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Dynamical symmetry of screened Coulomb potential and isotropic harmonic oscillator
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It is shown that for the screened Coulomb potential and isotropic harmonic oscillator, there exists an infinite
number of closed orbits for suitable angular momentum values. At the aphelion~perihelion! points of classical
orbits, an extended Runge-Lenz vector for the screened Coulomb potential and an extended quadrupole tensor
for the screened isotropic harmonic oscillator are still conserved. For the screened two-dimensional~2D!
Coulomb potential and isotropic harmonic oscillator, the dynamical symmetries SO3 and SU~2! are still
preserved at the aphelion~perihelion! points of classical orbits, respectively. For the screened 3D Coulomb
potential, the dynamical symmetry SO4 is also preserved at the aphelion~perihelion! points of classical orbits.
But for the screened 3D isotropic harmonic oscillator, the dynamical symmetry SU~2! is only preserved at the
aphelion ~perihelion! points of classical orbits in the eigencoordinate system. For the screened Coulomb
potential and isotropic harmonic oscillator, only the energy~but not angular momentum! raising and lowering
operators can be constructed from a factorization of the radial Schro¨dinger equation.

PACS number~s!: 03.65.Sq, 03.65.Ge
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Bertrand’s famous theorem in classical mechanics st
that the only central forces that result in closed orbits for
bound particles are the inverse square law and Hooke’s
@1,2#. In classical mechanics, the maximum number of fu
tional independent conserved quantities of a closed sys
with N degrees of freedom is 2N21 @3#. For a system with
independent conserved quantities, no fewer thanN can be
called integrable@4#. An integrable classical system withN
1L independent conserved quantities (0<L<N21) is
called L-fold degenerate, and there existL linear relations
with integer coefficients between theN frequenciesn i ( i
51,2, . . . ,N) of the system@5#. A classical system forL
5N21 is called a completely degenerate system, and th
remains only one independent frequency, which implies
existence of closed orbits. The orbit of a particle in the
tractive Coulomb potential„V(r )52k/r … is always closed
for any continuous energy (E,0) and angular momentum
L , i.e., an ellipse, of which the length of the semimajor a
is (m5k51) a51/(2uEu), and the eccentricity ise
5A122uEuL2. The period of motion is T51/n
5puEu23/2/A252pa3/2 ~Kepler’s law!. The closeness of the
orbits is guaranteed by the existence of an additional c
served quantity—the Runge-Lenz vectorR5p3L2r /r @6#.
In fact, the direction ofR is just that of the major axis of the
elliptic orbit, and the magnitude ofR is the eccentricity
(uRu5e). It is seen thatR•L50 andR252HL211, so the
number of independent conserved quantities is 5, and
hydrogen atom is a completely degenerate system. The e
tence of the Runge-Lenz vector implies that the Coulo
potential has a higher dynamical symmetry SO4 than its geo-
metric symmetry SO3 @7#. A similar situation exists for an
isotropic harmonic oscillator.

In quantum mechanics, for bound states, both the ang
momentum and energy are discrete. It is interesting to n
that the Coulomb potential and isotropic harmonic oscilla
are the only central potentials for which a radial Schro¨dinger
equation can be factorized to yieldboth energy and angula
1050-2947/2000/62~3!/032509~5!/$15.00 62 0325
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momentum raising and lowering operators connecting ne
boring simultaneous eigenstates of energy and angular
mentum@8–11#. It was shown that there exists an intima
relation between the raising and lowering operators in qu
tum mechanics, on the one hand, and the conserved qu
ties responsible for the closeness of classical orbits on
other hand, and that both are physically connected with
dynamical symmetry of the system considered@12,13#.

A careful examination of the arguments to derive Be
trand’s theorem shows that the form of the central poten
is assumed to be a power-law function ofr @2#. We believe
that Bertrand’s theorem does hold for a power-law cen
potential. However, if the restriction of a power-law form
the central potential is relaxed, Bertrand’s theorem may
extended. It was shown that there exists an infinite numbe
closed orbits~rather than elliptic orbits! for a particle with
suitable discrete angular momenta in the screened Coul
potential and isotropic harmonic oscillator@13,14#. In this
case, it was found thatonly the energy~but not angular mo-
mentum! raising and lowering operators can be construc
from a factorization of the radial Schro¨dinger equation. Gen-
eral consideration shows that when the Coulomb potentia
isotropic harmonic oscillator is screened, the dynamical sy
metry @SO(N11) for N-dimensional (ND) hydrogen atom
bound states or SU~N! for an ND isotropic harmonic oscil-
lator# is broken, as a result the closeness of classical orbi
lost in general. The revival of closeness of some class
orbits may be an indication of the recurrence of the dyna
cal symmetry. In this paper, the dynamical symmetry of
screened Coulomb potential and isotropic harmonic osc
tor will be investigated.

In quantum mechanics, the Schro¨dinger equation for the
Coulomb potential and isotropic harmonic oscillator in ar
trary dimensions can be solved exactly. In classical mech
ics, the orbits of a particle in a central potential, due to
conservation of angular momentumL , always lie in a 2D
plane perpendicular toL . For clarity and simplicity, to ex-
©2000 The American Physical Society09-1
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FIG. 1. Closed orbits of a particle in the screened 2D Coulomb potential of Eq.~1!, with l50.2 andE520.5. ~a! k51/2, ~b! k
51/3, and~c! k52/3.
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pose the breaking and recurrence of the dynamical sym
try, we first discuss the 2D case; the extension to the 3D c
is addressed later.

For the screened 2D Coulomb potential (m5k51),

V~r!521/r2l/r2 ~0,l!1!, ~1!

the orbit equation may be expressed as

1

r
5

1

Lz
2k2

@11A112ELz
2k2 cosk~u2u0!#, ~2!

whereE,0 andLz are the energy and angular momentu
and k5A122l/Lz

2,1. In general, the orbit is not closed
However, for rational values ofk, i.e., for suitable angula
momenta Lz5A2l/(12k2), there still exists an infinite
number of closed orbits~rather than elliptic orbits!, whose
geometry depends only on the angular momentum, bu
irrespective of the energyE. Three simplest examples (k
5 1

2 , 1
3 , and 2

3 ) are displayed in Fig. 1. It is seen that th
directions of each aphelion vector (ua) and perihelion vector
(up) are given by

ua2u05~2m11!p/k, up2u052mp/k,

m50,1,2, . . . . ~3!

The closeness of a planar orbit implies that the radial
quencyvr and angular frequencyvu are commensurate, an
it is seen that

vr /vu5k. ~4!

For the screened 2D Coulomb potential (L5Lzk), the usual
Runge-Lenz vectorR5p3L2er no longer remains con
served. What is the additional conserved quantity respons
for the closeness of the orbits? It is found that the exten
Runge-Lenz vector

R85p3L2S 11
2l

r Der ~5!
03250
e-
se

,
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-
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d

is still conserved at the aphelion (perihelion) points( ṙ50),
i.e.,

dR8/dt50. ~6!

From this one can understand why there exists an infi
number of closed orbits with angular momentaLz

5A2l/(12k2) (k being a rational number!.
For a pure Coulomb potential (l50), R8 is reduced to

the usual Runge-Lenz vectorR, which remains constant a
all points along the closed orbit. The quantum analog of
~6! is @R8,H#50, which holds at the aphelion~perihelion!
points. Moreover, it can be shown that (\51)

@Lz ,Rx8#5 iRy8 ,

@Lz ,Ry8#52 iRx8 , ~7!

@Rx8 ,Ry8#5~22H !iL z ,

where H5p2/221/r2l/r2 and R85(p3L2 ip)2(1
12l/r)er @the quantum version ofR8 in Eq. ~5!#. Equation
~7! implies that (Lz ,Rx8 ,Ry8) constitute an SO3 algebra in
Hilbert space spanned by degenerate states belonging
given energy eigenvalue En521/(2n2)(n51/2,3/2,
5/2, . . . ). Because, in addition to@Lz ,H#50, @R8,H#50
holds at the aphelion~perihelion! points, it is seen that, in
general, through the dynamical symmetry SO3 of a 2D hy-
drogen atom is broken, the SO3 symmetry may be restored a
the aphelion~perihelion! points of the classical orbits.

The extension to the 3D case is straightforward, but
situation is more complicated. Due to angular moment
conservation, the classical orbits still remain in a plane p
pendicular to the angular momentumL , and the orbit equa-
tion is the same as Eq.~2!, which is nonclosed in genera
Similarly, for rational values ofk5A122l/L2, i.e., for suit-
able angular momentaL5A2l/(12k2), there still exists an
infinite number of closed orbits, and it can be shown that
extended Runge-Lenz vectorR85p3L2(112l/r )r /r is
conserved at the aphelion~perihelion! points of classical or-
9-2
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FIG. 2. Closed orbits of a particle in the screened 2D isotropic harmonic oscillator of Eq.~12!, with l50.2 andE55. ~a! k51/2, ~b!
k51/3, and~c! k52/3.
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bits (ṙ 50). The corresponding quantum version isR8
5(p3L2 ip)2(112l/r )r /r , and it can be shown tha
(m5\51)

@La ,Lb#5 i eabgLg ,

@La ,Rb8 #52 i eabgRg8 , ~8!

@Ra8 ,Rb8 #5~22H !i eabgLg ,

i.e., L andR8 still constitute an SO4 algebra in Hilbert space
spanned by degenerate states belonging to a given en
eigenvalueE,0. For l50, R8 is reduced to the usua
Runge-Lenz vectorR. It is interesting to note that, unlikeR,
R8 is conservedonly at the aphelion~perihelion! points of
classical orbits.

Now we address the factorization of the radial Sch¨-
dinger equation for the screened 2D Coulomb potential. T
energy eigenstate may be chosen as the simultaneous e
state of (H,Lz), c;Rnm8(r)eimu;xn,m8(r)eimu/r, and
xn,m8(r) satisfies

Dm8~r!xn,m8~r!522Enxn,m8~r!, m85Am222l,

Dm8~r!5d2/dr22~m8221/4!/r222W~r!, ~9!

W~r!521/r,

which can be recast in the forms

Dn~r!xn,m8~r!5~m8221/4!xn,m8~r!,
~10!

Dn~r!5r2d2/dr212Enr222W~r!r2,

where En521/(2n2), n5nr1um8u11/2, and nr

50,1,2, . . . . Because Dm8561 does not imply Dm
561, one cannot constitute the angular momentum rais
and lowering operators. However, for a given value
m8(m), from the factorization of Eq.~10!, one may obtain
the energy raising and lowering operators, as
03250
rgy

e
en-

g
f

xn11,m8~r!;MS n

n11D ~rd/dr2r/n1n!xn,m8~r!,

~11!

xn21,m8~r!;MS n

n21D ~rd/dr1r/n2n!xn,m8~r!,

where M(k) is a scaling operator, defined byM(k) f (r)
5 f (kr). The factorization of the radial Schro¨dinger equation
for the 3D case is similar.

Now we discuss the screened 2D isotropic harmonic
cillator (m5k51)

V~r!5
1

2
r22l/r2. ~12!

The orbit equation can be expressed as

1

r2
5

1

Lz
2k2

@E1AE22Lz
2k2 cos 2k~u2u0!#, ~13!

wherek5A122l/Lz
2,1. Similarly, for rational values of

k, i.e., for suitable angular momentaLz5A2l/(12k2), the
orbits are closed~rather than elliptic orbits!. The three sim-
plest examples (k5 1

2 , 1
3 , and 2

3 ) are given in Fig. 2. It is
seen that the directions of each aphelion vector (ua) and
perihelion vector (up) are given by

ua2u05~m11/2!p/k, up2u05mp/k, m50,1,2, . . .
~14!

and

vr /vu52k. ~15!

For a pure 2D isotropic harmonic oscillator (l50), the or-
bits are always closed~i.e. elliptic orbits!, which are guaran-
teed by the existence of conserved quantitiesLz , Qxy5xy
1pxpy andQ151/2@(x22y2)1(px

22py
2)# @15#. In fact, the

direction of the major axis and the eccentricity of the elli
9-3
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tiorbit are determined by Qxy /Q1 and (Qxy
2 1Q1

2),
respectively. When the screening effect is turned onl
Þ0), we may define

Qxy8 5~112l/r4!xy1pxpy ,
~16!

Q1851/2@~112l/r4!~x22y2!1~px
22py

2!#.

It can be shown thatdQxy8 /dt50 anddQ18/dt50 hold only

at the aphelion (perihelion) points of classical orbits( ṙ
50). In quantum mechanics,Lz , Qxy , andQ1 constitute an
SU2 algebra. Similarly, it can be shown that (Lz ,Qxy8 ,Q18)
still constitute the same SU2 algebra as that for
(Lz ,Qxy ,Q1), i.e.,

@Lz ,Qxy8 #522iQ18 ,

@Lz ,Q18#52iQxy8 , ~17!

@Qxy8 ,Q18#522iL z .

But unlike Qxy andQ1 , @Qxy8 ,H#50 and@Q18 ,H#50 hold
at the aphelion~perihelion! points, i.e., the SU2 symmetry
holds only at certain points along the classical orbits.

The extension to the screened 3D isotropic harmonic
cillator is more complicated. Besides the conservative an
lar momentumL , (Lx ,Ly ,Lz), we may define an extende
quadrupole tensor

Qxy8 5~112l/r 4!xy1pxpy ,

Qyz8 5~112l/r 4!yz1pypz ,

Qzx8 5~112l/r 4!zx1pzpx ,

Q1851/2@~112l/r 4!~x22y2!1~px
22py

2!#

51/2~Qxx8 2Qyy8 !, ~18!

Q0851/~2A3!@~112l/r 4!~x21y222z2!1~px
21py

22pz
2!#

51/~2A3!~Qxx8 1Qyy8 22Qzz8 !.

It can be shown that at the aphelion~perihelion! points of
classical orbits (ṙ 50), the extended quadrupole tensor
conserved (dQxy8 /dt5dQyz8 /dt5dQzx8 /dt50 and dQ18/dt
5dQ08/dt50). From this it can be seen that for the screen
3D isotropic harmonic oscillator in quantum mechanics
SU3 symmetry no longer holds. Let us go one step furthe
investigate the dynamical symmetry of the screened 3D
tropic harmonic oscillator by considering the eigenva
problem of the tenser,Qi j8 5(112l/r 4)r i r j1pipj . Since
( jQi j8 L j50, we obtain an eigenvectorL with an eigenvalue
03250
s-
u-

d
e
o
o-

0. Moreover, the real symmetrical matrixQi j8 has three or-
thogonal eigenvectors, so we can rotate the coordin
(x,y,z) into new coordinates (j,h,z) ~called eigencoordi-
nates!. The z coordinate axis is parallel toL , and thej2h
coordinate axes lie in the orbital plane. In the eigencoor
nates, we have

@Lz ,Qjh8 #522iQ18 ,

@Lz ,Q18#52iQjh8 , ~19!

@Qjh8 ,Q18#522iL z .

Thus Lz , Qjh8 , and Q18 constitute an SU2 algebra, i.e., the
screened 3D isotropic harmonic oscillator has an SU2 sym-
metry at the aphelion~perihelion! points of classical orbits in
the eigencoordinate system.

The factorization of the radial Schro¨dinger equations~9!
and ~10! for a screened 2D isotropic harmonic oscillat
@W(r)5 1

2 r2#, En5n11, n52nr1um8u, nr50,1,2, . . . , is,
similar to Eq.~11!,

xn12,m8~r!;@rd/dr2r21~n13/2!#xn,m8~r!,
~20!

xn22,m8~r!;@rd/dr1r22~n11/2!#xn,m8~r!,

where the raising and lowering operators for energy~but not
for angular momentum! are constructed. The factorization o
the radial Schro¨dinger equation for the 3D case is similar.

In summary, we have shown that, for the screened C
lomb potential and isotropic harmonic oscillator, there exi
an infinite number of closed orbits for suitable angular m
mentum values. At the aphelion~perihelion! points of clas-
sical orbits, an extended Runge-Lenz vector for the scree
Coulomb potential and an extended quadrupole tensor for
screened isotropic harmonic oscillator are still conserv
For the screened 2D Coulomb potential and isotropic h
monic oscillator, the dynamical symmetries SO3 and SU~2!
are still preserved at the aphelion~perihelion! points of clas-
sical orbits, respectively. For the screened 3D Coulomb
tential, the dynamical symmetry SO4 is also preserved at th
aphelion~perihelion! points of classical orbits. But for the
screened 3D isotropic harmonic oscillator, the dynami
symmetry SU~2! is only preserved at the aphelion~perihe-
lion! points of classical orbits in the eigencoordinate syste
For the screened Coulomb potential and isotropic harmo
oscillator, only the energy~but not angular momentum! rais-
ing and lowering operators can be constructed from a fac
ization of the radial Schro¨dinger equation.
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