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Abstract: Based on studies on the strain distribution in short-fiber/whisker reinforced metal matrix composites, a
deformation characteristic parameter, A is defined as a ratio of root-mean-square strain of the reinforcers identically
oriented to the macro-linear strain along the same direction. Quantitative relation between A and microstructure
parameters of composites is obtained. By using A, the stiffness moduli of composites with arbitrary reinforcer
orientation density function and under arbitrary loading condition are derived.

The upper-bound and lower-bound of the present prediction are the same as those from the equal-strain theory and
equal-stress theory, respectively. The present theory provides a physical explanation and theoretical base for the
present commonly-used empirical formulae. Compared with the microscopic mechanical theories, the present theory
is competent for stiffness modulus prediction of practical engineering composites in accuracy and simplicity.
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1. INTRODUCTION

As pointed by R.Hill [1], the stiffness tensor for het-
erogeneous materials can be formulated as long as the re-
lation between local strains and overall strain is deter-
mined. Theoretically, it is very important to study the
regularity of strain distribution in reinforcers in order to
derive the stiffness tensor of composites.

In the present paper, such a relation will be numeri-
cally investigated first. Based on the strain distribution
regularity of the reinforcers obtained, a new material
model is proposed. Then an explicit stiffness tensor will
be derived to predict stiffness moduli of composites with
arbitrary whisker orientation density function and under
arbitrary loading condition.

2. STRAIN DISTRIBUTION IN REINFORCERS

2.1. Singular Reinforcer in an Isotropic Medium

Let &, &, &, Yyz ¥ and ¥y denote the strain compo-
nents in a rectangular coordinate. Without losing general-
ity, z-axis of the local coordinate system is taken as the
longitudinal direction of the reinforcer as shown in Fig. 1.
The strain of the reinforcer can be written as

gf:f(gx’gy’gz’}/yz’yxzﬂyxy)' (1)

Transverse deformations of the reinforcer (&, & and
%y) are usually neglected if the aspect ratio is large
enough. Moreover, shear strains x, and y, are anti-
symmetric with respect to the longitudinal direction of the
reinforcer, and have no contributions to &. Therefore, &
depends only on the strain component &, and Eq.(1) can
be simplified as
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& = f(g,) =4, @)

where & is the macro linear strain along the reinforcer,

and A; a strain heterogeneity factor. The subscript ‘f’
stands for the fiber-like reinforcers.

(¢, &

(®)

Fig. 1. The basic coordinate system (a) and the local
coordinate system for the reinforcer (b).
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Table 1. Microstructure parameter combinations.

Parameters
Moduli ratio E./E¢
Aspect ratio L/d

Volume fraction V¢
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It has been proved with the shear lag theory [2] that A¢
A

is constant and is dependent on stiffness ratio E./E;, as-
pect ratio L/d, and volume fraction V; during elastic de-

formation, i. e.
Strain distribution of reinforcers unidirectionally ori-

ented in the matrix is numerically investigated by the 2-D
network model [3] shown in Fig. 2 where reinforcers are

2.2. Reinforcers Unidirectionally Oriented
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inforcers. It is verified that though the strains in rein-

mean
Strain

short segments and have same
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Figure 3 shows a strain histogram of 2236 reinforcers
in a direction. There are totally 288 combinations of mi-
crostructure parameters: 8 volume fractions, 6 stiffness ra-

tios, and 6 aspect ratios listed in Table 1.
For various microstructure parameter combinations,

Figure 4 shows the variation of A; with L/d and E./E;

forcers are different, the ratio A; almost keeps unchanged
when V=20%. And the curve of A; vs V¢ with L/d=3 and

Fig. 2. Unidirectionally oriented reinforcers in the matrix.

= .
8 9 vy ¢ 5
= . £330 e chct oo
(o] < an u\.Aa:««f#ﬂ%»ﬂ#«ns#&m»&ﬂ%fﬂﬁ»ﬂﬂﬁﬁ-
— - P A e %
m el B R ST A
1O 3 3
<= =} ’
Q = .m
[ A7) [
—_ o o]
oI 5!
m m m o SO N D SISy e seir o]
> g = S et
o3 < o, e N s A N A s e S
= _—
(] w) L " N N '
.2 - o =) =) = =)
o = > " 0 =1 I3} o Irs)
-
= g = N8 ==
o .
N %
-
=~ of iw =
o5 3 M
B —t

NI | -El ectronic Library Service

Fig. 6. Reinforcers oriented along 0° and 45°.
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Fig. 3. Histogram of strain in reinforcers along a direction.
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strains 2 and -1 in each of the 13 directions are

3.54 given in Fig. 10.
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Fig. 8. & obtained with network model.

The strain distribution of reinforcers randomly ori-
ented is numerically investigated with the network model
and FEM respectively. As shown in Fig. 6, the volume
fraction of short-fibers V; is 5%, stiffness ratios E,/E¢ and
aspect ratios L/d are 1/10 and 5 respectively. In Fig. 6,
reinforcers, shown by black-short segments, locate in the
matrix with orientation angles 0° and 45°. Just like in Fig.
2, reinforcers in Fig. 6 possess same length, too. The (b)
loading direction is along X-axis. Distribution of & in a
section in which Y is constant obtained by using finite )
element method (FEM) and network model are shown in Fig. 9. 3-D network model.
Figs. 7 and 8 respectively. The two figures in which the
abscissa represents the distance to Y-axis show that the

result obtained by network model is proximately identical 1.0¢ - g(l)
to the one by FEM. As a result, the two methods are able = osf = 0 O
to predict the same macro-mechanical properties. g o6 & - Ae
2.3. Reinforcers Oriented in Many Directions 3

The strain distribution of reinforcers oriented in many = 04 3
directions is numerically performed by a 3-D multi-scale g R - m
network model [3] shown in Fig. 9 (a), in which 8462 5 02L ®" a .
short-fibers are randomly oriented in 13 directions. Figure Z = "= ox
9 (b) gives the 13 directions with direction numbers of OOF ® o« © o ¢ o 0o ¢ o o © 4 @
{1,0,0}, [0,1,0], [0,0,1], [1,1,0], [1,0,1], [O,1,1], [1,-1,0], TP T TR T TP VIVI VOTOt TR P TV FORT TRV
['1:0’1]7 [Os'_l_’l]’ [1,131]’ ['15171]5 [l:'l’lls ['13_1’1]' In 0123458 7 8 9 1011 121314
Fig. 9 (b), “1 ”, similar to others, means “-1”. The load- Directions
ing direction is vertical. The strain distribution histogram
of the reinforcers in each direction is similar to Fig. 3.
The statistical analysis results of the root-mean-square Fig. 10. Statistical regularity of strain distribution.
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Figures 3 and 10 show that the root-mean-square
strains of the reinforcers in the 13 orientations are differ-
ent, but the ratio A¢ in different orientations is almost the
same. For composites with reinforcer orientation density
function px in 3-D space,

E L
/lf =f(—£i5:i'apf)' (4)

Therefore, A is dependent on the orientation density
function p. It is verified that when Vy<50% and the aspect
ratio L/d<15, the interaction between the reinforcers in
different directions may be neglected.

2.4, Expression of A; during Elastic Deformation
Based on the numerical results shown in Fig. 4, Fig. 5
and Fig. 10, A¢ can be expressed as

E d‘e£
A :c(a+be)(F"‘) d,

f

()

Let L/d=3, E/E~0.2, and V=20%. Parameters a=0.94,
b=0.3, c=1.4, d=0.84 and ¢=0.03 are determined with the
least square method. Now, Eq.(5) becomes

L
A = 1.4(0.94 + 0.3V, )(i—m)“"“ "

f

Equation (6) is suitable for 3<L/d<15, 5%<V<40% and
0<E./E«1/3. In Fig. 11, there is a comparison of predic-
tions of Eq.(6) with the results shown in Figs. 4 and 5.

Liang, N.G. et al [4] investigated the precision of pre-
sent theory, and pointed that the precision of network
model is exactly the same as FEM’s. The results obtained
by present theory are also in good agreement with the
ones by 2-D shear lag model.
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Fig. 11. A¢ versus L/d (a), E/E¢ (b) and V; (c).
3. MATERIAL MODEL AND STIFFNESS TENSOR

3.1. Matrix and Fiber-Bundle
Consider the reinforcers in a direction /. The strain of
the * reinforcer

£ =g 11

A )
where ¢ is the macro strain tensor, and /;, the cosine num-
bers of the fiber direction /.

The total strain energy of the reinforcers

W= %EfZ[/l(fr)]z gijgszliljlsll Vf(r)

®

yFostmi® j%s%e
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According to the above statistical analysis, fibers in direc-
tion / can be replaced by a fiber-bundle with an average
stiffness modulus E¢, so

o =Ec&
where

& = ALl ©®

itity?

where or and & denote the stress and strain of the fiber-
bundle, ¢;, the macro strain tensor. Provided that the ma-
trix material can be regarded as an isotropic elastic me-
dium, then

Omyrs = Kayjrs €y
where
Emyy = AmEy > (10)

where A, is the strain heterogeneity factor of the matrix
and Kmy;r, a stiffness tensor of the matrix material.

3.2. Stiffness Tensor of Composites

Since short-fiber/whisker reinforced composites are
composed of the matrix material and the fiber-bundles,
the total strain energy of a representative element volume
of the composites

W, =Ww_+W,. (11)

In the coordinate system shown in Fig. 1 (a), the strain
energy of the composites will be

£+

(m)ijrs ©ij<rs

W, :leanK
2 (12)

1 = n
SViEee, [sing [ 2o p 0.0, 1,d0dp
Differentiating W, with respect to &; gives the stress tensor

© _
Oy = Koy,

(cyjrs“rs >

where

_ 12
K(c)ijrs - lmeK(m)ijrs +

. 13)
VE, [sing [ 220 pe0.9)11,1,1,d0 dg,

where K();rs is the stiffness tensor of the composites.
When composites are isotropic, the stiffness tensor
caused by the reinforcers in Eq.(13)

AE. /5 when i=j=k=I
={A2E, /15 when i=jk=lori=k j=1 (%
0 in the other cases.

K

Dk
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When reinforcers are randomly oriented in a plane, such
as a fiber-reinforced laminate, the stiffness matrix of
composites will be

2V E ~Va  Va 0
.= m_m_m v, l-v, 0
A=-2v_)Y1+v,) 0 0 1-2v. as)
PVE 310
+2£101 3 0
8 0 0 2

When reinforcers are unidirectionally oriented in x-
direction, the Young’s modulus of composites

0) 12 2
K(c)l]ll —Z'meK(m)lH] +ﬂ’foE 4 (16)
and the Young’s modulus in y-axis is
©0) _ 22
K(c)2222 =/ VmK(m)2222 . a7

4. UPPER-BOND AND LOWER BOUND OF THE
STIFFNESS MODULUS

For unidirectional fiber-reinforced  composites,
A=(Ex/(ViEm+ VinEp) and Ay, =(E¢/(ViEn+VinEr)) make

AE, =AE, . (18)

In this case, the stress in the reinforcers is the same as in
the matrix. The stiffness tensor predicted by the present
theory is the lower bound solution of Reuss (1929) [5].

It can also be verified that if A=A,=1 (0<A<1), the
Young’s modulus given by (16) is

E =V E_+V,E,. (19)

Equation (18) means that the traditional mixed law holds.
In this case,

Emy = Emy = €y (20)

The stiffness tensor predicted by the present theory is just
the upper bound solution of Voigt (1989) [6].

Figure 12 shows that the present theory can give stiff-
ness moduli from the lower bound to the upper bound
with proper parameters A and Ay,

5. COMPARISON WITH EXPERIMENTAL RESULTS

The elastic modulus of SiCw/2024Al unidirectional
composite is calculated by the present theory. The volume
fraction of SiC whisker is 10% and the aspect ratio is 4.5.
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The elastic moduli of reinforcer and matrix materials are
480GPa and 80GPa, respectively.

Figure 13 shows the stiffness moduli of the composite
calculated by the present theory and the experimental re-
sults in reference [7]. It can be seen that the results ob-
tained by the present theory are excellently in good agree-
ment with the experimental ones.

6. COMPARISON WITH EMPIRICAL FORMULAE

If the reinforcers are randomly oriented in a plane,
comparing Eqs.(15-16) with Eq.(14) gives

3

@) _
K(c)llll = g

5
(90}
+ *8' K (€)2222°

KO 2

(©)1111

which is just the empirical formula given by Halpin &
Pagano [8].
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Fig. 12. The stiffness moduli predicted by present theory.
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Fig. 13. Elastic moduli at different misorientation angles.
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If the reinforcers are randomly oriented in 3-D space,
comparing Eqgs.(15-16) with Eqgs.(13-13a) gives

1

"5

(90)
(c)2222 °?

c Ak 2)

5

K©

©1111

K (d3)

©1111

which is just the empirical formula by Nielsen & Landel [9].
7. CONCLUSIONS

(1) Statistical regularity of the strain in reinforcers of
short-fiber/whisker reinforced composites is obtained by
using the network model. Based on the strain distribution
regularity, fiber-bundle reinforced composites can be re-
garded as the material model. The stiffness moduli of
composites with arbitrary reinforcer orientation density
function and under arbitrary loading condition can be
predicted from the microstructure parameters of materials.
(2) The upper-bound and lower-bound of the present
prediction are the same as those from the equal-strain the-
ory and equal-stress theory, respectively. The present the-
ory provides a physical explanation and theoretical base
for the commonly used empirical formulae. Compared
with the microscopic mechanical - theories, the present
theory is competent for modulus prediction of practical
engineering composites in accuracy and simplicity.

(3) It is demonstrated that the network model [3] is a
useful tool to simulate mechanical behavior of short-
fiber/whisker reinforced composites.
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