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A B S T R A C T :  The features of the wake behind a uniform circular cylinder at 
Re = 200, which is just beyond the critical Reynolds number of 3-D transition, are 
investigated in detail by direct numerical simulations by solving 3-D incompressible 
Navier-Stokes equations using mixed spectral-spectrM-element method. The high- 
order splitting algorithm based on the mixed stiffly stable scheme is employed in 
the time discretization. Due to the nonlinear evolution of the secondary instability 
of the wake, the spanwise modes with different wavelengths emerge. The spanwise 
characteristic length determines the transition features and global properties of the 
wake. The existence of the spanwise phase difference of the primary vortices shedding 
is confirmed by Fourier analysis of the time series of the spanwise vorticity and at- 
tributed to the dominant spanwise mode. The spatial energy distributions of various 
modes and the velocity profiles in the near wake are obtained. The numerical results 
indicate that the near wake is in 3-D quasi-periodic laminar state with transitional 
behaviors at this supercritical Reynolds number. 

K E Y  W O R D S :  cylinder, wake, transition, direct numerical simulation (DNS) 

1 I N T R O D U C T I O N  

The extensive studies with bo th  experiments and numerical simulations of the wake 

behind a circular cylinder at  various Reynolds numbers have been carried out for nearly a 

century. Now it is weU-known tha t  the pr imary instability of the wake leads to the 2-D 
Ks163 vortex street, tha t  is the result of Hopf bifurcation of the steady wake behind the 

cylinder. And the 3-D transition results from the instability of the 2-D periodic wake to the 

spanwise disturbances, which is known as the secondary instability. 

Two different modes of 3-D vortex shedding in wake transition in the regime 180 < 
Re < 260, namely, mode A and mode B, were demonstrated by Williamson [1]. They involve 

vortex loops and streamwise vortex pairs. In mode A, the pr imary vortices deform in 
a wavy fashion along their length during the shedding process. They result in the local 

spanwise formation of vortex loops, which become stretched into streamwise vortex pairs. 

Received 14 October 2001, revised 11 March 2002 
* The project supported by the State Key Fundamental Research Project of "Large Scale Scientific 

Computation Research" (G199903281) 



568 ACTA MECHANICA SINICA (English Series) 2002 

The spanwise length scale of these vortex loops is around 3 to 4 diameters. When Reynolds 
number increases, the energy gradually transfers from mode A to mode B. In mode B, 
finer-scale streamwise vortex pairs are formed. The primary vortex deformation is more 
spanwise-uniform than in mode A, and the streamwise vortex structure has a markedly 
smaller spanwise wavelength of around one diameter. 

The existence of modes A and B is justified by the 3-D numerical studies of Zhang & 
Fey et al. [2], Thompson & Hourigan [3], Persillon & Braza [4], Yu [5] and Ling & Yu et al.[6], 
as well as the Floquet stability analysis of Barkley & Henderson[ 7] . Persillon & Braza [4] also 
reported spatial distributions of the mean velocities and the mean square root (RMS) of 
velocity fluctuations, as well as spectral distributions of the time-domain velocity signals in 
the regime 100 < Re < 300. 

Henderson[ s] investigated the wake transition in the regime 100 < Re < 300 by 3-D 
direct numerical simulations. In the framework of interactions among mode A, mode B and 
the primary vortices, he provided an  interpretation on how the wake of a cylinder evolves 
from 2-D to 3-D, and eventually to a state of spatiotemporal chaos. He suggested that  
three-dimensionality in the wake leads to the irregular states of the flow and fast transition 
to turbulence at Reynolds numbers just beyond the onset of the secondary instability. A 
key feature of the transition is the competition between self-excited 3-D instability modes 
in the mode A wavenumber band. 

The studies on the onset features and nonlinear evolution of 3-D instability can con- 
tr ibute to the understanding of how the wake transits into 3-D and to the turbulence as 
Reynolds number increases. In this respect, however, some important  problems still remain 
open. For instance, when employing spectral expansion in the spanwise direction, the span- 
wise characteristic length L and the number of modes M determine the number and the 
wavelengths of the possible spanwise modes in the flow. So different values of L and M 
may lead to different flow patterns. The obtained flow may not be identical with the ideal 
case with infinite spanwise length and infinite modes. However, from the point of view that  
with finite L and M,  some specific group of spanwise modes can be picked out of infinite 
ones, it is possible to isolate the interactions among these typical modes. Thus, studies on 
how the transition features of the wake change with L (and M in the spectral method) are 
significant. But the work in this respect is lacking. The numerical simulations with different 
L have provided quite different results. In previous simulations of the 3-D wake for system 
size L/D = ~r/2, Karniadakis & Triatafyllou [9] observed a period-doubling bifurcation at 

Re = 300 and proposed that  the wake might follow a period-doubling route to turbulence. 
In simulations of 3-D wake at Re = 265, Henderson Is] found that  the flow state turned from 
time-periodic mode B to quasi-periodic mixed A-B, then to spatiotemporal chaos when 
L/D increases from 0.822 to 3.288, then to 13.152, respectively. And he suggested that  the 
wake follows the Ruelle-Takens-Newhouse (RTN) route to turbulence for sufficiently large 
L. However, we are still far from a complete understanding. And one of the purposes of the 
present work is to provide detailed results about the effect of L and M on the supercritical 
3-D transition of the wake, which is seldom mentioned in the previous studies. The present 
investigation of the wake concentrates on a supercritical Reynolds number of 200, which is 
just beyond the inception of 3-D transition of the cylinder wake and is seldom addressed by 
previous work. The remainder of this paper will investigate in detail the temporal  evolution 
of various spanwise modes, the phase difference of primary vortices shedding and finally the 
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features of supercritical transition in the wake. 
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2 M A T H E M A T I C A L  M O D E L  

To numerically investigate the flow past a uniform circular cylinder, a right-handed 
Cartesian coordinate system is established, in which the positive direction of the x axis is the 
direction of incoming flow and the z axis is the axis of the cylinder. The 3-D Navier-Stokes 
and continuity equations governing the incompressible viscous flow are taken as follows with 
all variables normalized by the diameter of the cylinder D and the uniform stream velocity 
U 

o v / o t  = - v ;  + V V/Re + N ( V )  (1) 

v . v = 0  (2) 

where the Reynolds number is defined as Re = UD/v, in which u is the kinematic viscosity, 
and N ( V )  = - V .  V V  represents the nonlinear convection operator in the Navier-Stokes 
equations. 

3 N U M E R I C A L  F O R M U L A T I O N  

Considering the geometric shape of the infinite uniform circular cylinder, mixed spectral- 
spectral-element method is employed in 3-D numerical simulations of the wake transition 
of the cylinder, i.e. the Fourier spectral method in the spanwise direction and the spectral 
element method suggested by Patera [1~ in the x-y plane. The spectral element method 
combines the geometric flexibility of the finite element method with the exponential con- 
vergence property of the spectral method. The detailed implementation of spectral element 
method can be found in Korczak & Patera [ul and Karniadakis & Triantafyllou[9]. 

3.1 Spanwise Fourier Spectral Discretization 
Velocity V and pressure p are expanded in spanwise direction into the form of Fourier 

series 

M M 

V(x ,y , z , t )=  E Vk(x'y't)ei~kz p(x ,y ,z , t )= E Pk(x'y't)ei~kz (3) 
k = - - M + l  k = - - M + l  

where M is the number of Fourier modes, fl = 27r/L, in which L denotes the spanwise 
characteristic length, i.e. spanwise periodic length. So the Navier-Stokes and continuity 
equations are transformed into the forms 

OYk/Oqt = --Vlgk if- (V2y -- k2/~ 2) Vk/Re + Fk[N(V)] (4) 

V . Vk  = 0 (5) 

where Fk[N(V)] is the kth component of the Fourier transform of N(V) ,  which is evaluated 
by pseudo-spectral method. And the aliasing error is eliminated by truncation. 

3.2 T i m e  Discretization 
The time discretization of Eq.(4) is made using a high-order splitting algorithm based 

on the mixed stiffly stable scheme suggested by Karniadakis, Israeli &= Orszag [12]. The 
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solving procedure is split into three steps 

q=0 q=0 

k 

where V n+1/3 and Y n+2/3 a r e  intermediate values of the velocity variables, aq and ~q a re  

implicit/explicit weight coefficients for the stiffly stable scheme of order J ,  and 70 is the 
weight coefficient of the backwards differentiation scheme. The values of these coefficients 
for J = 3, which is employed in this paper, are listed in Table 1. 

Table  1 Values of  w e i g h t  coe f f i c i en t s  o f  t h e  m i x e d  

stiffly s t a b l e  s c h e m e  for J = 3 

70 ao al ~2 /~0 /~1 /~2 
11/6 3 --3/2 1/3 3 - 3  1 

The Poisson equation for pressure is 

v2p ~247 v .  (9) 

with the consistent high-order boundary condition 

,~+1 1~Re E ~qV X (V X V2 -q opk ~On = n .  ~qF~ [ N  (Vn-q)]  - (10) 
t ,q=0 q=0 

so the J th-order  time accuracy of the splitting scheme is preserved. In Eq.(10) n denotes 
the unit vector normal to the computational domain boundary F. 

3.3 S pa t i a l  D i s c r e t i z a t i o n  in t h e  x-y P l a n e  
Spectral element method is employed to solve the Helmholtz Eqs.(8) and (9), which 

can be written into the form of a generic modal equation associated with the variable u 

V x y U - A u = f  ( A > 0 )  in ~2 
u = g on Fg (11) 

Ou/On = h on Fh 

According to the variational principle of the boundary-value problem of the elliptic 
equations, the modal Eq.(16) is equivalent to 

f .  ( v u  + + =0 (12a) 

ulF " ---- g (12b) 

Assume that  the computational domain (2 is parti t ioned into a set of quadrilater- 
als, each of which is mapped from the x-y plane into the ~,~/ plane by an isoparametric 
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tensor-product mapping ~ ---- ~(x,y),  ~/ = n(x,y)(~,U E [--1, 1]). 
corresponding Jacobian matrix is 
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The determinant of the 

(13) J = ( o x / o r  - 

Assume that  x~(i = 0, 1 , . . . ,  N)  are the Gauss-Lobatto collocation points in the in- 
terval [ -1 ,  1] and l~(x) the associated Lagrange interpolating functions of order N.  So 
l~(~)lj(~)(i,j = O, 1 , . . . , g )  axe the basis functions in the ~-~ plane. And any function 
u(~, 7/) (including geometry, velocities and pressure) in the element can be interpolated as 

u(~, r/) = E E uijli(~)lj(~) (14) 
i j 

Evaluation of the integral form Eq.(12) gives the elemental equations 

where 

E Am~ijuij = b,~,~ m, n = 0, 1 , . - . ,  N (15) 
i , j  

k,I p,q o,t  k , l  

b,~,~ = - E E IJlPqfktBk'~PBt~q + / r  l,~(~)l~(rl)(-Ydx + Xdy) 
k, t  p,q 2 

(16) 

(17) 

and 

f B jk = Z,( )l (x)lk(x)dx % kl (lS) 
1 

n .  (Xe~ + Yey) = h (19) 

in which n denotes the unit vector normal to the boundary Fh. The global equations can 
be obtained through the direct stiffness summation. 

In the implementation of spectral element method, one can choose different type of 
Gauss-Lobatto collocation points, such as the Gauss-Lobatto-Chebyshev (GLC) points em- 
ployed in Korczak & Patera [11] and the Gauss-Lobatto-Legendre (GLL) points in Karni- 
adakis & Triantafyllou [9]. The former is adopted in this work for its explicit formulations. 

4 N U M E R I C A L  RESULTS 

Before carrying on 3-D numerical simulations at R e  = 200, tests on 2-D flow at 
Re = 100 are performed to verify the reliability of the algorithm and the program codes 
and to assess the effect of the size of the computational domain on the numerical results. 
Computational  domains with different mesh size are used in the tests. The typical meshes 
are shown in Fig.1. The parameters of the 2-D cases used in the tests are listed in Table 
2, where XL1 and XL~ are the distances from the axis of the cylinder to the inlet and 
the outlet boundaries, respectively, YL is the distance between the upper and lower bound- 
aries, NE is the number of the elements in the domain, NT is the number of the nodes on the 
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Fig.1 

(a) Mesh A (b) Mesh E 

Typical 2-D meshes, P1 ~P4 indicate the positions in the domain of com- 
putation where the flow field quantities are recorded in the 3-D simulations 

T a b l e  2 P a r a m e t e r  o f  t h e  size of  t h e  m e s h e s  u sed  

Mesh XL1/D XL2/D YL/D NE NT 
A 3.5 14 7 34 614 
B 6.5 14 13 50 862 
C 10.5 30 21 90 1502 
D 15 30 21 176 2896 
E 22.5 30 30 184 3024 

element  interfaces and  represents the  scale of the equat ions  to be solved. The  comparison 

of the ob ta ined  St rouhal  n u m b e r  St = f d / U  between our s imula t ion  tests  and  the previous 

exper imenta l  and  numer ica l  researches [4,7,13~1s] confirms the reliabil i ty of the algori thm and  

the  p rogram codes. 

The  selected dimensionless  spanwise characterist ic  lengths  of the cyl inder  LID and  the 

corresponding numbers  of Fourier  modes are listed in Table  3. Since mode  A, the length 

scale of which is a round  4 diameters ,  plays an  i mpor t a n t  role in  the wake beh ind  a circular 

cyl inder  at Re -- 200, LID is chosen as 4k, where k is a positive integer,  to ensure tha t  

mode A is included. 

Tab l e  3 Se lec ted  cases of  spanwi se  characteristic length and corresponding 
n u m b e r  of  F o u r i e r  modes .  Also  t he  p e r m i t t e d  d i sc re te  m o d e s  

in m o d e  A band and dominant  m o d e s ,  r e spec t i ve ly  

Spanwise characteristic Number of Fourier Permitted wave length Dominant mode 
Wave length Whether in the 

length modes in mode A band mode A band 
4 16 4 4 yes 
8 32 4 4 yes 
12 32 4 6 no 

4.8 
24 64 4 24 no 

3.43 

Because of the l imi ta t ion  of available computer  resources, the s imula t ions  employ mesh 

A i l lus t ra ted  in  F ig . l ( a )  as the mesh in  x-y plane. The  d imens ion  reference length is the 

radius  of the  cyl inder R. The  t ime step At  ---- 0.01. At  t ---- 0, the ini t ia l  d i s turbance  along 

z direction, which is in a triangular-shaped distribution with a maximum amplitude of 0.I, 

is added to the streamwise velocity u in the domain x < O. When t > O, the artificial 
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disturbance is removed in computation.  The numerical results of 3-D evolution of the wake 

behind a circular cylinder at Re = 200 are presented in the following paragraphs.  

4.1 T h e  S p a n w i s e  M o d e s  o f  t h e  N e a r  W a k e  F l o w  

For Re = 200, the wavelength range of instability mode A band is (3.25D, 5.13D) 
according to the Floquet stability analysis in Barkley & Henderson[ 7]. And the discrete 

wavelengths of the modes in the mode A band, which are determined by L and M, are listed 
in Table 3. 

First let us examine the temporal  development and interactions of different spanwise 

modes with the t ime series of their kinetic energy 

Ek(t;x,y)= (u2+v2+w2) /2  k=O, 1 , 2 , . . . , M / 2 - 1  t > 0  (20) 

at specific (x, y) points in the flow field. The E~(t) curves of typical modes at the point 

P1 for L/D = 12 are shown in Fig.2. Note that  the ranges of the vertical coordinate in the 
figures vary with different modes. 
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Fig.2 Time series of kinetic energy of the spanwise modes, k = 0, 1, 2, 3, 10 
and 13 (from the top to down), at point P1 for LID = 12 
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The evolution of Fourier modes illustrated in Fig.2 differs distinctly from the cases de- 

scribed by the linear stability theory, which concerns with disturbance of small amplitude[ 7's]. 

According to the linear stability theory, the linear unstable modes are induced directly by 

small disturbance at an early stage of the evolving process of the flow; while other linear sta- 

ble modes emerge through their nonlinear interactions with the developed unstable modes. 

However, in the present work we found that the peaks of marked amplitude appear in the 

early stage of the Ek(t) curves at more modes, not only those linear unstable modes in mode 

A band, such as the mode k = I(A : 12D) for L/D = 12 (in Fig.2). It indicates that some 

modes being stable predicted by linear analysis, as well as those linear unstable ones, are 

directly induced, and the time needed for all the modes to tend to some kind of dynamical 

equilibrium is shortened a great deal, which is one of the motivations of introducing initial 

disturbance with a finite amplitude. 

Although all the spanwise modes involved in the present computation emerge, the am- 

plitudes of their kinetic energy differ a great deal. The dominant spanwise mode can be 

determined by the mean energy averaging in its equilibrium interval at specific points in the 

flow field, which is shown in Fig.3. The equilibrium interval is determined by the time series 

of velocity at the chosen points. For example, see the time series of velocity components u 
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Fig.3 Mean kinetic energy in the equilibrium interval at four points shown in Fig.1 
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and v at point e l ( z  = 0) for L/D = 24. For various L/D, the velocity signal becomes quasi- 

periodic when t > 100 and the effect of initial disturbance vanishes, so the temporal interval 

[100, 500] is regarded as the equilibrium interval, in which the mean energy is evaluated. 

Note that although the most part of kinetic energy is held in mode k = 0, it is excluded in 

our discussion on spanwise modes because it corresponds the energy of a uniform flow and 

does not represent patterns. The obtained dominant modes for various L/D are listed in 

Table 3 for convenience of comparison. It is worth noting that  for L/D = 12, mode k = 3 is 

the sole linear unstable mode, but its mean kinetic energy is less than that  for mode k = 2. 

So in this situation the dominant mode is not mode A but the mode )~ = 6D. No similar 

case where the linear stable mode becomes the dominant mode in the wake, overwhelming 

mode A, was previously reported. 

The contours of streamwise vorticity shown in Fig.4 confirm that the dominant modes 

in the flow field for L/D = 4 and 12 are modes ~ = 4D and 6D, respectively. These results 

confirm the above arguments. Our results show that  the spanwise characteristic length 

selected in the computations determines the dominant mode in the flow field. For some 

L/D, for example, L/D = 12, the specific mode predicted to be stable by the linear stability 

theory can be excited and become a dominant mode. Consequently L/D has a great effect 

on the global properties of the flow field. Comparison of the energy distributions among the 

spanwise modes for different L/D can lead to the conclusion that  in the flow at Re = 200 

investigated in the present work, from upstream to downstream in the wake, the energy 

distribution at small wave number (long wave) modes is in the same level for different L/D. 
While the energy of large wave number (short wave) modes for larger L/D, i.e. 12 and 

24, decays much faster downstream than that for smaller L/D, i.e. 4 and 8. By the way, 

the energy distribution for L/D = 8 remarkably differs from the other cases by a curve in 

sawtooth waveform, the origin of which remains to be explained by research in future. 

(a) L/D=4, t=200 (b) L/D----12, t----200 
Fig.4 Contours of streamwise vorticity at y -- 0 

4.2 A v e r a g e  Ve loc i ty  Prof i l es  

The distributions of time mean values of streamwise velocity u and transverse velocity 

v, denoted as Um and Vm, at ttie rear axis of the cylinder (y = 0) for L/D = 4, 8 and 12 

are calculated. The interval for time averaging is chosen as [100, 500], too. For the purpose 

of studying the global features of the flow, the time mean values are also averaged in the 
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spanwise direction. And it is the same for the RMS of the velocity fluctuation. The results 

are il lustrated in (a), (b) and (c) of Fig.5. The spatial distribution of Um is almost the same 

for different L/D. When x increases, its value decreases from zero to negative and then 

increases to positive, which implies the existence of recirculation region behind the cylinder. 
And the point of vanishing Urn from negative to positive determines the reat tachment  length. 

In this work it is found tha t  x/D = 1.54, 1.56 and 1.33 for L/D = 4, 8 and 12, respectively. 

It  is given by Persillon &= Braza [4] that  x/D = 1.28 at Re -- 200, where the spanwise length of 

computat ional  domain is 2.25D and 3.72D. As for the spatial distribution of Vm, the curve 
for L/D = 4 is close to tha t  of Persillon &= Braza [4]. While the amplitudes for L/D = 8 and 

12 are evidently smaller, dut to the increase of irregularity of v with the increase of L/D. 
The comparison between the mean velocity profiles at several sections (x = 7.0, 13.0 and 
23.0) for L/D = 4 and 12 shown in Figs.6, indicates that  the irregularity of u and v along 

the transverse direction increases with the increase of L/D and decays with the development 
of the flow downstream. 
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Fig.5 Profiles of streamwise and transverse mear~ velocity at y = 0. The circles in 
(a) and (b), which are identical results, are extracted from Fig.29 and Fig.30 in 
Persillon & Braza [6], where L/D = 2.25 and 3.72 

The profiles of streamwise velocity fluctuation RMS Ulrms/U a t  sections x = 7, 13 and 

23 for L/D = 12 are illustrated in Fig.7(b). The cases for L/D = 4 and 8 are almost 

the same. A key feature of these profiles is that  they all show two symmetrical  peaks no 
mat te r  in the near wake or in the little far wake, usually associated with the two rows of 

laminar vortices traveling downstream. Comparing the profiles of U'rmJU at three sections 
shows tha t  the peak value decreases downstream, which results from the energy damping 
of pr imary vortices caused by viscous dissipation. But on the rear axis of the cylinder 

(y = 0), the value of U'rms/U a t  x = 23 is slightly larger than  that  at x = 7 and 13, which 
is more clearly shown in Fig.7(a). In comparison with the measured RMS profile of the 
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Fig.6 Profiles of mean velocities at sections x = 7.0, 13.0 and 23.0 

0.30 F 
O ~  L - -  L / D = 1 2  

.zo ~ i": .... L / D - - 8  
020 [ A"--, ....... 

. . . . .  

0.05 I / .  10 ~ " , : . 7 . ~  ....................................... 

O . O O t /  I . . . .  ' ~ ' , I  , , , h i  , , , I < , , , 

0 5 10 15 20 25 30 
X 

0.3 

0.2 

0.1 

0.0 
--7 

~ x/D=3.5 x/D=6.5 
x / D = l l . 5  

, , i  I H ,  , I ,  L , , l l ,  , ,  I , ,  H I ,  H , I ,  ,~  , I , ,  , ,  l i l t  i 1111 ,1 , ,  , , I , ,  ' L I LL I I I L , I l l  

--5 - 3  --1 1 3 5 7 
Y 

(a) y = 0 for various spanwise (b) Sections x = 7.0, 13.0 and 

characteristic lengths 23.0 for L / D  = 12 

Fig.7 Profiles of streamwise velocity fluctuation RMS 

streamwise velocity f luc tua t ion  in  the l aminar  regime ( R e  = 152) by  Wil l iamson [1], which 

shows two side peaks, we suggest t ha t  the near  wake at  R e  = 200 is still laminar .  

4 .3  P h a s e  D i f f e r e n c e  o f  t h e  P r i m a r y  V o r t i c e s  S h e d d i n g  

Fourier analysis  of the spanwise vort ici ty t ime  series at several points  in the flow field 

is carried out  to quan t i t a t ive ly  s tudy  the phase difference of the p r imary  vortices shedding, 

the origin of which is also explained.  Our  choice of employing Fourier  analysis  and  pu t t i ng  

aside the popular  me thod  of isosurfaces of vort ici ty or pressure is based on the considerat ion 

tha t  since the wake of the cyl inder has t u rned  into 3-D, the deformat ion  of vort ici ty and  

pressure isosurfaces may result  from the shedding difference of b o t h  phase and  intensity.  

The  isosurface itself can not  exactly tell  the effect of one factor from the  other. But  Fourier 

analysis  can extract  the phase difference from the  t ime  series and  e l imina te  the effect of the 

in tens i ty  difference of the spanwise vortices. 

The  comparison between the phases of the signals of different frequencies makes no 

sense. As for two signals of the same frequency s l  = cos(2~rft + 0 0 1  ) and  s2 = cos(2~rft + 
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002), the phase difference between them is constantly 002 - 001. A periodic signal s(t) 
composed of multiple components of different frequencies can be wri t ten into the form s(t) = 

C k  e i k T r t / T ,  where ck denotes the Fourier coefficients. The wave form corresponding the 
k------oo 

frequency component  fk = k/2T of signal s(t) is 2lckl cos(2~fkt+arg ck). So its initial phase 
is 

Oo(fk) = argck = arctan [Im(ck)/Re(ck)] (21) 

Therefore, the initial phase O(f; x, y, z) of any frequency component  f o f  the spanwise 
vorticity signal wz (t; x, y, z) can be evaluated by Eq. (21). Since the most par t  of the spanwise 

vortex energy is concentrated in the shedding frequency fs of pr imary vortices, it is taken for 
granted tha t  the phase difference of fs determines tha t  of the spanwise vortices. Shown in 

Fig.8 are the phase differences O(z) -Oo of f~ in the t ime series wz(t; z), relative to wz(t; zo), 
which is the spanwise vorticity at z = 0, at four (x,y) points marked in Fig.1 for L/D = 4 
and 12. 
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(a) L / D = 4  (b) L/D=12  
Fig.8 Phase difference of frequency component f8 of wz(t; z) relative to w, (t; z0) 

From the phase difference curves of spanwise vortices in the near wake we can inves- 

t igate the phase difference of the Ks163 vortices shedding. In the near wake where the 

spanwise vortices form (for example, at points P1 and P2), the wavelength of the phase 

difference curves is 4D for LID = 4, and the phase at the ends of the cylinder takes the 

minimum and in the middle the maximum; while for LID = 12, the wavelength of the 
curves is 6D, and the phase in the vicinity of z = 4 and 20 takes the minimum and in the 
middle the maximum. During the shedding process the maximum phase difference along the 
spanwise direction is around ~r/2 for L/D = 4 and around 7r/4 for L/D = 12. Conjugated 

with the isosurfaces of streamwise vorticity in Fig.4, the phase difference of the Ks163 

vortices shedding is suggested to be the result of the development of spanwise modes, and 

consequently to be determined by the dominant mode in the flow field. 

5 C O N C L U S I O N S  

Based on the results of the direct numerical simulations we can draw some conclusions 

on the nonlinear features of the supercritical transition in the wake of a circular cylinder at 
Re = 200 as below: 
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(1) In the supercritical 3-D transition, the nonlinear evolution of 3-D instability causes the 

coexistence and interactions of the spanwise modes with different wavelengths. One of 

the most remarkable effects of nonlinear behaviors is the intermit tent  proper ty  of the 

modes with large wave number  during the tempora l  development. 

(2) The spanwise characteristic length has a great effect on the global properties of the flow 

field. In the numerical simulations with chosen L / D ,  new dominant  spanwise modes other 

than  mode A are found, which were not reported by previous work. For some L / D ,  the 

specific mode predicted to be stable by the linear stability theory could become dominant 
mode in addition to the linear unstable mode. These new dominant  modes can result in 

new features of the transit ion and the flow field. As for the energy distribution between 
different spanwise modes at Re -- 200, the increase of the spanwise characteristic length 

can result in the increase of the portion of mode k = 0 in the total  kinetic energy, the 

damping rate  of large wave number  modes downstream, and the irregularity of spatial 
distribution of velocity. 

(3) The pr imary vortices shedding is 3-D. There are differences in phase along the span. The 
max imum of the phase difference is relatively small, which is around ~r/2 for L / D  = 4 

and around ~r/4 for L I D  = 12. And the spanwise wavelength of the phase difference is 

largely determined by the dominant  mode of the flow. It  is speculated tha t  the phase 
difference is produced by the spanwise mode structure. 

(4) The t ime series of the velocity, vorticity and kinetic energy and the bilobate structure of 

the RMS profiles of the velocity fluctuation are provided. The results indicate that  the 

flow in the computat ional  domain of this work is essentially in a three-dimensional quasi- 

periodic transitional laminar state. The flow field at supercritical Reynolds number  has 
shown to be irregular in the span and transverse direction. The irregular s tate  will evolve 

into the spat iotemporal  chaos and even turbulence at higher Reynolds numbers. While 

at the current Reynolds number  of 200, it is suppressed by the viscosity and decayed 
downstream. 
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