. the lattice, with the horizontal orientation and the length

In order to study the nature of this process, especiallfrom a given size distribution.
the interplay between disorder and dynamical effects at (2) Check the coalescence condition for the newly
a mesoscopic scale, we have produced a two-dimensionalicleated crack with all preexisting cracks, in turn, starting
evolution induced catastrophe model by experimental findfrom the closest pair. If the left tip of the new crack lies
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below or above the right tip of an existing crack (or vice face position of a fracture profile. As presented in Fig. 4,
versa), it is supposed that the new crack is shielded by thi¢is clearly seen that there is a scaling law,~ L¢ with
old one, and coalescence would not occur. the exponent = 0.67 = 0.02, which is well consistent
(3) Repeat procedure (2) until there are no more crackwith experimental results [4]. In other words, the fracture
satisfying the condition and, at the same time, there isurface has a self-affine fractal characteristic.
not a crack spanning the whole lattice. Then, return to Although an exact analysis of this process is very dif-
procedure (1). ficult and even impossible, some general features can be
A typical evolution process in 800 X 1000 lattice is  extracted [12]. As discussed above, a newly nucleated mi-
shown in Fig. 1, where the critical parameter= 1 and a crocrack will increase the local stress, especially the stress
uniform length distribution of nucleated microcracks with at its tip. Otherwise, the coalescence of two neighboring
the mean length equal to 2 (lattice units) are used in thenicrocracks will transfer and redistribute the stress in the
simulation. It is obvious to see there are three differensystem. Here, the stress level (the number density of nu-
phases (stages) in this process. (i) Initial phase: Newleated microcracks) is a key parameter which controls the
(small) events appear too sparse to cause coalescence, gmmdbability of a coalescence event occurrence. For sim-
the number of microcracks increases linearly with time;plicity and as a first attempt, we approximately consider
(ii) stable phase: a significant proportion of new events falthat the stress leved(z) increases deterministically be-
close enough to an existing crack tip to cause coalescencsveen two coalescence events and releases stochastically
Such a coalescence has two effects: (a) It increases tlas a scalar Markov process when a coalescence event oc-
zone of influence around crack tip and so increases theurs. The evolution of stress level versus time follows the
chance of a coalescence event, perhaps a large one, aeguation
(b) it increases the area shielded from the coalescence. In
this case, if a new event appears in the shielded region3 it o(t) = o(0) + pt — Z S: (1), (2)
does not coalesce. These two effects balance producing i<t
a near-stable regime; and (iii) critical phase: After some ) L i
time, the zones of influence extend and overlap to sucffnere o(0) is the initial stress levelp is the constant
an extent that a newly nucleated microcrack (small fluci02ding rate from external force or displacement, @hd
tuation) will trigger a cascade coalescence of microcrack$ the stress release associated with #ecoalescence

and result in a catastrophic failure (avalanche). We coul§Vent at time;. Itis called a stress release model (SRM)
not predict,a priori, the position where the final fracture [13]- Here, the stress release valfieis supposed to be
appears (see Fig. 1). proportional to the length of a coalesced crack. On the

The variation of coalescence events versus time cafither hand, we can also consider the coalescence process

be distinguished from the evolution process, as shown iffO™ an energy viewpoint by replacing in Eq. (2) with
Fig. 2. Clearly, coalescence events occur stochastically it~ Si (i-€., the so-called energy release model).

both space and time as the number density of nucleated mj- 1€ probability intensity of a coalescence event is con-
crocracks increases in the system. As we usually see anfP!led by the risk function¥ (o), which is defined by
expect [10,11], the cumulative distribution of coalescencén€ conditional probability of a coalescence event occur-
events in the vicinity of critical failure follows a power-law g in the time interval(s,7 + 61) given thato () has
distribution (see Fig. 3). At the same time, we also cal{h€ current valuer. Generally speaking, it is very diffi-
culated the roughness of fracture interfaces. For a giveRUlt to model fully, but to a first approximation, the SRM
configuration, the roughness of a fracture profile is defined
asw = (maxh;(x) — minh;(x)), whereh;(x) is the inter-
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FIG. 1. Patterns of a microcrack coalescence process in BIG. 2. The magnitude of coalescence events as a function
1000 X 1000 lattice. (a) Just before fracture and (b) a newly of time in the evolution process shown in Fig. 1. Here, the
nucleated microcrack triggers the catastrophic fracture. magnitude of a coalescence event is proportional to its length.
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P(> 9) where T is the length of observation interval amd is
1 ey . - the total number of coalescence events observed in that
"o o ] interval [15].
N 1 The choice of models is based on the Akaike information
R 1 criterion (AIC), which is defined as AIG= —2logL +
3 S 3 2k, where logl is the maximum likelihood for a given
"% ] model andk is the number of parameters to be fitted
-ng 1 in this model [16]. This represents a rough way of
0.01 £ %o E compensating for the effect of adding parameters, and is
o, ] a useful heuristic measure of the relative effectiveness of
o . ] different models. For example, the stress release model
0.001 . P with three parameters as against the Poisson model with
10 g 100 only one or the Poisson with exponential trend with two,

FIG. 3. The cumulative distribution of coalescence eventsShOUId demonstrate a significantly better fit to justify the

(over around 30 random simulations) with magnitude greatefdditional parameters. The best model is selected for
than s, where the slope of the dotted line 4s3.0. which AIC has the smallest value [17]. However, we

should notice that the AIC value obtained here is used as a
rgggh guide only, since the amount of coalescence events
iS not very large and the distribution of the log-likelihood

is nonstandard.

Analytical results for the microcrack coalescence
process, as shown in Figs. 1 and 2, indicate that the stress
release model fits the data better than both the Poisson
gnodel [AAIC = AIC(SRM) — AIC(Poisson = —4.99]
ggxd the Poisson model with trendAIC = AIC(SRM) —

can be used to model at least the first and second phases
mentioned above. The simplest form¥f{o) is taken as
an exponential functioW’ (o) = explu + vo), whereu
andv are constants with indicating the sensitivity to risk.
This is a convenient compromise between time-predictabl
and purely random (Poisson) processes [14].

The key for statistical analysis is that the coalescenc
events in the evolution process can be treated as a poi
process in time-stress space with the conditional intensit
function

C(Poisson with trend= —1.58]. This means that the

oalescence process is not fully random. Using the fitted
parameters, we can reproduce the change of the total
Z S'(t)D stress versus time in th(_a system, as shown _in_ Fig. 5.. _A

! ’ near-critical stable state is observed in the vicinity of criti-

3) cal fracture where the interaction between enlarging and
shielding effects in the coalescence process is balanced.
wherea [= u + va(0)], v, and p are the parameters As recent research shows, if some similar mechanism,
to be fitted, and the distribution of the stress relefise such as plasticity, is introduced, critical steady state can be
in a coalescence event is independent of the stress levglso observed in microfracturing phenomena [18]. Using
itself. Estimates of these parameters can be found byhe same approach, we can check the problem of whether

At) = V[o(r)] = exp<a + V|:pl‘ —

i<t

maximizing the log-likelihood function or not a final fracture surface is governed by minimum
N - energy [19]. Unfortunately, the difference of AIC values
logL = Z log A(f;) — ] M) dp, (4) between stress release model and energy release model is
i=1 0
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FIG. 4. Log-log plot of the fracture profile roughness versusFIG. 5. The total stress in the system versus time is repro-
the system size. (see Fig. 1), where the slope of the dotted duced by the fitted parameters in the stress release model, where
line is 5. a = —698, p = 0.075, andv = 0.015.
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