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Abstract. The stress release model, a stochastic version of the elastic rebound
theory, is applied to the large events from four synthetic earthquake catalogs
generated by models with various levels of disorder in distribution of fault zone
strength (Ben-Zion, 1996) They include models with uniform properties (U), a
Parkfield-type asperity (A), fractal brittle properties (F), and multi-size-scale
heterogeneities (M). The results show that the degree of regularity or predictability
in the assumed fault properties, based on both the Akaike information criterion and
simulations, follows the order U, F, A, and M, which is in good agreement with
that obtained by pattern recognition techniques applied to the full set of synthetic
data. Data simulated from the best fitting stress release models reproduce, both
visually and in distributional terms, the main features of the original catalogs.
The differences in character and the quality of prediction between the four cases
are shown to be dependent on two main aspects: the parameter controlling the
sensitivity to departures from the mean stress level and the frequency-magnitude
distribution, which differs substantially between the four cases. In particular,

it is shown that the predictability of the data is strongly affected by the form
of frequency-magnitude distribution, being greatly reduced if a pure Gutenburg-
Richter form is assumed to hold out to high magnitudes.

1. Introduction

Just as the satellite cloud atlas is important in weather
forecasting, the tectonic stress field in the Earth’s crust
is very important in earthquake prediction. Although
we cannot directly get such a map by using present
techniques, the tectonic stress pattern within a seismic
region can be indirectly inferred from different kinds of
information. Among them, historical earthquake cata-
logs may most directly reflect the nature of earthquake-
generating stress. Unfortunately, the usable part of his-
torical data is extremely short, and considerable caution
should be taken to assess the completeness of all data
sets used. However, using a geophysical model, we can
easily produce the so-called synthetic earthquake cat-
alogs, which have some obvious advantages over real
earthquake data. They are free of observational errors
and can be made as long as needed to obtain good sta-
tistical samples. In addition, the underlying models are
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completely known and controlled [e.g., Ben-Zion and
Rice, 1993, 1995; Ben-Zion, 1996; Bebbington, 1997;
Shi et al., 1998; Lu et al., 1999b, 1999c]. They provide,
therefore, an excellent testing ground for different kinds
of statistical modeling and analysis procedures, and for
better understanding of the relations between observed
patterns of activity and the results of statistical analy-
ses.

The spatio-temporal seismicity patterns in a given
region are closely related to both tectonic regime and
fault structures. Although such relations may be visu-
ally evident in the sequences of both real and synthetic
earthquake catalogs, an important problem remains of
quantifying the relations in a way which allows large
events in the seismic region to be predicted, at least
in probabilistic terms. One question we examine here
is whether there is a relationship between the degree
of predictability and the assumed fault properties. The
synthetic catalogs generated by Ben-Zion [1996] provide
a convenient platform for examining this question. The
catalogs show quite different patterns as the fault prop-
erties, specifically the character of the heterogeneities
in the fault strength, are varied. In this paper, a sim-
ple statistical model is fitted to the synthetic catalog
data, and the variations in its parameters from case to
case are interpreted in terms of the fault properties and
visual characteristics of the catalogs. The exercise is
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important both in determining the extent to which a
simple statistical model can discriminate between the
catalogs and in calibrating the model itself. In addi-
tion, the degree of predictability of the seismicity in
the four different classes of faults is investigated by us-
ing simulation techniques based on the fitted statistical
models. The results obtained follow the same qualita-
tive sequence as those obtained by Eneva and Ben-Zion
[1997a, 1997b] using (nonparametric) pattern recogni-
tion techniques. One advantage of the present approach
is that it also allows the assessment of prediction errors,
as, for example, in using simulations to forecast the
probability distribution of the time to the next event
above a given threshold.

A particular feature of the analysis is that the model
was fitted only to the larger events in the different cat-
alogs. Nevertheless, the model fits the data well, sug-
gesting that the smaller events play a relatively minor
role in determining the large-scale behavior of the sys-
tem. The effect of varying the lower stress (magnitude)
threshold is examined and provides further insight into
the relative roles of smaller and larger events.

2. Stress Release Model

In terms of the elastic rebound theory proposed by
Reid [1911], stress in a seismically active region accu-
mulates slowly owing to the relative movement across
faults. When the stress exceeds a certain threshold,
for example, the strength of rock media, an earth-
quake occurs and the accumulated strain energy is re-
leased rapidly generating seismic waves. Although the
elastic rebound model and its modifications have been
widely used in time-dependent hazard prediction, real
sequences of large earthquakes are fundamentally more
complicated. Many features of the seismic process are
not fully captured in the basic elastic rebound model
with a small number of degrees of freedom, producing
an apparent randomness which has to be taken into ac-
count if the model is to be used for predictive purposes.

Through a development of the Markov model sug-
gested by Knopoff [1971], the stress release model, a
stochastic version of the elastic rebound theory, was
proposed by Vere-Jones [1978] and subsequently ap-
plied to the statistical analysis of historical earthquake
data from China, Japan, and Iran [e.g., Vere-Jones and
Deng, 1988; Zheng and Vere-Jones, 1991, 1994; Lu et
al., 1999a]. In this model, a scalar regional stress level
X (t) is assumed to increase deterministically between
two earthquakes and to be released stochastically as
a one-dimensional Markov process. The evolution of
stress versus time is assumed to follow the equation

X(t) = X(0) + pt — 5(2), 1)

where X (0) is the initial stress level, p is the loading
rate from external tectonic force, and S(t) is the accu-
mulated stress release from events within the region over
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the time period (0,t): S(t) = 3_,, ., Si, where {t;,S;}
are the origin time and stress release associated with
the ith earthquake [Zheng and Vere-Jones, 1991, 1994].
Kanamori and Anderson [1975] indicated that the
magnitude m is proportional to the logarithm of the
seismic energy release E during an earthquake, i.e.,
m= glog10 E + const. For simplicity, the stress drop is
supposed to be proportional to the Benioff strain release
and hence to the square root of the energy release. Thus
it is assumed that the stress release S; during an earth-
quake with magnitude m;, relative to a reference event
with magnitude mog, can be calculated by the formula

Si — 100‘75(m.'~—m0)_ (2)

In the subsequent analysis, mg = 5.0 is used, both
for the reference magnitude and for the lower-threshold
magnitude in the catalogs; the substance of the results
is not sensitive to the choice of mg. We refer to Ben-
Zion [1996] for details on how an equivalent magnitude
is ascribed to events from the simulation.

The stochastic behavior of the model is controlled by
two factors: a risk function ¥(X) governing the prob-
ability of an event occurring for a given level of stress
and the distribution of stress releases f(m|X). In this
paper, we choose for ¥(X) the exponential function
U(X) = exp (u+vX), where u and v represent a back-
ground constant and the sensitivity to risk, respectively,
and X is given by (1). The choice of the exponen-
tial function may be regarded as a compromise between
two extreme cases: the time predictable process (corre-
sponding approximately to a 0-1 risk function) and the
pure random (Poisson) process. The soft boundary may
be regarded as a surrogate for the unknown fluctuations
in fault properties in space, and possibly in time, which
occur both in real contexts and in the present synthetic
catalog models. It is further assumed that the proba-
bility distribution of earthquake sizes f(m|X) is inde-
pendent of the stress level (f(m|X) = f(m)) and, as
a default, governed by the standard Gutenberg-Richter
(GR) law. The adequacy of this last assumption will be
examined further in the discussion of the results.

With these simplifying assumptions, the model can
be treated as a marked point process with conditional
intensity function (instantaneous rate for events with
magnitude m, conditioned on the past) of the general
form

Mtm) = FXOUmIX ()]
= exp{a+vpt— SO} f(m), ()
where a = 1+ v X (0). The interpretation of the param-
eters a, v, and p will be discussed later. Their estimates

can be found by numerically maximizing the log likeli-
hood

N T N
logL = Zlog Alt;) — / A(t)dt| + Zlog f(m),
j=1 Ty 1
(4)
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where N is the number of events observed in the interval
(T1,T») [Harte, 1998] and A(t) = ¥(X(t)). In our case,
since the risk term ¥(X(¢)) and the magnitude term
f(m) have no parameters in common, the parts of the
likelihood involving A(t) and f(m) can be optimized
separately.

The likelihood approach can be extended to making
comparisons between models by using the Akaike infor-
mation criterion (AIC), which is defined as

AIC = —2log L + 2k, (5)

where log L is the maximum log likelihood for a given
model and k is the number of parameters in the model
[Akaike, 1977). This represents a rough way of compen-
sating for additional parameters and is a useful heuristic
measure of the relative effectiveness of different mod-
els [e.g., Zheng and Vere-Jomes, 1991, 1994; Main et
al., 1999]. For example, in comparing the stress re-
lease model with three parameters against the Poisson
model with only one (v = p =0 in (3)), the more com-
plex model must demonstrate a significantly better fit
to justify the additional parameters. In typical cases,
model differences which would be significant at around
the 5% confidence level correspond to difference in AIC
values of around 1.5 ~ 2. The best model is that for
which AIC as defined in (5) has the smallest value.

3. Synthetic Catalogs

The catalogs we use in this paper were generated by
Ben-Zion [1996] based on earlier models of Ben-Zion
and Rice [1993, 1995]. Their models simulate seismicity
along a fault segment 70 km long and 17.5 km deep. The
fault is divided into square cells with dimension of 550
m. The boundary conditions and model parameters are
compatible with observations along the central San An-
dreas fault. The slip history in each model realization
is calculated for 150 years. In the model of Ben-Zion
[1996], each fault position can sustain both creep and
brittle failures. All model realizations are characterized
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by the same creep properties chosen to produce realistic
stress envelope with depth, but their brittle properties
vary to simulate the following four cases. These are
a uniform background distribution with small uncor-
related random fluctuations (model U); a case with a
Parkfield-type asperity of size 25 km x 5 km (model
A); a fractal (power law) distribution of brittle prop-
erties with fractal dimension 2.3, mean value 0.5, and
standard deviation 0.2 (model F); and a distribution
with multi-size-scale heterogeneities (model M). The as-
sumed distributions represent two idealized situations:
a strongly disordered state representing immature fault
zones and extended spatial domains and a relatively
regular state representing mature highly slipped faults
[see Ben-Zion, 1996]. The models produce several types
of output, one of which is synthetic earthquake cata-
logs that are used here. In each case, the stress release
is mainly due to large- and medium-magnitude earth-
quakes. For the present analysis, the synthetic catalogs
were first restricted to events with a magnitude thresh-
old m > 5.0. A second analysis was then carried out
with the threshold dropped to m > 4.5. Even in the
latter case the number of events used represents only a
small proportion (about 1%) of the events in the origi-
nal catalog. To avoid problems with transient effects at
the beginning of the simulation, data fitting was carried
out on the last 100 “years” of the catalog history (years
200-300 in the following figures).

4. Results and Discussion

Two kinds of basic statistical models, the Poisson
model and the stress release model, were applied to
the analysis of the synthetic catalogs mentioned above.
These two models represent two contrasting cases: the
pure random process and a simplified (one-dimensional
stress) pseudo-periodic process. We shall examine the
results of fitting these models under three headings:
general features and model sequencing, comparison and
interpretation of parameter values, and predictability.

Table 1. AIC Values Calculated by Using the Stress Release Model (AIC,) to the Synthetic Catalogs
Generated by Models with Various Levels of Fault Zone Disorder?®

Model Min N AIC, AIC, AAIC AAIC/N
U 5.0 30 77.22 134.24 -57.02 -1.90
4.5 211 61.95 108.90 -46.95 -0.22
F 5.0 28 97.07 129.28 -32.21 -1.15
4.5 268 -114.02 9.60 -123.62 -0.46
A 5.0 51 142.82 172.68 -29.86 -0.59
4.5 263 -11.51 19.37 -30.88 -0.12
M 5.0 67 163.14 189.66 -26.52 -0.40
4.5 358 -222.61 -195.16 -27.45 -0.08

aU, uniform properties; F, fractal brittle Properties; A, Parkfield-type asperity; and M, multi-size-scale
heterogeneities; m;, is the threshold magnitude, AIC, represents the AIC value calculated by the Poisson
model, AAIC = AIC; — AIC,, and N is the number of events
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4.1. General Features and Model Sequencing

As was discussed above, the relative effectiveness
of different models in fitting the data can be deter-
mined by the difference of AIC values, for example,
AAIC = AIC, — AIC,, where AIC; and AIC, are the
AIC values calculated for the stress release model and
the Poisson model, respectively. These values are shown
for the four models in Table 1. The first of each pair
of rows refers to the analysis with magnitude thresh-
old m > 5 and the second refers to the analysis with
m > 4.5. Note that this table refers only to the first
term of the log-likelihood in (4), namely, that relating
to the time sequence of the points, the magnitude as-
sumptions being the same for both models.

In all cases, the stress release model fits the data bet-
ter than the Poisson model, and in all cases the differ-
ences are substantial. If we use the Poisson model as
a reference, the values of AAIC in the four cases with
m > 5 follow the order U, F, A, and M. However, such a
direct comparison might be misleading, as the different
catalogs yield different numbers of events. In order to
allow for this effect, we use the indicator AAIC/N as
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a measure of the improvement in performance which is
approximately independent of sample size [e.g., Kagan
and Knopoff, 1977; Di Luccio et al., 1997]. The larger
the negative value of the ratio, the better the seismicity
pattern is fitted by the alternative model (i.e., the stress
release model) relative to the Poisson model. Thus the
values of AAIC/N give an indication of the degree of
periodicity of each catalog, at least in the sense of de-
gree of departure from the Poisson model. They also
provide a measure of the increase in predictability for
each model over the base level provided by the Pois-
son model (for the detailed discussion, see Vere-Jones
[1998)).

For the larger events set (m > 5), the order in which
|AAIC/N| decreases clearly follows the sequence U, F,
A, and M, which is consistent with the sequence ob-
tained by Enevae and Ben-Zion [1997a, 1997b] using
pattern-recognition techniques. Indeed, the sequence is
obvious from a visual comparison of the fitted intensity
functions for the four different cases, as is shown in Fig-
ure 1. Catalog U is closest to periodic; the others show
increasing levels of randomness. It is equally obvious
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risk function (events/year) versus time (year) for the data with threshold m > 5
calculated by the stress release model (solid line) and the Poisson model (dotted line).

For

comparison, the earthquake catalog in each case is also plotted.
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calculated by the stress release model (solid line) and the Poisson model (dotted line).
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risk function (events/year) versus time (year) for the data with threshold m > 4.5

For

comparison, the earthquake catalog in each case is also plotted.

that the values of |AAIC/N| are systematically lower
for the data with the lower threshold. The implication
is that the model is relatively less effective in describing
the behavior of the smaller events, which appear to be
more randomly located along the time axis. The most
interesting case is model F, which shows the biggest de-
crease in |[AAIC/N| of the four models. Examination
of the four plots (Figure 2) shows that there is indeed
a striking feature here, namely, the clear gaps after all
except the last two large events. Such gaps will be far
better fitted by the stress release model than by the
Poisson model and will no doubt account for the greater
improvement indicated by the value of |[AAIC/N]|.
Because the differences AAIC are substantial, the
model, however simplified, clearly extracts nontrivial
information from the data concerning the fluctuation
of risk levels. Since the risk levels themselves are con-
trolled by the estimated values of X(t), as shown in
Figure 1, the question then arises as to how well the val-
ues of X (t) summarize in some sense the overall stress
regimen at time ¢. It suggests that, despite the many
degrees of freedom and associated complex structure,

large-scale internal stress fluctuations are important as-
pects of the models of Ben-Zion [1996]. A single crude
scalar measure, similar to Reid’s original conception,
may be sufficient to characterize periods when large
events are imminent. Further examination of this ques-
tion would be of interest, but it would require a com-
parison with the detailed stress records compiled during
the original simulations and lies outside the scope of the
present study.

4.2. Comparison of Model Parameters

The fitted parameters used in the calculation of the
intensity functions are set out in Table 2. The main
apparent differences between models lie in the values of
a and v. We proceed to a brief interpretation of the
three parameters and how they may be related to the
visual characteristics of the fitted intensities.

It is clear from equation (3) that e* represents the
initial value of the intensity A(¢). Differences in the a
values between the catalogs therefore reflect differences
in the starting values; in particular, they will depend
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Table 2. Fitted Parameters Using the Stress Release Model to the Synthetic Catalogs Generated by

Models with Various Levels of Fault Zone Disorder?

Model o N a v P
U 5.0 30 -1.99 0.79 1.73
4.5 211 0.80 0.16 2.74
F 5.0 28 0.03 0.36 1.23
4.5 268 1.76 0.19 2.67
A 5.0 51 -0.93 0.29 2.09
4.5 263 0.80 0.11 3.31
M 5.0 67 0.47 0.21 2.06
4.5 358 2.02 0.06 3.67

2See Table 1 for details.

on where in a cycle the analysis is started. Since this is
not controlled between the catalogs, the values are of no
immediate importance in understanding the differences
in patterns, although they do also carry some limited
information about the mean intensity levels.

The fitted value of p estimates the rate of stress in-
put, which is essentially dictated by the experimental
set-up, which was held constant and had the same value
for each of the four catalogs. It is therefore reassur-
ing that the estimated values, though not identical, are
similar in all four cases. The values increase as we
drop the threshold magnitude, confirming that a sig-
nificant (though not a dominant) part of the estimated
stress release is occurring through events in the mag-
nitude range 4.5 < m < 5. The input rates are closer
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in the second analyses, suggesting that the four cata-
logs differ in the extent to which the stress release is
achieved through the larger events; indeed, such differ-
ences are not surprising in view of the differences in the
frequency-magnitude distributions from the four exper-
iments (Figure 3).

The differences in pattern must therefore be dictated
largely by the values of the remaining parameter v,
which do indeed vary systematically between the mod-
els in the expected sequence. This parameter represents
the sensitivity of the risk to departures of X (¢) from its
mean value. In the Poisson model, the risk is constant,
and v = 0. The larger the value of v, the greater the
responsiveness of the risk level to changes in X (t).

In fact, the values of v vary systematically in a way
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Figure 3. observed cumulative frequency-magnitude distributions during the last 100 years in

the various model realizations.
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Figure 4. risk function (events/year) versus time (year) simulated by using the fitted parameters

and resampling from the original distribution to obtain the magnitudes.

For comparison, the

simulated earthquake catalog in each case is also plotted.

which corresponds to both the visual patterns and the
results of the pattern recognition studies. However, it
is apparent from the simulations studied in the next
section that the patterns also depend on a feature that
we have so far not addressed in our discussion, namely,
character of the magnitude (or stress drop) distribu-
tion. In particular, the extreme periodicity of the risk
for model U seems to be caused by the combination of
two features: sensitivity to the departure from the mean
risk level and the near bimodal character of the mag-
nitude distribution, which is particularly pronounced
when only events with m > 5 are studied (see Figure 3).
The differences in the magnitude distributions produced
by the four models was one of the salient discussion
points in earlier papers [ Wesnousky, 1994; Kagan, 1994;
Ben-Zion and Rice, 1995; Ben-Zion, 1996; Main, 1996].
In particular, it was suggested that the move from a
distribution of traditional Gutenberg-Richter character
(power law distribution for the stress drops) to one
showing characteristic earthquake behavior, could be
attributed to progressive changes in the character of
fault heterogeneities. We found that use of the ob-

served frequency-magnitude relations, in place of the
default Gutenberg-Richter law, was essential to main-
taining the character of the stress release patterns in
the forward simulations described below. The effects
also show up in the contrasts between the two parts of
Figure 6, the first using the empirical frequency mag-
nitude law and the second using the Gutenberg-Richter
law.

The differences in visual appearance of the fitted
models for the higher and lower thresholds are also in-
teresting (compare Figures 1 and 2). The periodicity
in model U is still striking, but additional features ap-
pear: there is a more obvious increase in the frequency
of smaller events before a major event, and there are
some apparent slower trends in the overall risk level.
All plots suggest that there is more “noise” in the sig-
nal from the events with the lower threshold.

In summary, the stress release model does remark-
ably well, as a low-parameter statistical model, in re-
producing the variety of observed patterns generated
by the deterministic models with many degrees of free-
dom studied by Ben-Zion and Rice [1993, 1995]. The
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Figure 5. risk function (events/year) versus time (year) simulated by using the fitted parameters
and the GR distribution with b = 1 to obtain the magnitudes. For comparison, the simulated

earthquake catalog in each case is also plotted.

observed changes in the visual appearance of the fitted
models are due to two key model parameters: the value
of the parameter v in the conditional intensity function
and the character of the frequency-magnitude distribu-
tion. Changes in the parameter v appear to be those
most directly associated with the periodicity of the ob-
served pattern, although neither characteristic by itself
can fully account for the differences in the fitted pat-
terns.

4.3. Simulations and Predictability

Using the fitted parameters, the statistical model can
be used to simulate the sequence of events forward in
time. Examples of such simulations, for each of the four
catalogs, are shown in Figure 4 and Figure 5. Each takes
the time history forward for a further 100 years, namely,
over the period from t = 300 to ¢ = 400, assuming the
model parameters remain constant. By using a large
number of such simulations, all based on the same past
history, we can easily find the probability distribution
for any quantity of interest, such as the time of the next

event above a certain threshold. These are just the dis-
tributions required for probability forecasting. As an
example, we shall consider the problem of predicting
the time of the next event with magnitude m > 6 after
the end of the data from each of the synthetic catalogs.
The predictability of such an event is determined by the
concentration of the distribution around its central val-
ues. Here we shall use the width of the 90% equitailed
probability interval, from the fifth to the ninety-fifth
percentiles, in units of the median interval, as a mea-
sure of the concentration, denoted by r. in Table 3. To
examine further the effect of the frequency-magnitude
law on the predictions, we carry out the simulations,
first, by using the empirical frequency-magnitude dis-
tribution for each catalog, and, second, by using a com-
mon Gutenberg Richter law, with b = 1 for all catalogs.

In general, the variety of data types is well repro-
duced by the stochastic model. Except in the case of
model A, it is hard to distinguish by eye the differences
between the stress patterns fitted to Ben-Zion’s orig-
inal data and those fitted to the simulated data (i.e.,



between the corresponding plots in Figures 1 and 4).
Spotting differences in the frequency-magnitude plots,
representing the raw data, is even more difficult. The
differences between the original and simulated versions
of model A and, to a lesser extent, of model M are due
mainly to the greater irregularity in the simulated data.

Frequency Frequency Frequency

0 40 80

Frequency
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Table 3. Prediction Performance for the Four Models Using ms, = 5 and the Empirical or Gutenberg-
Richter (GR) Distribution®

Empirical Law GR Law

Model Mip, tm P5% P95% e tm D5% Dos% Te
U 5.0 4.64 2.00 8.04 1.30 20.20 4.36 55.64 2.54
4.5 4.42 0.51 10.11 2.17 16.55 1.66 41.52 241

F 5.0 10.22 4.06 18.90 1.45 28.72 8.36 76.11 2.36
4.5 10.20 2.08 22.77 2.03 17.77 3.65 47.31 2.46

A 5.0 5.10 0.62 10.92 2.02 17.43 2.00 42.84 2.34
4.5 5.05 0.44 13.27 2.54 16.55 1.10 43.15 2.54

M 5.0 7.06 1.19 17.02 2.24 17.37 2.57 43.74 2.37
4.5 7.63 0.79 21.89 2.76 14.07 0.83 33.40 2.31
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0

@Here t, is the mean interval defined as the ratio of the total length to the number of events with m > 6.0,
and r. is the relative concentration, i.e., rc = (Pos% — P5%)/tm.
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That model A should show the greatest differences
may not be surprising, in that it incorporates a feature
(the fixed region of high strength) which has no coun-
terpart in the statistical model. This feature may lead
to a more regular pattern of buildup of stress around
the boundary of the asperity region, leading to episodes
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Figure 6. simulated frequency of m > 6 events for the different cases, where the left column
indicates the results for the empirical distribution, and the right column for the GR distribution.
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where the whole of the asperity region fails (Y. Ben-
Zion, personal communication, 2000). A more complex
statistical model, such as the linked stress release model
explored by Shi et al. [1998], Lu et al. [1999a, 1999c],
which allows for such interactions also in the statisti-
cal model, may be needed to reproduce the observed
patterns more exactly.

The probability distributions for the time to the next
event with m > 6 in the simulated catalogs are shown
in Figure 6. Their median values may be expected to
vary partly because the median time intervals between
major events in the four catalogs also vary and partly
because the time to the next major event will depend on
the stress level when the simulations started,namely, at
t = 300. For example, in model U, there is a large event
just before the simulations start, and a dead time is to
be expected before the next large event. In model M,
by contrast, there is a rather high risk at the beginning
of the simulation period.

The models also differ sharply in the degree of pre-
dictability, measured roughly by the ratio 7. (see Ta-
ble 3). Despite the difference in initial conditions, the
degree of predictability follows the same sequence as in
the earlier discussions of patterns and degree of period-
icity. It is of interest that the inclusion of the smaller
events (4.5 < m < 5) degrades the prediction perfor-
mance, suggesting again that the smaller events behave
more like “noise” in relation to global risk level.

The important effect of the frequency-magnitude dis-
tribution is shown very clearly in the contrast between
plots on the left and right of Figure 6. The plots on the
right, using the Gutenberg Richter distribution with no
cutoff at high magnitudes, show uniformly poorer pre-
dictive properties. This is chiefly because the occur-
rence of occasional large-magnitude events disturbs the
pattern very significantly, introducing a greater degree
of irregularity in the simulations.

Strictly speaking, the predictions obtained in this way
only incorporate the uncertainties due to the inherent
randomness of the model. In principle, additional un-
certainty arises from the fact that the parameters are
fitted from limited data runs and so are not known ex-
actly. To capture this additional uncertainty, each sim-
ulation should start by first selecting parameter values
from a posterior distribution for such values (see, for ex-
ample, the discussion of Vere-Jones [1995]). This will
somewhat increase the spread of the simulations and so
decrease the predictability, but for simplicity, we have
ignored this effect.

It is of interest to discuss two typical cases in Figure
1 from one further point of view. In model F, a fractal
distribution of brittle properties with fractal dimension
2.3 is introduced. As is well known, the geometrical
properties of faults can be well described by fractal sets
[Takayasu, 1990; Turcotte, 1992], and so it may be rea-
sonable to treat the stress as a global value for the re-
gion as a whole, although some further examination of
the global stress at different scales may be needed. In
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model M with multi-size-scale heterogeneities, it is less
reasonable to treat the stress as having a global charac-
ter. Here, stress adjustment and redistribution between
different parts of the region may be important. For ex-
ample, the competition between local strengthening and
weakening through interactions of tectonic stress may
trigger earthquakes at a long distance from the origin
event. In such cases, the simple model is less effective,
and more parameters may be needed in order to de-
scribe the effects of spatial heterogeneities, as indicated
by [Lu et al. 1999a, 1999¢], and to maintain a com-
mon degree of predictability. Steacy et al. [1996] also
noted the relation between the disorder characterizing
fault properties and the level of earthquake complexity.
In such situations, it is useful to regulate the number
of parameters by a procedure such as AIC, which is
related in its derivation to the degree of predictability
mentioned above.

5. Conclusions

In this paper, the stress release model, a simple
stochastic version of the elastic rebound model, is ap-
plied to the larger events within synthetic earthquake
catalogs generated by models with various levels of fault
zone disorder. Simulations show that the model suc-
ceeds remarkably well in reproducing the range of data
types arising from the four cases studied. The model pa-
rameters affecting the degree of periodicity have been
isolated and indicate an important role of the frequency-
magnitude distribution. The model allows important
characteristics of the global risk level to be predicted
probabilistically, without requiring detailed knowledge
of the system. Based on both the AIC and simula-
tions, the results show that the degree of regularity
or predictability of large events for the assumed fault
properties follows the order U, F, A, and M, which
is consistent with that obtained previously by pattern
recognition techniques. The effect of the heterogene-
ity of the fault surface properties on time-dependent
seismic hazard calculation is further highlighted. Vary-
ing the lower-magnitude threshold for the events enter-
ing into the study suggests that the larger events are
more predictable than the smaller ones and that the
smaller ones play a relatively minor role in determining
the global risk levels. Further analysis, using something
like a linked stress release model, would be needed to
understand more clearly the role of the smaller events
in building up and releasing local risk level.
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