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Abstract

Finite element analysis is employed to investigate void growth embedded in elastic±plastic

matrix material. Axisymmetric and plane stress conditions are considered. The simulation of
void growth in a unit cell model is carried out over a wide range of triaxial tensile stressing or
large plastic straining for various strain hardening materials to study the mechanism of void
growth in ductile materials. Triaxial tension and large plastic strain encircling around the void

are found to be of most importance for driving void growth. The straining mode of incre-
mental loading which favors the necessary strain concentration around void for its growth can
be characterized by the vanishing condition of a parameter called ``the third invariant of

generalized strain rate''. Under this condition, it accentuates the internal strain concentration
and the strain energy stored/dissipated within the material layer surrounding the void.
Experimental results are cited to justify the e�ect of this loading parameter. # 2000 Elsevier

Science Ltd. All rights reserved.
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1. Introduction

The analytic formulations given by Rice and Tracey (1969) and Gurson (1977)
have been widely used to estimate the ductile damage caused by void growth in
materials. These models do help understand the deterioration of the mechanical
behavior of materials being voided.
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However, years afterwards, discrepancies have been found between the predictions
of these models and experimental results or those based on concise ®nite element
modeling. The reasons can be attributed to (a) the in¯uence of strain softening or
secondary void damage in the matrix material around primary void (Li and
Howard, 1983; Li et al., 1989; Brocks et al., 1995); (b) plastic ¯ow localization due
to non-uniform void distribution (Ohno and Hutchinson, 1984; Becker, 1987; Mag-
nusen et al., 1988; Becker and Smelser, 1994); (c) the e�ect of void shape on void
growth and ductility (Li, 1985a; Becker et al., 1989; Yee and Mear, 1996); (d) void-
ing instability in elastic±plastic solids (Koplik and Needleman, 1988; Huang et al.,
1991); (e) the three dimensional e�ects (Hom and McMeeking, 1989; Worswick and
Pick, 1990) and others such as, the e�ects of void cluster size (Benson, 1995) and the
matrix compressibility on void growth (Briottet et al., 1996).
Tvergaard (1981) and Needleman and Tvergaard (1984) tried to modify Gurson's

model by adding more parameters so as to bring shear band bifurcation predictions
of the Gurson constitutive relation into closer agreement with corresponding results
of full numerical analysis and to take into account the e�ects of rapid void coales-
cence at failure. A sophisticated process was implemented to determine the para-
meters for making comparisons of the calculations between the modi®ed Gurson
model and those of experimental results (Becker et al., 1988). As another approach,
Li (1985b) proposed to use dilatational constitutive equations to account for the
voiding damage. Computer simulations of axisymmetric bars and microstructural
measurements were employed to determine the two tangent moduli included in the
dilatational constitutive equations. The whole process was also complicated for
comparing theoretical modelings with the experimental results of notched bars,
cracked three-point bend specimens (Li et al., 1992) and the case of shear band
bifurcation (Li and Zhu, 1995).
This general background stimulates our interest to focus attention again on void

growth analysis, since more accurate modeling and simpler implementation are
expected to be based on deeper understanding of its mechanism. A more direct reason
comes from the question raised by the experiments done by Zhang et al. (1990), in
which they tested the void growth in dual-phase steel sheets subjected to three strain-
ing paths. They measured the growth of the sizes of void in the sheets and found that
it was the plane strain loading condition that yielded the fastest void growth, although
the triaxial tension and plastic strain loaded on the sheet were both lower than those
in the case of biaxial tension. So far, this phenomenon is not able to be explained by
the existing models. Hence we may ask, besides the plastic equivalent strain (or
equivalently saying the equivalent stress) and the triaxial tension, should there be a
third loading factor that could be a�ecting the growth of void?
The main goal of this paper is focused on the e�ect of this third parameter, which

is initially suggested in the following as ``the third invariant of generalized strain
rate.'' The vanishing condition of this parameter is numerically proved to have quite
similar e�ect as that of large triaxial stresses to yield concentrated plastic strains
encircling around the void. This mechanism is of vital necessity for moving the
boundary layer of void. Two dimensional modeling (before the most preferable
three dimensional one that should be followed afterwards) is carried out in this
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paper to make primary studies of the mechanism of void growth in a wide range of
loading for various strain hardening materials.

2. Finite element modeling

2.1. Cell model under proportional straining

Matrix material containing periodically distributed voids can be modeled by con-
sidering a unit cell embedding one void. A quadrant of this cell model is shown in
Fig. 1(a) for analyzing axisymmetric (r, z) and plane stress (x, y) cases. The radius of
the initial void is given as R0, when the half lengths along the main directions of the
unit cell are initially equal and normalized as a unit. The shape of void is spherical in
the case of using axisymmetric cell, but is circular throughout the thickness when the
plane stress model is employed.
Proportional straining is enforced on the cell whose boundaries are free from

shear stress and kept straight to ensure continuity; so as to take into account the
interaction between voids distributed periodically. During an incremental displace-
ment loading, we have

dUr

Lr
� � dWz

Lz
�i:e:d"�r � �d"�z� �1�

for the axisymmetric model, in which Lr and Ur are, respectively, the current radius
and the radial displacement along the radial direction r of the cell, both being nor-
malized by the initial cell radius. Correspondingly, Lz and Wz are assigned to those
parameters of the axial direction z. � is a proportional straining parameter, con-
trolling the overall straining ratio between "�r and "�z of the cell. Similarly, we take

Fig. 1. A quadrant of cell model and its ®nite element mesh.
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dUx

Lx
� � dVy

Ly
�i:e:d"�x � �d"�y� �2�

for plane stress model associated with similar sense in the nominations of the para-
meters Lx, Ux, Ly and Vy. Hence, Eq. (2) represents a proportional straining
between overall strains "�x and "�y.

2.2. Constitutive equations

The elastic±plastic material that encircles the void is taken to follow a generalized
form of the Prandtl±Reuss equations in the case of large strain analysis, that is, the
relationship between the Jaumann rate D=Dt of Kirchho� stress �ij and the defor-
mation rate Dkl [which is related to the velocity Vk as Dkl � 1

2 �Vk;l � Vl;k��
D
Dt �ij � LijklDkl �3a�

with the sti�ness tensor

Lijkl � E

1� �
1

2
�ik�jl � �il�jk

ÿ �� �

1ÿ 2�
�ij�kl ÿ 3

2�2e

E

Ete

SijSkl

2

3
1� �� � � E

Ete

2664
3775 �3b�

In Eq. (3b), E and � are, respectively, Young's modulus and Poisson's ratio; �e �
3
2SijSji

ÿ �1=2
is equivalent stress with the deviatoric stress written as Sij, �ij denotes Kro-

necker delta;E
�p�
te is the plastic tangent modulus along the equivalent stress±strain curve

(�e ÿ " p� �
e ). Assuming the matrix material to follow the power law and neglecting the

di�erence between the total equivalent strain "e and its plastic part "
�p�
e , we take

E
p� �

te

E
� n

"e

"y

� �nÿ1
�3c�

for strain hardening material with various values of exponent parameter n (given as
n=0.05, 0.10 and 0.20) and "y is the yield strain (taken as "y=0.002).

2.3. Functional formulation for solution

The solution of the problem is obtained through using the up-dated Lagrangian
formulation given by McMeeking and Rice (1975) for elastic±plastic, large strain
analysis. It is to minimize the functionalY

� 1

2

�
v

D�ij

Dt Dij ÿ �ij 2DikDjk ÿ Vk;iVk;j

ÿ �� �
dvÿ

�
S

T
:

iVids �4�

where �ij is the true stress and T
.
i denotes the rate of surface traction. In our com-

putations, the elongation (Wz or Vy) along the major loading axis is chosen for the
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generalized time t. The procedure of computations within each incremental �t of
time follows the explanation given by Li and Howard (1983). This non-iterative
updated procedure, as has been checked, may induce an error in the prediction of
the local stresses in the ®nite elements less than 0.8%, when compared with the
corresponding stresses that should be yielded by the local strains accumulated in
those elements, in case the increments of loading are taken carefully and small
enough in the computations. The prediction of such precision would be considered
as acceptable for numerical analysis. The number of incremental steps needed to
complete each calculation varies from 500 to 3000, depending on the ductility of the
sample. We mostly stopped the calculation of each sample when any local equivalent
strain in the periphery zone of the void reached "e=1, so as to have the same basis
for comparing the local strain distributions of all the examples considered.

2.4. Finite element meshes and justi®cations

A quadrant of the cell model, as shown in Fig. 1(b), was subdivided into 224
quadrilaterals with four crossed triangular elements in each of it, altogether con-
sisted of 896 constant strain triangular elements for employing the ®nite element
method. Finer mesh of 1680 (420�4) elements was used to check the precision of the
former calculations with regard to the maximum loading stresses and the current void
volume fractions. In both aspects, the di�erences are limited within 1%. The ®ner
mesh was also used for the case when the instability of void growth was concerned.
As our main concern in this paper, the calculations of void growth based on direct

integration of current void volume were also checked by an analytic formula,
derived by Koplik and Needleman (1988) for axisymmetric cell model of matrix
materials associated with plastic incompressibility. The current void volume fraction
can be expressed as

fv � 1ÿ 1ÿ fn0� � 1� 3 1ÿ 2�� �
E

��m

� �
V

V0
�5�

where fn and fn0 represent the current and the initial void volume fraction, respec-
tively, ��m � 1

3 ��kk

ÿ �
is the overall mean stress loaded on the cell model, V and V0 are,

respectively, the current and the initial volume of the cell. The two methods for
calculating void volume fraction fn produce very close results within the ranges of
our calculations.

3. Void growth in axisymmetric cell model

3.1. Relationships in axisymmetric cell model under proportional straining

During proportional straining at the boundaries of an axisymmetric cell model
embedding a spherical void, the overall principal true strain "�r and "�z can be calculated
by the following relationships:
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"�z � ln 1�Wz� �

��r � ln 1�Ur� � � ���z �6a�
then the overall equivalent strain ��e is

"�e � 2

3
"�z ÿ "�r� � �6b�

The overall equivalent stress ��e and mean stress ��m can be related to the average
axial stress ��z and the average radial stress �� r along the boundaries of the cell model as

��e � ��z ÿ �� r

�� ��
��m � ��z � 2�� r

3
�7�

The bar over the symbols represents the sense of overall response of the cell so as to
distinguish with the local stress or strain within the matrix.

3.2. The e�ects of triaxiality and large plastic strain around void

The initial void volume fraction is fn0=0.225%, i.e. R0=0.15. We calculated for
�=1, 0.5, 0.3, 0.0, ÿ0.3, ÿ0.45, ÿ0.48, ÿ0.50, ÿ0.75 and ÿ1. The case of �=1,
��e="�e=0, is a pure triaxial stressing condition. When �4ÿ0.5, the overall mean
stress turns from tension to compression.
Fig. 2(a)±(c) show the growth of the void volume fraction fn with respect to the

overall equivalent strain "�e for various strain-hardening exponents n=0.05, 0.1 and 0.2.
Correspondingly, the relationships between the triaxial parameter T( � ��m=��e) and "�e
are also given in Fig. 3(a)±(c). In view of these two groups of ®gures, it is obvious that
void growthmainly depends on the triaxiality conditions. After the turning condition of
�=ÿ0.5, once the sign of T changes, then void stops growing or shrinks.
The contours of constant local equivalent strain "e are shown in Fig. 4 with the

current shapes of the cell and void for n=0.2 and a=1.0, ÿ0.3, ÿ0.45 and ÿ0.50.
The strain distributions along the radial axis and the central axis are also depicted
along the borders of the quadrant with the largest point referring to "e=1. Voids
grow almost spherically with slight ¯attening along the radial direction r within the
range of ÿ0.34�41. The overall equivalent strain ��e keeps to be zero in the case of
�=1.0, plastic area covers the void as a spherical layer leaving large zone of elasti-
city in the outer part of the matrix. Elastic unloading can happen in the matrix and
is sooner or later accompanied by dropping of the overall stress from its maximum
point in the range of ÿ0.45<�<1. Void shape changes to prolate type with slight
amount of growth, when ÿ0.5<�<ÿ0.45, then only small zone of elastic unloading
can be seen above the crest of the void. Beyond this transition range no elastic unload-
ing is seen if ÿ1.0<�<ÿ0.5, and the void shrinks spherically. Correspondingly, no
sharp drop of stresses are likely to occur within the range of ÿ1.0<�<ÿ0.45.
To summarize, we can say that triaxiality is the driving force for enlarging void,

since no void can grow without it. On the other hand, a layer of large plastic strain
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around the void is a favorable and necessary environment for the void to grow.
Therefore, compared with the situation of the cell which has harder matrix, softer
material yields larger void fraction under the same amount of overall strain "�e.
Within the range of the samples studied above, none of these two factors can be
omitted when void growth is concerned. The extreme case of �=1.0 typically
demonstrates this nature. While the case of �=ÿ0.5 yields no void growth as the
triaxiality turns to nil, although the internal matrix is covered thoroughly by large
plastic strains. Unless new voids are nucleated, no void volume fraction can be
increased under the conditions of �4ÿ0.5.

3.3. The e�ects of the evolution of void shape

Figs. 3 and 4 also indicate that the shape of void is strongly dependent on the
triaxiality condition T of the cell model subjected to straining. The transition of the

Fig. 2. The growth of void volume fraction fv with respect to the overall equivalent strain "�e in the axi-

symmetric cells with various strain hardening exponents. (a) n=0.05, (b) n=0.10, (c) n=0.20.

Guo-Chen Li et al. / International Journal of Plasticity 16 (2000) 39±57 45



shape from slight oblate to prolate occurs within the range of ÿ0.45<�<ÿ0.30.
This trend is similar to the results given by Koplik and Needleman (1988) and
Brocks et al. (1995), although their loading process is to keep triaxiality T constant.
The ductility of material is much gained from the transition. This could be

attributed to that the prolate shape of void would be equivalent to a decrease of the
e�ective size of a spherical void. This equivalency can be explained by the similarity
in the damage e�ects caused by initially prolate or oblate voids with those of their
corresponding void which has spherical shape with the same horizontal radius as
theirs. Li (1985a) [published in Chinese but with a short English presentation in Li
(1997)] and Becker et al. (1989) have come to the same conclusion from their inde-
pendent studies that the failure of cell model should be related to the void radius
along the horizontal direction, rather than to the void volume itself. Li (1985a)
proposed the maximum loading point as the occurrence of failure, while Becker et
al. (1989) used the instability of void growth for failure.

Fig. 3. The relationship between the triaxiality parameter T and overall equivalent strain "�e of axisym-

metric cells with various strain hardening exponents. (a) n=0.05, (b) n=0.10, (c) n=0.20.
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3.4. The e�ects of straining mode

To exemplify the important role played by the large plastic strain around void and
to correlate this e�ect to the overall straining mode of the cell, we intend to study the
constant T modeling used by Koplik and Needleman (1988) and Brocks et al.
(1995). It was shown by Brocks et al. (1995) that the calculation results of the cell
model were strongly in¯uenced by the ®nite element formulations under the lower
triaxiality condition (T=1). It seems to us that the uniqueness of solution is then ques-
tionable, we therefore only chooseT=2and 3 as samples for investigating the instability
of void growth. It is necessary to unravel themechanismwhich causes the void to grow
rapidly, when the straining mode approaches to an uniaxial condition; since triaxi-
ality T is constant and the overall equivalent strain "�e varies very little.
As the material in the matrix of the cell model is expected to undergo much larger

strain than those in the previous cases, we have to use ®ner mesh for the computations

Fig. 4. The contours of constant local strain "e (with 0.1 grading) in axisymmetric cells (n=0.20), when �"e�max �
1 at (a) "�e � 0 �� � 1�, (b) "�e � 0:043 �� � ÿ0:3�, (c) � 0:140 �� � ÿ0:45�, and (d) � 0:440 �� � ÿ0:5�.
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(i.e. 1680 constant strain triangular elements) to avoid deterioration that could be
caused by those extremely distorted elements during numerical calculations.
In order to keep the loading triaxiality constant, we had to adjust the proportional

straining parameter � of Eq. (1) with respect to the overall equivalent strain "�e, in
such a manner as shown in Fig. 5(a). When � is positive, it denotes that the lateral
boundary of the cell is expanding. Conversely, it shrinks if � turns to negative. Both
samples (T=2 and 3 with n=0.2) have the same ending state of � approaching zero.
The abrupt turning point is marked by a solid circle in Fig. 5(a) and (b), and is
referred to as the occurrence of instability. Larger critical values of fnc is needed in
T=2 than that of T=3 to reach the instability point.
Actually, once approaching to this point, large zone of elastic unloading occurs in

outer region of the cell within a very small extension of further elongation. This is in
the same way as that predicted by Koplik and Needleman (1988). Subsequently, an
exponential growth of void can be seen in Fig. 5(b) and the corresponding distribu-
tions of local equivalent strain at the instability points are given in Fig. 6. Large
strain concentration occurs around the void and strain localizes in the ligament
between neighboring voids with elastic unloading in the outer region of the matrix
portion. This is a favorable environment for rapid growth of void as demonstrated
previously and the turning of the parameter � to zero should be the stimulating
factor that incurs the consequence.
A general formulation for this limiting case can be expressed in a generalized rate

form under the condition of incremental loading. That is

"�
:
1"�
:
2"�
:
3 � 0 �8�

where 1, 2 and 3 are referring to the three main axes of strain rate in continuum, and the
cell model in Fig. 1(a) is representing the detailed microstructure of this continuum.

Fig. 5. (a) The variation of the proportional straining parameter a with respect to overall equivalent

strain "�e (n=0.20) and (b) the growth of void volume fraction fv with respect to overall equivalent strain

"�e in axisymmetric cells loaded by constant triaxiality T=2 and 3 (n=0.20).
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Eq. (8) implies that if any main strain rate keeps to be zero (except the meaningless
case of having three of them equal to zero) it would be a dangerous condition of
inducing rapid void growth. We will see in the next section that criterion (8) can also
be applied to plane stress modeling of void growth. We may refer to this criterion as
the vanishing condition of the third invariant of generalized strain rate (the rate is
counted on the change with respect to the generalized time).

4. Void growth in plane stress cell model

4.1. Considerations in plane stress cell model

Although using a three dimensional cell with an initially spherical void would be
the best for examining void growth under plane-stress loading, a two dimensional
substitute can also be proved to be convincing for the explanation of the e�ect of
straining mode observed in the tests of sheet metal forming before the occurrence of
instability. That is to say, no localized thinning should occur in the plane stress cell
model. This consideration is carefully taken into account so as to limit our compu-
tations not to run to too far an extent. Also limit our modeling as acceptable only to
the surface layer of the metal sheet.
A quadrant of the plane stress cell model and its ®nite element discretizaton are

the same as those of the axisymmetric cases and are shown in Fig. 1(a) and (b). The
overall equivalent strain and mean strain can be written in integration forms as

"�e �
�t
0

d"�e �9a�

and

Fig. 6. The contours of constant local strain "e in the axisymmetric cells (n=0.20) loaded by constant

triaxiality T=2 ("�e � 0:260) and T=3 ("�e � 0:114) at the instability of void growth.
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d"�e �
���
2
p

3
d"�x ÿ d"�y

ÿ �2� d"�y ÿ d"�z

ÿ �2� d"�z ÿ d"�x� �2
h i1=2

�9b�

In Eq. (9), d"�x and d"�y are the incremental loading strains given by Eq. (2), d"�z is
the incremental strain responded along the thickness and is counted as an average
over the whole matrix area. The overall equivalent stress ��e and the mean stress ��m
can be calculated by using

��e � ��2x ÿ ��x��y � ��2y
� �1=2

��m � ��x � ��y

3
�10�

where ��x and ��y are the average stresses along the boundary sections.
To check the validity of this two dimensional modeling, we calculated the pure

shear condition. The boundaries are so controlled as to yield uniform tensile dis-
placement along the x-direction but uniform compression on the y-direction. The
two overall stresses along the boundaries are kept to have the same absolute values
but opposite in sign as that done by Hom and McMeeking (1989) in their three
dimensional void model. The initial void areal proportion is taken as 6.5%, same as
the initial void volume fraction used by Hom and McMeeking (1989). The overall
true stress±strain curve is shown in the Appendix which is very near to the three
dimensional ®nite-element predictions given by Hom and McMeeking (1989). The
distribution of the local equivalent strain in the cell are quite similar to those given
by Hom and McMeeking at the middle cross-section of their cell model before the
overall axial straining is too large (i.e. "

:
a
.40.15).

4.2. Comparisons among various straining modes

In Fig. 7(a) are shown the relationships between the void areal fraction fa and the
overall equivalent strain "�e for �=1.0, 0 and ÿ0.45 with the strain hardening expo-

Fig. 7. (a) The growth of void areal fraction fa with respect to overall equivalent strain "�e and (b) the

relationship between the triaxiality parameter T and overall equivalent strain "�e in the plane stress cells

with various strain hardening exponents n=0.05, 0.10 and 0.20.
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nent n=0.05, 0.10 and 0.20. The corresponding conditions of the triaxiality T=��m/
��e are given in Fig. 7(b). We can ®nd that void growth is indeed fastest under the
plane strain mode of loading (�=0), even faster than the biaxial case (�=1.0),
although its triaxiality level is lower. This trend is in agreement with the experi-
mental observation to be cited later and also provides justi®cations of using plane
stress cell modeling to explain the phenomena in plane sheet testings.
Based on the computation results, we may think that besides the enlarging in¯u-

ence of triaxial tension on void, there must be some other mechanism which also
favors its growth. The plane stress cell modeling proves again that plastic strain
concentration around the void can also be a dominating factor. Let us de®ne a strain
concentration factor as

"s � "e� �maximum="�e �11�

which is the ratio between the maximum value of the local equivalent strain "e in the
matrix and the overall equivalent strain "�e loaded on the cell. Table 1 gives a list of
the values of the strain concentration factor "s at the same comparison basis of
having the maximum local strain "e=1; for �=1, 0 and ÿ0.45 with n=0.05, 0.10 and
0.20. In all cases, the straining condition of �=0 yields the largest value of "s and it
becomes that the softer the matrix (smaller n) the larger the value of strain concentration
factor. As can be seen from Fig. 7(b), the di�erence of triaxiality between the two
cases of �=0 and �=1 is not large, then the in¯uence of large plastic ¯ow around
the void can become overwhelming. Hence straining mode (�=0) comes into e�ect
through its in¯uence on the internal strain distribution around the void. It also
proves the characterization of this mode by using criterion (8) is meaningful, and the
use of an incremental (rate) form is more preferable for plastic analysis.

4.3. The stimulating mechanism in the plane strain mode of straining

Concentration of large plastic strain not only plays the role as an adjoint factor of
voiding but also stimulates void growth, since larger equivalent strain lowers down
the plastic sti�ness around the void. The dependence of void growth on the plastic
sti�ness of material has already been demonstrated in the samples of both the
axisymmetric models (Figs. 2 and 3) and the plane stress cases [Fig. 7(a) and (b)].
Softer matrix (with smaller value of n) can have larger void volume fraction fv or areal
fraction fa than the harder one (with larger value of n) under the same overall
equivalent strain "�e with even smaller triaxiality T.

Table 1

Strain concentration factor "s when local equivalent strain "e � 1

�\n 0.05 0.1 0.2

ÿ0.45 16.92 13.17 8.32

0 23.87 19.46 11.26

1 9.86 7.43 4.96
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We may further prove in the following examples that only an encircling layer
around the void is mainly e�ective for counting the dependence of void growth on
material sti�ness. Fig. 8(a) demonstrates the comparison between matrix having
single phase material (as boundary has the radius of 2R0 as demonstrated in the
corner of the ®gures and n=0.1 in the outer phase). The two materials yield almost
the same condition of void growth [see Fig. 8(a)], although the two-phase model
(with harder outer phase) may bring about a little higher triaxiality [see Fig. 8(b)]. If
we use n=0.1 for the single phase model, then computation results show that its
void growth will be lower than the two phase one used here, since the latter one has
a softer inner phase. The two models have almost the same conditions for triaxiality
as most part of the material in the two-phase model has the same strain hardening
exponent (n=0.1) as that of the single phase one. The use of a ``®ctitious'' two-phase
material is to prove that void growth is strongly dependent on the sti�ness of the
layer surrounding the void rather than on the block material apart from it. Then
large plastic strains within this surrounding layer would play an equivalent role as
softening the material to yield larger void growth. Although it is di�cult to have
``any existing experiment against which to test these predictions'', (Fleck and
Hutchinson, 1997), it is the same conclusion from both studies that void growth
should have strong dependence on the hardness of a shell surrounding the void.
Fleck and Hutchinson (1997) used ``strain gradient'' mechanism to harden the shell,
while we apply a two-phase model to the voided cell to soften the layer. The
approaches are di�erent but results of implication are equally satisfactory.
The above results inspire us to observe more closely on the inner area of the matrix.

By considering the ratio �se between the strain energy stored/dissipated in the inner area
and that of the whole matrix, when the cell model is composed of the same material of

Fig. 8. Comparison between the matrix having single phase material (n=0.05) and a two-phase material

(inner phase n=0.05 with its exterior radius as 2 R0, outer phase n=0.10). (a) The growth of void areal frac-

tion fa with respect to overall equivalent strain "�e. (b) The triaxiality T versus the overall equivalent strain "�e.
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n=0.05, 0.10 and 0.20. The inner area A has its exterior radius as 2 R0, leaving the
remaining part of the matrix as B. Hence, we have the strain energy ratio

�se �
�t
0

�
A

�ijDijdsdt=

�t
0

�
A�B

�ijDijdsdt �12�

we counted the variation of �se with respect to the void growth parameter fa/fa0
which is the ratio between the current and initial areal fractions for proportional
straining controlled as �=1, 0 and ÿ0.45. The results are depicted in Fig. 9, which
indicates that the case of plane strain loading has the largest proportion of strain energy
for its inner area and this situation would likely transfer more energy for void growth.
These examples demonstrate that the overall straining mode, which can be char-

acterized by criterion (8), has its in¯uence on not only the local strain concentration
that a�ects the plastic sti�ness around the void but also the distribution of strain
energy within the matrix. Stronger strain concentration brings about lower plastic
sti�ness associated with more energy stored/dissipated in the adjoining area of the
void, this can be understood as the facilitating mechanism for void growth.

4.4. Experimental justi®cations

To the surprise of Zhang et al. (1990), in their damage testing for measuring void
growth in dual-phase steel sheets, they found that it was the plane strain loading
case (where deformation was restricted along one of the two axial directions) that
yielded the maximum void growth rate instead of being the biaxial stretching case.
Based on a simple form of the deformation type of plastic equations for con-

tinuum, that is

"�ij � 	S� ij �13�

Fig. 9. The variation of the strain energy ratio �se with respect to the void growth parameter fa=fa0 (the

exterior radius of the region A is 2 R0).
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where 	=3"�e/2�� e with the equivalent stress ��e �
�������������
3
2S

�
ijS� ji

q
and the equivalent strain

"�e �
������������
2
3 "�ij"�ji

q
(when both elastic and volumetric strains are neglected. Zhang et al.

(1990) calculated the triaxiality parameter for plane sheet (�3 � 0) by the formula

T � ��m=��e � 1� ����
3
p

1� �� �2� �1=2
�14�

where � � "2="1. They had ��m=��e=0.666 for the biaxial stretching (�=0.87), but
0.592 for the plane strain loading (�=0.055) and 0.366 for the uniaxial tension
(�=ÿ0.45). They took six or seven straining levels for each loading case until
inhomogeneous instability deformation occurred. After reaching each straining
level, the specimen was unloaded for measurements. They measured the average
sizes of voids along both the rolling direction and the thickness direction of the
specimens with respect to the equivalent strain. These measurements were necessary
to exclude the in¯uence of void nucleation and mainly to count the size growth of
void. It was found that the plane strain loading yielded larger void size in both
directions than those of the biaxial stretching. These facts proved that the plane
strain loading case indeed had the fastest void growth rate, although its triaxiality
was less than that of the biaxial stretching.
The maximum values of the triaxiality results given in Fig. 7(b) are in good

agreement with those calculated by Eq. (4), which should be T=0.667 (biaxial,
�=1), 0.557 (plane strain, �=0), and 0.336 (uniaxial tension, �=ÿ0.45). The fastest
void growth given in Fig. 7(a) can provide an explanation for the question raised by
the experimental observations of Zhang et al. (1990). Besides that, plane strain case
is the favorable condition for localization to occur, which would incur void growth
instability. This phenomenon had been reported by Li and Zhu (1995) and will be
further addressed elsewhere with regard to the interaction between voiding nucleation
and growth and material bifurcation.

5. Conclusions

The main conclusions of this paper can be given as follows:

(a) Large triaxiality can always stimulate large void growth, even if the overall
equivalent strain are very small (e.g. the cases of ÿ0.34�40 in the axisym-
metric cell). On the other hand, small or none void growth can be issued if
triaxiality turns small or nil, although the overall equivalent strain can be large
(e.g. the cases of �4ÿ0.48 in the axisymmetric cell).

(b) It is initially suggested to notice that, under the conditions of constant triaxi-
ality or low triaxiality state, the straining mode characterized as the vanishing
state of the third invariant of generalized strain rate most favors the growth of
voids. This straining mode causes void growth instability in axisymmetric
samples and faster void growth with lower triaxiality in plane stress samples
under plane strain loading.
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(c) The straining mode comes into e�ect through in¯uencing the strain con-
centration and the proportion of strain energy distributed in the adjoining
layer encircling the void.

We do not intend to say much on the overall equivalent strain. It seems to us that it is
likely to play such a role as a magnifying parameter, since it usually increases with the
increase of triaxiality in the samples we studied here. Its in¯uence on the nucleation of
new voids is de®nite; however, this is not the purpose of our study in this paper.
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Appendix

Comparisons between the plane stress cell model (fa=6.5% initially) and the three
dimensional void model (fn=6.5% initially) of Hom and McMeeking (1989) is
shown in Fig. A1. The matrix material is taken to follow the same power law used
by those authers as

Fig. A1. Comparison of the true axial stress±strain curve ��a±"�a between plane stress cell model and three

dimensional cell model of Hom and McMeeking (1989).
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�e

�y

� �1=N

ÿ �e

�y
� 3G" p� �

e

�y
�15�

where �y is the yield stress, G is the elastic shear modulus and N is taken as 0.1. In
Fig. A1, ��a and "�a are the true tensile stress and strain loaded along the axial direc-
tion. ��a has equal absolute value as the compression stress loaded along the direc-
tion perpendicular to the axial axis in the pure shear condition. The stress±strain
response is very near to the three dimensional modeling prediction given by Hom
and McMeeking (1989).
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