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Abstract

The piezoelastodynamic field equations are solved to determine the crack velocity at bifurcation for poled ferro-

electric materials where the applied electrical field and mechanical stress can be varied. The underlying physical

mechanism, however, may not correspond to that assumed in the analytical model. Bifurcation has been related to the

occurrence of a pair of maximum circumferential stress oriented symmetrically about the moving crack path. The

velocity at which this behavior prevails has been referred to as the limiting crack speed.

Unlike the classical approach, bifurcation will be identified with finite distances ahead of a moving crack. Nucleation

of microcracks can thus be modelled in a single formulation. This can be accomplished by using the energy density

function where fracture initiation is identified with dominance of dilatation in relation to distortion. Poled ferroelectric

materials are selected for this study because the microstructure effects for this class of materials can be readily reflected

by the elastic, piezoelectic and dielectric permittivity constants at the macroscopic scale. Existing test data could also

shed light on the trend of the analytical predictions. Numerical results are thus computed for PZT-4 and compared with

those for PZT-6B in an effort to show whether the branching behavior would be affected by the difference in the material

microstructures. A range of crack bifurcation speed vb is found for different r=a and E=r ratios. Here, r and a stand for

the radial distance and half crack length, respectively, while E and r for the electric field and mechanical stress. For
PZT-6B with vb in the range 100–1700 m/s, the bifurcation angles varied from �6� to �39�. This corresponds to E=r of
�0.072 to 0.024 Vm/N. At the same distance r=a ¼ 0:1, PZT-4 gives vb values of 1100–2100 m/s; bifurcation angles of
�15� to �49�; and E=r of �0.056 to 0.059 Vm/N. In general, the bifurcation angles �h0 are found to decrease with
decreasing crack velocity as the distance r=a is increased. Relatively speaking, the speed vb and angles �h0 for PZT-4 are
much greater than those for PZT-6B. This may be attributed to the high electromechanical coupling effect of PZT-4.

Using v0b as a base reference, an equality relation v�b < v0b < vþb can be established. The superscripts �, 0 and þ refer,

respectively, to negative, zero and positive electric field. This is reminiscent of the enhancement and retardation of crack

growth behavior due to change in poling direction.

Bifurcation characteristics are found to be somewhat erratic when r=a approaches the range 10�2–10�1 where the
kinetic energy densities would fluctuate and then rise as the distance from the moving crack is increased. This is an

artifact introduced by the far away condition of non-vanishing particle velocity. A finite kinetic energy density prevails

at infinity unless it is made to vanish in the boundary value problem.
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Future works are recommended to further clarify the physical mechanism(s) associated with bifurcation by means of

analysis and experiment. Damage at the microscopic level needs to be addressed since it has been known to affect the

macrocrack speeds and bifurcation characteristics.

� 2002 Published by Elsevier Science Ltd.

1. Introduction

Current research on dynamic crack propagation
has placed great emphases on how to drive a crack
beyond the Rayleigh wave speed cR, perhaps even
reaching that of the dilatational wave speed cd.
Such a possibility has been shown to occur in a
two-dimensional molecular dynamics calculations
for an in-plane shear crack moving along a weak
interface dividing two harmonic crystals [1]. The
shear crack is said to speed up to the Rayleigh wave
velocity and then nucleate an intersonic crack
travelling at the dilatational wave speed. Convin-
cing tests, however, are lacking to explain the un-
derlying mechanism(s). It is not known whether the
Super-Rayleigh wave speed crack was accelerated
from a subsonic crack or the nucleation of a new
crack that could reach a speed of approximatelyffiffiffi
2

p
cs in the intersonic range. Here, cs is the shear

wave speed. Moreover, it is doubtful that local
stress state is one of pure in-plane shear despite the
fact that it prevails globally at distances far away
from the crack tip. Should the main crack be
macroscopic and the nucleated crack be micro-
scopic [2], then there is no valid reason why the
same event would not occur for an in-plane ex-
tensional crack. Equally unconvincing is the ex-
planation offered by the finite cohesive traction
shear crack model [3] where a finite peak shear
stress was developed ahead of the tip. Similar
models could be developed for moving cracks
under in-plane extension. The solution for a finite
length crack expanding at both ends with trac-
tions can be found in [4]. The cohesive trac-
tion zones were referred to as regions of plastic
yielding.
It appears that the only possible way of achiev-

ing high crack speed is to invoke a weak plane for
the crack to ride. Indeed, the test in [5] enabled an
in-plane extensional crack to reach the theoretical

limit cR. This was accomplished by making the
perspective crack path material weaker than the
surrounding media. In an ordinary homogeneous
isotropic solid, the limiting crack speed is about
0.5cR. Along the similar line of thought [6], an in-
plane shear crack was made to run along a layer of
brittle polyester resin such that it was able to reach
the intersonic speed of

ffiffiffi
2

p
cs and sometimes the

dilatational wave speed cd. Another variation is to
cut a deep groove into the specimen [7] to guide the
shear crack.
The present trend is to combine the continuum

approach with that of atomistic simulation where
large scale numerical calculations are necessary. A
case in point is the cohesive failure zone model [8]
that uses the mesh-free numerical method. While
the results included wavy fracture paths and crack
branching, the absence of definite conclusions were
attributed to the lack of an intrinsic length scale in
the formulation. Scale length dependent theories,
however, do not address the hierarchical cha-
racter of damage by cracking. Once the length
parameter is committed to a given scale, the
results become restrictive. It is still necessary to
know how the micro-, meso- and macroscale
events are connected. There is the need to probe
deeper into the continuum model of dynamic crack
propagation where scaling can be addressed in a
general sense. The virtue of using both the con-
tinuum and particulate approaches has been dis-
cussed [9,10]. Of immediate relevancy are the
following:

• To include the nucleation of microcracks in rela-
tion to the propagation of a macrocrack such
that failure depends on finite distances from
the maincrack.

• To obtain effective account of how microstruc-
ture changes can be reflected via the macro-
scopic material constants.
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• To assess the hierarchical nature of failure of
damage and connect the results at the micro-,
meso- and macroscale.

The continuum theory of linear piezoelasticity
appears to be equipped to serve the aforemen-
tioned objectives. More demanding and less ap-
parent are the selection of a criterion that would
not handicap the field solution to explain crack
bifurcation. Mechanics refers to the onset of crack
bifurcation as a metastable state followed by in-
stability. The energy release rate concept though
appears to be infallible for it sets an a priori that
the excess energy in a system converts to the cre-
ation of fracture surface. Determination of the
excess or available energy, however, cannot be by-
passed by focusing attention at the crack point. It
is necessary to know the energy dissipated over
a finite region that would otherwise be present
to trigger instability. The development of plastic
enclaves prior to ductile fracture is an example.
Sites of bifurcation should be identified with finite
distances from the main crack. The crack-carry
inertia tends to support the distant dependent
character of crack bifurcation or branching. Mul-
tiple branches at a smaller length scale could also
arise. Keep in mind that the kinetic energy of the
particles ahead of the crack vary with the distance
from the tip.
The energy density criterion is chosen because

it imposes no restriction on the size regime under
examination and it devoids of obvious ambigui-
ties. For a running crack, the maximum stress is
parallel to the crack [11] rather than being nor-
mal to it. This contradicts the assumption of the
maximum stress criterion. The energy density ap-
proach [12–14] accounts for the influence of both
stresses and strains to dilate and distort material
elements. Nucleation sites of cracks are determined
from the stationary values of the energy density
function. Dominance of dilatation in contrast to
distortion in a unit volume of material is assumed
to determine the location(s) of failure by cracking
rather than relying on a single stress component.
This would not only discriminate the other stress
components but also the strain components.
What will be shown in the works to follow are

the variables that could entail crack bifurcation.

They could depend sensitively on material micro-
structures and external disturbances. The ultimate
aim is to understand these effects and to be able to
control them in application.

2. Basic equations of piezoelastodynamics

The constitutive equations of linear piezoelas-
ticity are given by

rij ¼ Cijkl 2kl �ekijEk; Di ¼ eikl 2kl þeikEk ð1Þ
in which rij, 2ij, Ei and Di are respectively the
stress, strain, electric field and displacement. The
elastic, piezoelecric and dielectric constants are
given in the order of Cijkl, eijk and eij. In plane
extension with the pole aligned in the 3-direction,
Eq. (1) can be simplified and written in matrix
form as

r11
r33
r31
D1

D3

2
66664

3
77775 ¼

c11 c13 0 0 e31
c13 c33 0 0 e33
0 0 c44 e15 0
0 0 e15 �211 0
e31 e33 0 0 �233

2
66664

3
77775

211
233
2231
�E1
�E3

2
66664

3
77775
ð2Þ

Invoked in Eq. (2) is the state of transverse an-
isotropy.

2.1. Representation by potential functions

In two-dimensions, the displacement compo-
nents can be expressed in terms of the potential
functions /ðx; y; tÞ and wðx; y; tÞ:

ux ¼
o/
ox

þ ow
oy

; uy ¼
o/
oy

� ow
ox

ð3Þ

If Uðx; y; tÞ represents the electric potential, then

Ex ¼ � oU
ox

; Ey ¼ � oU
oy

ð4Þ

The strains are thus given by

2x¼
o2/
ox2

þ o2w
oxoy

; 2y¼
o2/
ox2

� o2w
oxoy

;

2 2xy¼ 2
o2/
oxoy

þ o2w
oy2

� o2w
ox2

ð5Þ
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Using Eq. (2), it is found that

rx ¼ c11
o2/
ox2

�
þ o2w
oxoy

	
þ c13

o2/
oy2

�
� o2w
oxoy

	
þ e31

oU
oy

ry ¼ c13
o2/
ox2

�
þ o2w
oxoy

	
þ c33

o2/
oy2

�
� o2w
oxoy

	
þ e33

oU
oy

rxy ¼ c44 2
o2/
oxoy

�
þ o2w

oy2
� o2w

ox2

	
þ e15

oU
ox

ð6Þ

Moreover, the electric displacement components
become

Dx ¼ e15 2
o2/
oxoy

�
þ o2w

oy2
� o2w

ox2

	
� e11

oU
ox

Dy ¼ e31
o2/
ox2

�
þ o2w
oxoy

	
þ e33

o2/
oy2

�
� o2w
oxoy

	
� e33

oU
oy

ð7Þ

The equations of motion for the stresses are

orx

ox
þ orxy

oy
¼ q

o2ux
ot2

;
orxy

ox
þ ory

oy
¼ q

o2uy
ot2

ð8Þ

in which q is the mass density and t the time.
Substituting Eqs. (3) and (6) into Eq. (8), there
results

c11
o3/
ox3

�
þ o3w
ox2oy

	
þ c13

o3/
oxoy2

�
� o3w
ox2oy

	

þ ðe31 þ e15Þ
o2U
oxoy

þ c44 2
o3/
oxoy2

�
þ o3w

oy3
� o3w
ox2oy

	

¼ q
o2

ot2
o/
ox

�
þ ow

oy

	

c13
o3/
ox2oy

�
þ o3w
oy2ox

	
þ c33

o3/
oy3

�
� o3w
ox2oy

	

þ e33
o2U
oy2

þ e15
o2U
ox2

þ c44 2
o3/
ox2oy

�
þ o3w
oxoy2

� o3w
oy3

	

¼ q
o2

ot2
o/
oy

�
� ow

ox

	
ð9Þ

Satisfaction of

oDx

ox
þ oDy

oy
¼ 0 ð10Þ

for Dx and Dy in Eq. (7) yields

e15 2
o3/
ox2oy

�
þ o3w
oy2ox

� o3w
ox3

	
� e11

o2U
ox2

þ e31
o3/
ox2oy

�
þ o3w
oxoy2

	
þ e33

o3/
oy3

�
� o3w
oxoy2

	

� e33
o2U
oy2

¼ 0 ð11Þ

The governing Eqs. (9) and (11) are to be solved
for the potential functions /, w and U under the
specified boundary conditions.

2.2. Constant velocity problems

For cracks moving at a constant velocity v, say
along the x-axis, it is convenient to make the fol-
lowing transformations:

n ¼ x� vt; g ¼ y ð12Þ
where n and g stand for a set of moving coordi-
nates and x and y are stationary (Fig. 1). Uniform
normal stress r and electric E are applied at in-
finity. A crack 2a is assumed to propagate at a
constant length as assumed in [15]; it closes at the
trailing edge by the amount it advances. This ar-
tifact implies that the trailing tip absorbs energy at
the same rate as that radiated by the leading tip.

Fig. 1. Moving coordinates and far field.
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2.3. Galilean transformation

The transformation in Eq. (12) can be applied
to Eq. (9) whereby eliminating the time variable t.
Let prime denote differentiation with respect to the
argument of the function. The complex variable
z ¼ n þ lg with l being a complex constant. Eqs.
(9) and (11) can thus be written as

½c11 þ ðc13 þ 2c44Þl2 � qv2
/000

þ ½c44l3 þ ðc11 � c13 � c44Þl � qv2l
w000

þ ðe31 þ e15ÞlU00 ¼ 0

½c33l3 þ ð2c44 þ c13Þl � qv2l
/000

� ½c44 � ðc44 þ c13 � c33Þl2 � qv2
w000

þ ðe15 þ e33l2ÞU00 ¼ 0

½e33l3 þ ð2e15 þ e31Þl
/000

þ ½ðe15 þ e31 � e33Þl2 � e15
w000

� ðe11 þ e33l
2ÞU00 ¼ 0

ð13Þ

For a non-trivial solution, the determinant of Eq.
(13) is required to vanish. This gives the charac-
teristic equation that can be solved for the eight
complex roots. The pair �i can be dropped while
the remaining three pairs can be solved by apply-
ing the conditions across the x- or n-axis such that

l4 ¼ �ll1; l5 ¼ �ll2; �ll6 ¼ �ll3 ð14Þ
Bar represents conjugate. The three roots uj (j ¼ 1,
2, 3) can be put back into Eq. (13) for determining
/, w and U.

2.4. Complex potential functions

Let aj and bj represent complex constants for
j ¼ 1, 2, 3 and FjðzjÞ a complex function of zj ¼
n þ ljg. It follows that

/ ¼ Re
X3
j¼1

FjðzjÞ
" #

;

w ¼ Re
X3
j¼1

ajFjðzjÞ
" #

;

U ¼ Re
X3
j¼1

bjFjðzjÞ
" #

ð15Þ

in which aj and bj are found from Eq. (13) once lj

are known.

Inserting Eqs. (15) into (6), there results

rx ¼ Re
X3
j¼1

½c11

(
þ c13l2j þ ðc11 � c13Þljaj

þ e31ljbj
F 00
j ðzjÞ

)

ry ¼ Re
X3
j¼1

½c13

(
þ c33l2j þ ðc13 � c33Þljaj

þ e33ljbj
F 00
j ðzjÞ

)

rxy ¼ Re
X3
j¼1

½2c44uj

(
þ c44ðl2j � 1Þaj þ e15bj
F 00

j ðzjÞ
)

ð16Þ

Similarly, Eq. (15) can be put into Eq. (7) to render

Dx ¼ Re
X3
j¼1

½2e15lj

(
þ e15ðl2j � 1Þaj � e11bj
F 00

j ðzjÞ
)

Dy ¼ Re
X3
j¼1

½e31

(
þ e33l2j þ ðe31 � e33Þljaj

� e33ljbj
F 00
j ðzjÞ

)

ð17Þ

The expressions for ry , rxy and Dy in Eqs. (16) and
(17) will be isolated by introducing the contrac-
tions

Aj ¼ C13 þ C33l
2
j þ ðC13 � C33Þljaj þ e33ljbj

Bj ¼ 2C44lj þ C44ðl2j � 1Þaj þ e15bj

Cj ¼ e31 þ e33l2j þ ðe31 � e33Þljaj � e33ljbj

ð18Þ

such that the boundary conditions involving ry , rxy

and Dy can be expressed in simpler forms.
A suitable form of solution for F 0

j ðzjÞ can be
written as

F 0
j ðzjÞ ¼ bjzj þ aj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zjðzj þ 2aÞ

q�
� zj

�
ð19Þ

so that

F 00
j ðzjÞ ¼ bj þ aj

zj þ affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zjðzj þ 2aÞ

p
 

� 1

!
ð20Þ
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Remember that zj refers to the moving coordinates
n and g.

2.5. Remote and crack surface boundary conditions

Referring to Fig. 1, uniform mechanical stress
r1
y and electric field E1

y are specified at infinity. By
letting zj

�� ��! 1 in Eq. (20), substituting the results
into the appropriate expressions of Eqs. (16) and
(17) and using Eq. (18), it can be shown that

Re
X3
j¼1

Ajbj

" #
¼ r1

y ; Re
X3
j¼1

Bjbj

" #
¼ 0;

Re
X3
j¼1

Cjbj

" #
¼ 0

ð21Þ

The second and third Eqs. (21) correspond to
r1
xy ¼ 0 and D1

y ¼ 0, respectively.
Three additional conditions can be identified

with the crack surfaces being traction-free and
impermeable of electric flux:

ry ¼ 0; rxy ¼ 0; Dy ¼ 0 for � 2a < n < 01

ð22Þ
This gives

Re
X3
j¼1

Ajbj

(
þ ½if ðnÞ � 1
Ajaj

)
¼ 0

Re
X3
j¼1

Bjbj

(
þ ½if ðnÞ � 1
Bjaj

)
¼ 0

Re
X3
j¼1

Cjbj

(
þ ½if ðnÞ � 1
Cjaj

)
¼ 0

ð23Þ

in which the real function f ðnÞ takes the form:

f ðnÞ ¼ � n þ affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�nðn þ 2aÞ

p ; for � 2a < n < 0

ð24Þ
Eqs. (22) determine the constants aj (j ¼ 1, 2, 3)

while bj (j ¼ 1, 2, 3) can be found from Eq. (21),
E1
x ¼ 0 and E1

y specified in addition to zero ro-
tation at infinity. Hence, Eqs. (15) are completely
known from which all the stresses, electric fields
and displacements can be found.

A physical requirement is that the crack surface
normal displacement uy is required to be positive.
Eqs. (15) and (19) can be used to express the sec-
ond of Eq. (3) as

uy ¼ Re
X3
j¼1

ðlj

(
� ajÞ bjzj

�
þ aj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zjðzj þ 2aÞ

q
� ajzj

�)

ð25Þ
For a given crack velocity and electromechanical
disturbance E1

y =r1
y , the condition uy > 0 must be

satisfied for �2a < n < 0 and g ¼ 0 so that the
upper and lower crack surfaces would not come in
contact.

2.6. Energy density functions

The energy density function dW =dV is positive
definite and can be calculated from

dW
dV

¼ 1

2
rij 2ij þ

1

2
DiEi ð26Þ

in which rx, ry and rxy are given in Eq. (16) and Dx,
Dy in Eq. (17). Note that 2x, 2y , 2xy , Ex and Ey in
Eqs. (5) and (4) can be found from /, w and U in
Eq. (15). These expressions are solved numerically
for dW =dV in Eq. (26).

3. Crack bifurcation criterion

A possible explanation for crack bifurcation has
been attributed to the appearance of maximum
circumferential stress on planes inclined at about
�60� to the direction of a crack moving faster than
0.6cs [15]. A variety of criteria have since been
used; they represent different variations of the
maximum stress concept. The predicted angles of
bifurcation, however, are found to be much larger
than those observed in tests. The energy release
rate for multiple branching spreading in a circular
pattern has been estimated in [16,17]. However, no
quantitative assessments of possible effects due to
material properties, boundary conditions and mi-
crocracking have been made.
The volume energy density approach was first

used in [11] where attention were focused on the
failure of an material element at a finite distance
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ahead of the tip. An asymptotic field solution
dW =dV ¼ S=r with r ! 0 was made use of. Bi-
furcation angles of �18.84� to �15.52� were re-
ported for glass with Poisson’s ratio of 0.21–0.24.
The assumption was based on finding a pair of
radial planes off to the main path. On these planes,
S were found to possess relative minima. This
corresponds to the largest value(s) of dilatational
energy density exceeding that ahead of the main
crack prior to branching. No precise information
were given for the distance at which bifurcation
occurred. It remains unclear how the asymptotic
decay S=r could be used to discuss failure that is
initiated at a finite distance from the crack tip.
Comparison of the asymptotic solution with the
full field solution of dW =dV for a stationary crack
has been made in [18]. The difference can be sig-

nificant for examining damage inflicted to the
material ahead of the main crack.

3.1. Numerical procedure

To be specific, numerical results will be calcu-
lated for PZT-4 whose material properties can be
found in Table 1. According to Eq. (13), the crack
velocity must be specified before the roots lj

(j ¼ 1, 2, 3) can be determined. Table 2 gives uj
for crack velocities of v ¼ 400, 1300 and 1800 m/s.
No appreciable changes take place until the high
crack velocity range is reached. The correspond-
ing values of aj and bj in Eq. (15) for the same
crack velocities are given in Table 3. For illus-
tration, it suffices to discuss the case for v ¼
1300 m/s.

Table 1

Material constants for PZT-4 piezoceramic

Elastic constants� 1010 (N/m2) Piezoelectric constants (C/m2) Dielectric

permittivities� 10�9 (C/Vm)

c11 c13 c33 c44 e31 e33 e15 e11 e33

13.9 7.43 11.3 2.56 �6.98 13.84 13.44 6.00 5.47

Table 2

Roots for PZT-4 with specified crack velocities

Roots Crack velocities (m/s)

400 1300 1800

l1 (0:00þ 1:189i) (0:00þ 1:173i) (0:00þ 1:158i)
l2 (0:281þ 1:078i) (0:337þ 0:985i) (0:376þ 0:876i)

l3 (�0:281þ 1:078i) (�0:337þ 0:985i) (�0:376þ 0:876i)

Table 3

Coefficients in Eq. (15) for PZT-4

Roots Crack velocities (m/s)

400 1300 1800

a1 (0:00� 2:463i) (0:00� 5:816i) (0:00þ 46:97i)
a2 (�1:341þ 3:061i) (�0:003þ 3:762i) (1:512þ 3:816i)

a3 (1:341þ 3:061i) (0:003þ 3:762i) (�1:512þ 3:816i)

b1 (0:00� 0:448i) (0:00� 1:317i) (0:00þ 12:33i)

b2 (�0:082� 0:404i) (�2:769� 0:434i) (�0:489� 0:390i)

b3 (0:082� 0:404i) (2:769� 0:434i) (�0:489� 0:390i)
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3.2. Multiscale feature of bifurcation

One of the objectives is to compute the energy
density function from Eq. (26) and to determine the
minima of dW =dV with respect to the angle h for
negative and positive E1

y =r1
y . Both single value

and double values of h0 will be determined. The
direction(s) of dilatation dominance which is as-
sumed to coincide with the prospective crack path.
Fig. 2(a) and (b) shows the two possible solutions:
single crack path h0 ¼ 0� and crack bifurcation,

�h0. The radius of the core region r0 is small but
non-zero; it prevents the energy density dW =dV
to become unbounded. Note that the results in
Table 4 depend on r=a ranging from 10�6 to 10�1.
Unless minimum of dW =dV for bifurcation is
shown, h0 ¼ 0� is implied for a crack to run straight
ahead. When E1

y =r1
y is positive h0 ¼ 0� is pre-

dicted for all values of r=a. The corresponding
normalized energy density function fðdW =dV Þmin=
½aðr1

y Þ
2
g� 10�10 are summarized in Table 5. It

decreases sharply with the distance r=a. For

Table 5

Normalized minimum energy density fðdW =dV Þmin=½aðr1
y Þ2
g � 10�10 for v ¼ 1300 m/s and PZT-4

E1
y =r1

y � 10�2

(Vm/N)

r=a

10�6 10�4 10�3 10�2 10�1

�8.00 9:772� 104 9:763� 102 9:748� 101 9.763 1.022

�5.33 5:199� 104 5:193� 102 5:187� 101 5.222 0.535

�2.66 3:784� 104 3:769� 102 – – 0.289

0.00 – – – 5.723 0.454

2.66 1:189� 105 1:177� 103 1:150� 102 1:082� 101 1.030

5.33 2:050� 105 2:038� 103 2:012� 102 1:954� 101 2.017

8.00 3:268� 105 3:256� 103 3:231� 102 3:189� 101 3.415

Fig. 2. Crack bifurcation assumed to coincide with dominance of dilatation.

Table 4

Prediction of crack initiation direction(s) for v ¼ 1300 m/s and PZT-4

E1
y =r1

y � 10�2

(Vm/N)

r=a

10�6 10�4 10�3 10�2 10�1

�8.00 �70.2� �70.2� �70.2� �69.3� �94.5�
�5.33 �72.0� �72.0� �72.0� �72.0� �16.2�
�2.66 �91.8� 96.3� – – 0�
0.00 – – – 0� 0�
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E1
y =r1

y ¼ �0:0266 and 0.00, minima of dW =dV
were not found and hence crack initiation direc-
tion(s) are not reported.
Physical interpretation of the results in Table 4

is illustrated in Fig. 3. Three size and time regimes
are shown; they are referred to as micro, meso and
macro. In the microscale region, tiny fissures are
predicted; they attain very large bifurcation angles
of �72� and then decrease to �16.2� for E1

y =
r1
y ¼ �0:0533 Vm/N. For E1

y =r1
y > 0, these fis-

sures tend to coincide with the path of load sym-
metry. The time available for the creation of these
fissures are very short and hence their sizes are
expected to be small. Increase of the branch sizes
are expected to occur in the mesoscale range with
decreasing angles of inclination. These effects are
most pronounced for bifurcation at the macroscale
where the angles are reduced to �16.2� and the
branches would be longer as more time is available
to create free surface.
At each scale, ðdW =dV Þmin would have to ex-

ceed a threshold for the nucleation of a straight or
forked crack, i.e., ðdW =dV Þmin > ðdW =dV Þc. It is
not difficult to anticipate that

dW
dV

� 	micro
c

>
dW
dV

� 	meso
c

>
dW
dV

� 	macro
c

ð27Þ

If ðdW =dV Þmacro in Eq. (27) is in MPa, then ðdW =
dV Þmicro would be in GPa. Their precise values
would depend on the material under consider-
ation.

4. Moving crack inertia

A crack is said to carry inertia as it encounters a
material particle in or near its path. Increase of the
particle velocity would invariably increase the ki-
netic energy density dK=dV . Since the local stress
and strain field would also increase, the strain
energy density dW =dV also tends to be elevated.
These two energy density changes depend on crack
velocity and material properties. A relative com-
parison could provide information on material
inertia that a moving crack would have to over-
come in order to attain a certain velocity. This
is expected to be distance dependent since both
dK=dV and dW =dV are expected to decay with
distance from the tip.

4.1. Low electromechanical coupling: PZT-6B

A second material PZT-6B ceramic is depicted
to examine the changes caused by different mate-
rial properties. Refer to Table 6 for the piezoelastic
constants of this material. Compared with Table 1
for PZT-4, the piezoelectric constant for PZT-6B is
lower on the average by a factor of 3.
Both the kinetic energy density dK=dV and

strain energy density dW =dV decrease rapidly with
r=a. Plotted in Fig. 4(a) and (b) are, respectively,
the ratio ½ðdK=dV Þ=ðdW =dV Þ
=v2 versus logarithm
of r=a for E1

y =r1
y ¼ �0:08, 0.0, and 0.16 Vm/N

and different crack velocities from 10 to 2100 m/s.

Table 6

Material constants for PZT-6B piezoceramic

Elastic constants� 1010 (N/m2) Piezoelectric constants (C/m2) Dielectric

permittivities� 10�9 (C/Vm)

c11 c13 c33 c44 e31 e33 e15 e11 e33

16.8 6.0 16.3 2.71 �0.9 7.1 4.6 3.6 3.4

Fig. 3. Distance dependant character of bifurcation damage for PZT-4 with v ¼ 1300 m/s and E=r ¼ �0:0533.

Z.F. Song, G.C. Sih / Theoretical and Applied Fracture Mechanics 38 (2002) 121–139 129



For E1
y =r1

y ¼ �0:08 Vm/N in Fig. 4(a), the ratio
remains virtually constant for v ¼ 2100 m/s, i.e.,
the inertial effect is distant independent. For v <
1600 m/s, the curves tend to drop as the distance
from the crack is increased. This corresponds to
r=a ¼ 10�2, beyond which all curves tend to zero.
The drop is more pronounced for the higher crack
velocity curve. No essential changes take place
when E1

y =r1
y is increased to 0.0 except that the tail

ends of the curves start to rise as r=a ! 1:0. This
behavior becomes more evident for E1

y =r1
y ¼ 0:16

Vm/N and v < 1600 m/s in Fig. 4(c). Curvature
reversal does not occur for v > 2000 m/s. This is
caused by the non-vanishing strain at infinity
where the material particles would experience a
velocity in the x-direction:

_uux ¼ �v
oux
on

¼ �v 2x or _uu1x ¼ �v 21
x ð28Þ

The kinetic energy density will thus be finite re-
gardless of how much r=a is increased unless an
opposing strain field is introduced to negate that
in Eq. (28). In this way, dK=dV would vanish
monotonically with distance.

4.2. High electromechanical coupling: PZT-4

For the PZT-4 material, Fig. 5(a) for E1
y =r1

y ¼
�0:08 Vm/N shows that the crack inertial effects
are larger at a given velocity. They also appear to
remain constant for a greater distance before de-
creasing in magnitude. Similar trends are found in
Fig. 5(b) and (c) for E1

y =r1
y ¼ 0:0 and 0.08 Vm/N,

respectively. Uprising of the curves at r=a ¼ 10�1

and 100 is considerably more pronounced at E1
y =

r1
y ¼ 0:0 Vm/N for PZT-4 in Fig. 5(b) as com-
pared with that in Fig. 4(b) for PZT-6B. The high
electromechanical coupling of PZT-4 could be re-
sponsible for this. The same applies to the result in
Fig. 5(c) even though the applied electric field for
PZT-4 is only one-half of the strength of that for
PZT-6B in Fig. 4(c).

5. Bifurcation crack speeds and angles

The strain energy density criterion [12–14] as-
sumes that failure of material elements occur at

Fig. 4. Crack-carry inertia for PZT-6B with different velocities

and E1
y =r1

y ratio. (a) E1
y =r1

y ¼ �0:08 Vm/N, (b) 0.0 Vm/N,
(c) 0.08 Vm/N.
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finite distances from the crack tip which is ex-
cluded from the analysis by a core region (Fig. 2).
Crack propagation is simulated as the coalescence
of discrete elements, each of which has exceeded
their thresholds represented by the critical volume
energy density ðdW =dV Þc. Bifurcation is assumed
to initiate when two elements are predicted to fail
simultaneously at �h0 off the main course of crack
propagation (Fig. 2(b)). Such a model differs from
the energy release rate approach where the crack is
assumed to cut into the material ahead in a con-
tinuous fashion, a mathematical abstraction.
What should be kept in mind is the multiscale

implications of the following numerical results
as the distance scale for r=a extends from 10�6

(micro) to 10�4 (meso) and 10�1 (macro) (Fig. 3).
Since time is inherently coupled with length, the
time available for creating free surfaces at the
different scale should be kept in mind. The non-
equilibrium theory of isoenergy density [19,20] ad-
dresses this phenomenon.

5.1. Distance dependency

Prior to the arrival of a moving crack, the ma-
terial particles ahead is disturbed dynamically.
Severity of the disturbance would decrease with
distance. The material microstructure behavior
will be reflected by the macroscopic constants in
Table 1 for PZT-4 and Table 6 for PZT-6B. Bi-
furcation characteristics can be greatly affected.
This will be exhibited for E1

y =r1
y ¼ �0:08, 0.0 and

0.08 Vm/N.
PZT-6B ceramic: Fig. 6(a)–(c) show, respec-

tively, the variations of bifurcation angles �h0
with distance r=a as E1

y =r1
y is altered. The angles

increased to about �70� for crack velocities of 100;
900; . . . ; 2000 m/s as indicated in Fig. 6(a) for
E1
y =r1

y ¼ �0:08 Vm/N. All curves remained flat
and then start to drop at about r=a ¼ 10�2. Bi-
furcation ceases for large distances away from the
tip. This feature is retained in Fig. 6(b) for E1

y =
r1
y ¼ 0:0 Vm/N except that the curves for different
crack velocities are more wide spread. Changes in
the bifurcation angles with distance r=a are much
more sensitive. This trend continues for E1

y =r1
y ¼

0:08 Vm/N in Fig. 6(c). Now, the velocity curves
are further compressed where v ¼ 100 to 1200 m/s

Fig. 5. Crack-carry inertia for PZT-4 with different velocities

and E1
y =r1

y ratio. (a) E1
y =r1

y ¼ �0:08 Vm/N, (b) 0.0 Vm/N,
(c) 0.08 Vm/N.
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are represented by the line h0 ¼ 0� for a single
crack path.

PZT-4 ceramic: By keeping all field parameters
constant, the material is now changed from PZT-
6B to PZT-4. A comparison of Fig. 7(a) with Fig.
6(a) to shows that dramatic changes of �h0 versus
logðr=aÞ have taken place. All the curves in Fig.
7(a) are now closely confined to h0 � �70�; they
begin to diverge as r=a ! 10�2. Opposing effects
are also seen from the results in Fig. 7(b) and (c)
when compared with those in Fig. 6(b) and (c) for
PZT-6B. The wide spread feature of the crack
velocity curves are now replaced by converging
trends in Fig. 7(b) and (c). The bifurcation angles
no longer change appreciably with distance until
r=a reaches about 10�2.

5.2. Crack speed changes

At a fixed distance ahead of the tip, the bifur-
cation angles would increase with crack speed.
This effect becomes less sensitive as the distance
r=a is increased. The behavior for PZT-4 and PZT-
6B, however, differs significantly and will be dis-
played graphically.

PZT-6B ceramic: It can be seen from the curves
of r=a ¼ 0:5 to 1.0 in Fig. 8(a) that relatively small
change in v can cause large variations of h0. Larger
change in crack velocity is required to vary the
bifurcation angle once r=a becomes smaller than
0.2. As the ratio E1

y =r1
y is increases from �0.08 to

0.00 Vm/N in Fig. 8(b), change in h0 becomes
more sensitive to crack speed. This is evidenced by
the increase of dh0=dv, the slope of the curves.
Even more dramatic are the results in Fig. 8(c) for
E1
y =r1

y ¼ 0:08 Vm/N when the curves are nearly
vertical for all r=a and they are bunched together
in the range of 1300–2000 m/s.

PZT-4 ceramic: Illustrated in Fig. 9(a)–(c) are
similar results for PZT-4. Very close to the tip,
little or no changes could be seen in h0 for the
range of crack velocities considered. This is shown
in Fig. 9(a) for E1

y =r1
y ¼ �0:08 Vm/N. Beyond

the distance r=a ¼ 10�2, the bifurcation angle de-
creases with v and then rises. This is opposite to
the behavior of PZT-6B in Fig. 8(a) for v within
the interval of 1150–2180 m/s. Decreasing in v is
shifted to the curves for r=a ¼ 10�6 and 10�3 in

Fig. 6. Variations of bifurcation angles with distance for PZT-

6B with different velocities and E1
y =r1

y ratio. (a) E1
y =r1

y ¼
�0:08 Vm/N, (b) 0.0 Vm/N, (c) 0.08 Vm/N.
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Fig. 7. Variations of bifurcation angles with distance for PZT-4

with different velocities and E1
y =r1

y ratio. (a) E1
y =r1

y ¼ �0:08
Vm/N, (b) 0.0 Vm/N, (c) 0.08 Vm/N.

Fig. 8. Bifurcation angles against crack speed for PZT-6B with

different distances and E1
y =r1

y ratio. (a) E1
y =r1

y ¼ �0:08 Vm/
N, (b) 0.0 Vm/N, (c) 0.08 Vm/N.
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Fig. 9(b) as E1
y =r1

y is increased to 0.00 while large
changes in h0 are seen for those curves with
r=a > 10�2 as they adopt a steep descent. Fig. 9(c)
for E1

y =r1
y ¼ 0:08 Vm/N shows that a slight de-

crease of h0 is still retained in the curve for
r=a ¼ 10�6 but the remaining curve drop even
more rapidly for v > 1780 m/s.

5.3. Effect of poling and electric field strength

The electric field strength and its direction with
reference to poling can also influence the bifurca-
tion angle at different crack velocities. In view of
the variance in results for the two ceramics, it is
expected that similar differences will also be ob-
served in this case.

PZT-6B ceramic: In Fig. 10(a)–(c), the crack
velocities are varied from 100 to 2000 m/s while h0
is plotted against E1

y =r1
y for fixed r=a ¼ 10�6; 10�2

and 10�1. The high velocity curve (v ¼ 2000 m/s)
remained unchanged for the range of E1

y =r1
y

considered. The onset of crack bifurcation h0 > 0�
corresponds to positive E1

y and shifts gradually
into the negative E1

y regime as r=a is increased
to 10�1. The curves are well behaved. They reveal
that the bifurcation angles are confined within
�29� to �58� for E1

y =r1
y ¼ �0:08 Vm/N.

PZT-4 ceramic: Compared with the results in
Fig. 10(a) and (b) for PZT-6B, the curves for PZT-
4 in Fig. 11(a) with v6 1800 m/s and in Fig. 11(b)
with v6 1400 m/s acquired an opposite behavior.
They correspond to an increase in h0 with de-
creasing E1

y =r1
y . Similar feature is observed as r=a

is increased to 10�1 in Fig. 11(c). No bifurcation
has been found for v ¼ 100 to 900 m/s and full
range of E1

y =r1
y shown.

5.4. Strain energy density variations

Assuming that the process of free surface cre-
ation is irreversible, a system could not gain energy
by self-sealing as this would imply a negative en-
ergy release rate, the physical meaning of which
would be trying [21]. The strain energy density
function is required to be positive definite under all
conditions. This will be shown numerically for
dW =dV in Eq. (26). Also keep in mind is that each
point on a given dW =dV curve corresponds to a

Fig. 9. Bifurcation angles against crack speed for PZT-4 with

different distances and E1
y =r1

y ratio. (a) E1
y =r1

y ¼ �0:08 Vm/
N, (b) 0.0 Vm/N, (c) 0.08 Vm/N.
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Fig. 10. Variations of bifurcation angles with electric field to

stress ratio for PZT-6B with different velocities and r=a ratio.
(a) r=a ¼ 10�6, (b) 10�2, (c) 10�1.

Fig. 11. Variations of bifurcation angles with electric field

to stress ratio for PZT-4 with different velocities and r=a ratio.
(a) r=a ¼ 10�6, (b) 10�2, (c) 10�1.
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possible energy state of instability where two in-
clined branches might appear suddenly.

PZT-6B ceramic: A graphical representation
of the normalized strain energy density function
versus E1

y =r1
y is given in Fig. 12(a)–(c) for r=a ¼

10�6, 10�3 and 5� 10�1, respectively. Amplitudes
of the dW =dV curves in Fig. 12(a) are three and six
orders of magnitude larger than those in Fig. 12(b)
and (c). They could be described by the inequality
in Eq. (27) where reference is made to the micro-,
meso- and macroscale. The curves are also seen to
dip more sharply as r=a is increased to 5� 10�1.

PZT-4 ceramic: The normalized ðdW =dV Þmin
curves in Fig. 13(a)–(c) for PZT-4 have similar
trends. However, they become more closely spaced
for negative electric field and widely spaced for
positive electric field. Recall that the size scale of
dW =dV in Fig. 13(a)–(c) can differ by several or-
ders of magnitude. Assignment of jE1

y j values
should be exercised with application in mind such
that coercive strength would not be exceeded to
cause possible domain switching. Change in the
ceramic microstructure would be a topic beyond
the scope of this discussion.

6. Conclusions and comments

In elastodynamics, material elements are as-
sumed to transmit disturbances by dilatational and
distortional waves at the respective speeds of cd
and cs. Volume change and shape change are thus
regarded as the two fundamental mechanisms of
energy transmission; their description is made
possible only in two-dimensions. If the lateral con-
traction of a unit cube is one fourth of the axial
extension, this gives cd ¼ cs ¼ 1:732 which hap-
pens to coincide with the speed ratio for glass.
Theoretical formulation of the elastodynamic
field theory also imposes limitation on speed

because it contains the factors

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðv=csÞ2

q
andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ðv=cdÞ2
q

which are required to be non-zero.
Hence, v < cs sufficies because cd > cs. The Ray-
leigh surface wave speed cR being about 92% of cs,
for m ¼ 0:25 (Poison’s ratio) has been most fre-
quently quoted as a limit even though there is no
physical reasons why cd or cs should be the upper

Fig. 12. Normalized strain energy density function versus

electric field to stress ratio for PZT-6B with different velocities

and distance from tip. (a) r=a ¼ 10�6, (b) 10�3, (c) 0.5.

136 Z.F. Song, G.C. Sih / Theoretical and Applied Fracture Mechanics 38 (2002) 121–139



limits. Keep in mind that these speeds are defined
in terms of the bulk mass density and material
constants referred to the macroscopic scale for an
isotropic and homogeneous medium. Violation of
these assumptions would render the results un-
meaningful.
The classical definitions of cs and cd become

dubious at the microscopic scale where inhomo-
geneity takes precedent. When changes are con-
sidered at the local scale, the system is said to be
in state of ‘‘non-equilibrium’’ [19,20]. That is the
material properties would alter with the time and
may not be represented by the same parameters at
different scale levels. Assessment of dilatational
and distortional effects at a given size and time
scale can be made automatically from the sta-
tionary values of the strain energy density function
[12–14] even for non-linear situations. Linear su-
perposition is not necessary. Such a procedure has
indeed led to a better understanding of how the
field characterization parameters control crack
bifurcation. The uniform motion crack solution is
not able to shed light on the transient character of
dividing a single crack path into two. Assuming
that the crack attains a constant velocity from the
outset is equivalent to sudden bifurcation. Even
then, initiation of microfissures, mesocracks and
macrobranches are predicted along the prospec-
tively path of crack propagation. They could con-
tribute to the roughness of the fracture surfaces
related to branching.
Shown are changes in bifurcation behavior

caused by crack velocity, electric field strength and
material properties. Different results are obtained
for different distances from the crack tip. The
display could involve the variations of bifurcation
crack speed as a function of the electric field to
applied stress ratio. Fig. 14 gives a family of curves
with r=a ¼ 10�6; 10�3; . . . ; 100 using the PZT-6B
material for illustration. For a given E1

y =r1
y ratio,

the likelihood of a sudden bifurcation can be
identified with a distance r=a and crack speed.
Bifurcation speed can also be plotted against the
distance ratio r=a using E1

y =r1
y as the varying

parameter (Fig. 15). The curves would then clearly
show that the speed at which a crack is predicted
to bifurcate tend to remain constant for distances
close to the tip if the electric field to stress ratio is

Fig. 13. Normalized strain energy density function versus

electric field to stress ratio for PZT-4 with different velocities

and distance from tip. (a) r=a ¼ 10�6, (b) 10�2, (c) 0.1.
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kept greater than 0.0266 Vm/N. Curves labelled
with E1

y =r1
y ¼ �0:08, �0.0533, �0.0266 and 0.00

Vm/N lie in the region for r=a > 10�3. The coor-
dinates of their ends are (�0.52, 691), (�1.00,
1011), (�1.71, 346) and (�2.79, 105). In general, a
high crack speed would be required for bifurcation
to initiate at distances further away from the tip.
Graphical representations involving other para-
meters may be developed in the same way.
An improved understanding of the transient

character of bifurcation is handicapped by the
assumption where the crack speed is taken to be

constant for all time. The results must therefore be
assessed accordingly. Although non-uniform crack
growth rates could be treated for quasi-static
problems, the effective treatment of crack acceler-
ation does not appear to be in sight.
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