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A B S T R A C T :  Some properties of hyperchaos are exploited by studying both uncou- 
pled and coupled CML. In addition to usual properties of chaotic strange attractors, 
there are other interesting properties, such as: the number of unstable periodic points 
embedded in the strange attractor increases dramatically increasing and a large num- 
ber of low-dimensional chaotic invariant sets are contained in the strange attractor. 
These properties may be useful for regarding the edge of chaos as the origin of com- 
plexity of dynamical systems. 

K E Y  W O R D S :  hyperchaos, strange attractor, unstable periodic point, pattern for- 
mation 

I I N T R O D U C T I O N  

The dynamical system with many degrees of freedom often exhibit complicated behav- 
iors. Recently, this subject has drawn researchers more attention. The dynamical behavior 
of so called "hyperchaos" with more than one positive Lyapunov exponents often appears 
in the numerical simulation of a multi-degree-of-freedom system. So does in the numerical 
investigation on coupled maps of lattice (CML) [1]. In the analysis of zigzag phenomenon 
in CML, we have derived a two-dimensional map in which the states with two positive 
Lyapunov exponents occur. We conjecture that  the hyperchaotic states of a multi-degree- 
of-freedo system has exerted great effects on the origin of complicated behavior. Therefore, 
it is necessary to study hyperchaos in multi-degree-of-freedom systems. 

In order to simplify the discussion and to avoid mathematical  difficulties, we introduce 
a simple uncoupled two-dimensional logistic map at first 

{ xn+l = 4xn(1 - x~) 
L :  (1) 

Y~+I = 4y~(1 - y~) 

where L : [0, 1] x [0, 1] -~ [0, 1] x [0, 1]. Model (1) may contain certain primary information of 
hyperchaos. Thus some important  properties of hyperchaos can be summarised by analysing 
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Eq.(1). Then a coupled two-dimensional map in [2] is t reated as an example to illustrate 
these properties of hyperchaos by both theoretic analysis and numerical simulations. 

2 T H E  D Y N A M I C A L  B E H A V I O R  A N D  T H E  S T R U C T U R E  O F  S T R A N G E  
A T T R A C T O R  O F  M A P  L 

The dynamical behaviors of map L axe given as follow. 
P r o p e r t y  1: L is chaotic in the sense of Marotto [3~5]. 
Proof: Logistic map f : Xn+l = 4xn(1 - x~) is chaotic in the sense of Maxotto, namely 

in a small neighborhood of the fixed point &o, there is a point & and a positive M > 0, 
"such that  fM(~) = Xo and ]DfU(&)l ~ O. Now, (xO,Yo) is a fixed point of map L, where 
Xo = Yo -- xo- It is obvious that  a point (x,y),  where x = y = ~, can be found in a 
neighborhood of the fixed point, such that  LM(x,y) = (xo, Yo) and [DLM(x,y)] ~ O. So L 
is chaotic in the sense of Maxotto. 

For Eq.(1), Vx E [0, 1] and Vy E [0, 1], a corresponding symbol series in ~2 can be 
defined. Then the shift map a : Z2 • E2 -+ ~U2 x E2 can be set, namely Vs = (.SoSlS2 ...) E Z2 
and, Vt = ( . to t l t2  . . . )  E Z2 

o(s ,  t) = (as ,  at)  = (s', t') 

where s' = (.sls2s3...) and t' = (.tlt2t3...). 
P r o p e r t y  2: LI[0,1lx[0,1] ,,~ a[~2x,~ 2. 
Proof: Proper ty  2 is easily derived from the fact that  map f : x,,+l = 4x , (1  - x,,) 

possesses property f[[0,x] "" alE2. 
As a result of the dynamical behavior of a on Z2 x ,~2, L is topologically transitive 

and sensitively dependent on initial conditions on [0, 1] x [0, 1]. 
P r o p e r t y  3: L has two positive Lyapunov exponents. 
Proof: The result is obvious. 
According to properties 1-3, the dynamical behavior of L is hyperchaotic. Therefore it 

has a strange at t ractor  with hyperchaotic behavior on [0, 1] x [0, 1]. Based on the characters 
of one-dimensional logistic map, this strange at tractor  must spread all over the region [0, 1] x 
[0, 1]. This strange at t ractor  has the following proper t ies .  

P r o p e r t y  4: A = WU(p), where p is an expanding fixed point of L on [0, 1] x [0, 1]. 
Proof: A is an invariant set of L,p E A, so I~loc(p ) E A 

c A 

n u U L (Wlor C A U Ln(Wj'~c(p)) C A 
n>0 n>0 

Hence W~(p) " C A. On the other hand, L is topological transitive on A, and W'~(p) is an 
open set, so A C U L~(Wl'~c(p)), namely A C W~'(p). Thus is A = W'~(p) �9 proved. 

n>0 
P r o p e r t y  5: The periodic points in A is dense. 
Proof: V(xo, Yo) E [0, 1] • [0, 1], V is an E-neighborhood of (Xo, yo). U is also a neigh- 

borhood of (xo,Y0), of which the diameter is less than E/v~.  Based on the fact that  the 
periodic points of logistic map with A = 4 is dense in [0, 1], there exist periodic points ~ and 

of logistic maps Xn+ 1 . :  4x~(1 - xn) and Yn+l = 4yn(1 - Yn) in the U (1 {x = x0} and 
UO {y = Yo}- Then (~,~) E V and (~,~) is a periodic point of L. Since E is arbitrary small, 
the periodic points of L is dense in A. 

From the above discussion, the geometric structure of the hyperchaotic strange at- 
tractors is almost same as that  of usual chaotic strange attractors with only one positive 
Lyapunov exponent[6]. The difference between them is shown in their phase portraits. The 
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former spreads all over some region in phase space, and the latter only converges to a low- 
dimensional manifold in phase space. 

3 N E W  P R O P E R T I E S  OF L 

Besides the properties 1-5, which are common for usual chaotic strange attractors, 
there are two new properties for hyperchaotic strange attractors. 

(1) The number of periodic points is countable square. 
The one-dimensional logistic map with A = 4 has countable unstable periodic points. 

Let Xo be a periodic point of xn+l = 4xn(1 - x , )  with period P, Yo is also a periodic point 
of Y~+I = 4y,~(1 - y~) with period q, then (Xo, Yo) is an expanding periodic point of L w i t h  
period pq/k where k is the largest common divisor of p and q. Because the numbers of xo 
and Yo are countable respectively, the number of (Xo, Yo) is countable square. The number 
of periodic points does not attain uncountable, but it increases dramatically. In particular, 
various arrangements of periodic points in (x, y) plane can occur. This provides a necessary 
condition to produce complicated patterns in physical space. Here periodic points with 
period 6 are taken as an example to illustrate these arrangements. 

(i) The arrangement in a, straight line parallel to a coordinate axis 
The periodic orbit {(Xl, Yl), (zl,  Y2), (Xl, Y3), (Xl, Y4), (Xl, Yb), (xl, Y6)} is this kind of 

arrangement, where {xl } and {yl, Y2, y3, Ya, Yb, Y6} are respectively a fixed point and a pe- 
riodic orbit with period 6 of logistic map. The periodic orbit {(xl,Yl), (x2,yl),  (x3,yl),  
(x4, Yl), (Xb, Yl), (x6, Yl)} belongs to the same kind. 

(ii) The arrangement in two straight lines parallel to y axis 
The periodic orbit {(xl, Yl), (x2, y2), (Xl, Y3), (x2, Yl), (Xl, Y2), (x2, Y3)} is this kind of 

arrangement, where {Xl, x2} and (Yl, Y2, Y3} are respectively periodic orbits with period 2 
and 3 of the logistic map. ((xl ,y l) ,  (x2,Y2), (x3,yl),  (xl,y2), (x2,Yl), (x3,y2)} is the same 
type of periodic orbits, which is arranged in two straight lines parallel to x axis. 

(iii) The arrangement in a diagonal line 
The periodic orbit {(Xl, Yl), (x2, Y2), (x3, Y3), (x4, Y4), (Xb, Yb), (x6, Y6)} is this arrange- 

ment, where {Yl,Y2,Y3,Yd,Yb,Y6} and {Xl,X2,X3,X4,Xb,X6} are the same periodic orbits 
with period 6 of logistic map. 

(iv) The other arrangement that is different from arrangements (i)..~(iii) 
The periodic orbit {(xl, Yl), (x2, Y2), (X3, Y3), (X4, Y4), (Xb, Yb), (x6, Y6)} is this arrange- 

ment, where {Xl, x2, x3, xa, xb, x6 } and {y~, Y2, Y3, Y4, Yb, Y6 } are different periodic orbits with 
period 6 of logistic map. 

(2) There exist low-dimensional chaotic invariant sets in A. 
For map (1), there are a lot of low-dimensional chaotic invariant sets. 
A (k) = {(xi,yi)li = 1, 21--.; {xi} (or {Yi}) is a periodic orbit with period k of logistic 

map and {Yi} (or {xi}) is a chaotic orbit of logistic map } 
It is obvious that  A (k) C A, and A (k) is an invariant set of L consisting of k straight 

lines parallel to x axis (or y axis) in (x, y) plane. These invariant sets do not exist in usual 
chaotic strange attractors with only one positive Lyapunov exponent: 

4 A N  E X A M P L E  O F  A C O U P L E D  T W O - D I M E N S I O N A L  M A P  

The zigzag pattern in CLM can be described by the coupled two-dimensional map[ 2] 

{ x o + l  = 1 - a(x  + 
Z :  �9 

Y,+l -- -2a (1  - 2c)xnyn 
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Fix a = 1.95. For ~ = 0.01 and ~ = 0.20, the a t t rac tors  of map (2) obta ined  by numerical  
s imulat ion are spreading ones [2]. 

The  dynamical  propert ies  of map (2) are discussed at first�9 Z is chaotic in the  sense of 
Marot to ,  because if yn = 0 map  (2) is reduced to the logistic map tha t  is chaotic in the sense 
of Marot to .  In addit ion,  numerical  experiments  show tha t  Lyapunov  exponents  are L E ~  = 

0.575020, L E ~  = 0.573368 for ~ = 0.01, and L E ~  = 0.480865, L E ~  = 0.479264 for ~ = 0.20. 
Hence Z is hyperchaot ic .  To investigate the  s t ructure  of the strange a t t r ac to r  corresponding 
to hyperchaos  in the phase space, numerical  research is carried out  as follow�9 Let (~, 0) be 
an expanding  fixed point  of map (2). Some points on the boundary  of a sufficiently small 
ne ighborhood  of (2, 0). These points are i terated forward until the expanding processes are 
over. The  results can be considered as the  closure of  the  unstable manifold of  the  expanding  
fixed point.  The  case tha t  r = 0.01 ,and s = 0.20 are respectively depicted in Fig.1 and 
Fig.2. Compar ing  with the results in [2], w e  infer t ha t  the closure of the unstable  manifold 
of the expanding  fixed point  is identified with the strange a t t ractor .  
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Map (2) is reduced to a chaotic logistic map  if y~ = 0. Thus  all periodic points  of 
the  logistic map  are unstable  ones embedded in the strange a t t r ac to r  of  map  (2). Besides 
these periodic points  with yu = 0, there are many  other  unstable periodic points  embedded  
in the  s t range a t t ractor .  Period 1, 2, and 3 points  are numerical ly determined,  and the 
number  of t hem are listed in Table 1. There  are a lot of periodic points with y~ ~ 0. In 
addit ion,  the s t range a t t r ac to r  of  m a p  (2) contains a low-dimensional chaotic invariant  set 
A = { ( x , ~ , y , O , n  E N l y n  -= O, z,~ such tha t  xn+l = 1 - a x ~ , a  = 1.95}. 

Tab le  1 N u m b e r  o f  u n s t a b l e  pe r iod i c  po in t s  o f  m a p  (2) 

E ---- 0.01 e --- 0 .20 

Yn = 0 Yn 5 0 Yn : 0  Yn 5 s  
p e r i o d  1 po in t  2 2 2 2 

p e r i o d  2 po in t  2 10 2 1 

p e r i o d  3 po in t  7 52 6 6 

By theoret ic  analysis and numerical  simulation in the case study, we find tha t  basically 
hyperchaos  in coupled maps  has the same propert ies as those in uncoupled maps,  a l though 
we have not  str ict ly proved it yet. 
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5 D I S C U S S I O N  

Based on the analysis above, some conclusions about hyperchaos can be drawn. 
(1) For hyperchaotic  states of a dynamical system, the number of positive Lyapunov expo- 

nent is considerably crucial to influencing its dynamical behaviors. 
(2) The geometric structure of hyperchaotic strange at tractor  is basically similar to that  

of usual chaotic strange attractors. As the number  of positive Lyapunov exponents 
increases, ordered spatiotemporal structures and the structures of order in space and 
chaos in time embedded in hyperchaotic s trange attractors also increase greatly. 

(3) From theoretic view point, t h e  composition of the ordered spatiotemporal structures 
and the structures of order in space and chaos in time embedded in hyperchaotic strange 
is unstable and even expanding. For self-adjust systems under chaotic condition, this 
composition can become various patterns in physical space by various ways, such as 
OGY method [7], unstable controlling method Is], exact linearized method [9] and e tcf l  ~ 
Perhaps it is just what the term "edge of chaos ''[m] implies. 

(4) If the dimension of a multi-degrees-of-freedom system is very high, and thus the number of 
positive Lyapunov exponents can also be very large. In hyperchaotic strange attractors,  
there are a lot of unstable ordered structures (sometimes, these structures are chaotic 
in time), the number of these structures can come up to the power of countable. If the 
system can identify an order structure embedded in this strange at tractor,  the pat tern 
in physical space can be formed. If the condition is slightly changed, this pat tern will 
be ou t  of control. As the system will realize other  order structure, the new pat tern is 
formed. The idea is coincided with the concept of complexity in [12]. Further work will 
be reported elsewhere. 
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