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Abstract—We introduce a conceptual model for the in-plane physics of an earthquake fault. The

model employs cellular automaton techniques to simulate tectonic loading, earthquake rupture, and strain

redistribution. The impact of a hypothetical crustal elastodynamic Green’s function is approximated by a

long-range strain redistribution law with a r�p dependance. We investigate the influence of the effective

elastodynamic interaction range upon the dynamical behaviour of the model by conducting experiments

with different values of the exponent (p). The results indicate that this model has two distinct, stable modes
of behaviour. The first mode produces a characteristic earthquake distribution with moderate to large

events preceeded by an interval of time in which the rate of energy release accelerates. A correlation

function analysis reveals that accelerating sequences are associated with a systematic, global evolution of

strain energy correlations within the system. The second stable mode produces Gutenberg-Richter

statistics, with near-linear energy release and no significant global correlation evolution. A model with

effectively short-range interactions preferentially displays Gutenberg-Richter behaviour. However, models

with long-range interactions appear to switch between the characteristic and GR modes. As the range of

elastodynamic interactions is increased, characteristic behaviour begins to dominate GR behaviour. These

models demonstrate that evolution of strain energy correlations may occur within systems with a fixed

elastodynamic interaction range. Supposing that similar mode-switching dynamical behaviour occurs

within earthquake faults then intermediate-term forecasting of large earthquakes may be feasible for some

earthquakes but not for others, in alignment with certain empirical seismological observations. Further

numerical investigation of dynamical models of this type may lead to advances in earthquake forecasting

research and theoretical seismology.
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Introduction

It is well known that the regional or global distribution of earthquake magnitudes

empirically obeys the Gutenberg-Richter law (GUTENBERG and RICHTER, 1956), a

power-law event size distribution of the form:

NðMÞ ¼ KMM�b

where KM is an empirical constant and b is the so-called regional or global b value.
Empirical values for the b value typically fall in the range 0:8 < b < 1:2. If seismic

energy is employed in place of magnitude, the corresponding empirical exponent is

b � 2=3 (WU, 2000).

Seismologists became interested in cellular automata as possible analogues of

earthquake fault dynamics when BAK and TANG (1989) demonstrated that even

highly simplified, nearest neighbour automata produce power-law event size

distributions. The sandpile automaton of BAK et al. (1987) was employed to

demonstrate the emergence of power-law statistics as the result of the combined

action of a large number of simple elements which interact only with nearby cells via

a prespecified interaction rule. BAK et al. (1987) termed such behaviour Self-

Organised Critical (SOC) behaviour.

SOC generated considerable debate amongst earthquake forecasting researchers.

The SOC state is considered to be a minimally-stable state, characterised by a high

mean energy in the system with very small mean energy fluctuations (BAK et al.,

1987). Events occur at random and are distributed according to a power-law size-

distribution. Assuming the earth’s crust is in an SOC state, GELLER et al. (1997)

argued that earthquakes cannot be predicted. In response, WYSS et al. (1997) cited a

variety of evidence for precursory activity prior to catatrophic failure to argue that

further research is required before earthquake forecasting is proven to be unfeasible.

One type of precursory activity which has driven the forecasting debate in recent

years is that of accelerating seismic moment release. BUFE and VARNES (1993)

demonstrated that the 1989 Loma Prieta, California earthquake was preceded by an

interval of about 30–50 years in which the rate of seismic activity accelerated.

Employing cumulative Benioff strain release (square-root of the seismic moment

release) as a measure of seismic activity, the researchers utilised an empirical time-to-

failure relationship to make a retrospective forecast of the time-of-occurrence of the

Mw ¼ 6:9 Loma Prieta earthquake with a precision of 2 months. The earthquake
magnitude was predicted to beMpred ¼ 6:83 (BUFE and VARNES, 1993). Subsequently,
accelerating moment release has been identified prior to a considerable number of

moderate to large earthquakes from a variety of tectonic settings. JAUME and SYKES

(1999) presented a review of reported cases of accelerating moment release.

Power-law accelerations in energy release are an important feature of a class of

dynamical systems known as Critical Point (CP) systems. In statistical physics,
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Renormalisation Group Theory was developed to describe CP systems. This theory

identifies accelerating energy release as the signature of the progressive development

of long-range correlations in a physical property of the system (SORNETTE and

SAMMIS, 1995). This concept of correlation evolution became the basis for the

Critical Point Hypothesis (CPH) of earthquakes (SALEUR et al., 1996). Under this

hypothesis, an earthquake rupture may only occur when long-range stress correla-

tions exist along the length of a fault. The progressive formation of such correlations

is driven by tectonic loading and the redistribution of stress due to smaller

earthquakes in the neighbourhood of the fault. Earthquake rupture destroys the

long-range stress correlations, returning the fault to a state far-from-failure until a

sufficiently correlated stress field is reformed via the action of subsequent, smaller

earthquakes.

Renormalisation group theory and cellular automata have a number of features

in common. The earthquake forecasting debate fueled considerable research

employing both these techniques (see MAIN, 1996 for a review). The majority of

automata studied were nearest-neighbour models; interactions only occur between

cells and those adjacent to them. WEATHERLEY et al. (2000) found that nearest

neighbour automata may display behaviour in which the size of highly correlated

regions increases prior to large events. However in these models, the formation of

such correlated regions is driven predominantly by external (tectonic) loading rather

than strain redistribution due to smaller to moderate events, as predicted by the

CPH. SAMMIS and SMITH (1998) did identify correlation evolution (consistent with

the CPH) in an automaton consisting of a discrete fractal heirarchy of cells, including

one macroscopically large cell which failed during the largest events.

Applying Damage Mechanics principles, XIA et al. (1999) developed a 1-D fibre-

bundle model displaying behaviour qualitatively similar to CP behaviour, known as

Evolution Induced Catastrophy (WEI et al., 2000). In this model, strain energy from

failed fibres was transferred to fibres within a local region whose size may be

predefined or may depend upon the local pattern of damage. Unlike nearest

neighbour models, the longer-range transfer of strain in the fibre-bundle model

resulted in evolution qualitatively similar to CP behaviour.

KLEIN et al. (2000) examined a long-range automaton which is based upon a

cellular automaton equivalent of the Burridge-Knopoff block-slider model (RUNDLE

and JACKSON, 1997; RUNDLE and BROWN, 1991). KLEIN et al. employed a discretised

stress Green’s function with a r�3 dependance to characterise the long-range

interactions. Long-range springs join blocks to a large number of surrounding blocks

and r is defined as the distance between two blocks which are attached to one-
another. This model results in Gutenberg-Richter event size-distributions with a b
value of b ¼ 1:5, in agreement with a coarse-grained, mean-field description of the
model derived by KLEIN et al. (2000). Scaling of events in these models is associated

with nucleation near a mean-field spinodal rather than critical point fluctuations

(KLEIN et al., 1997).
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Our motivation for designing the model presented in this paper, was to determine

whether dynamical behaviour consistent with the CPH may be obtained in 2-D

automata employing long-range transfer of strain energy from failed cells. A

conceptual approach has been employed to design a model for the evolution of strain

energy supported by contacting asperities within the plane of a fault. A 2-D grid of

cells represents the contacting asperities. Each cell is predefined with a constant

fracture energy, and has a variable strain energy. Tectonic loading of the fault is

simulated by increasing the strain energy of all cells by a small amount each loading

timestep. When the strain energy of a cell exceeds its fracture energy, the strain of the

cell is transferred to cells within a square transfer region surrounding the failed cell.

An elastodynamic interaction function (similar to a Green’s function) with a r�p

dependance determines the amount of strain energy transferred to cells a distance r
from the failed cell. The form of the interaction function was chosen because linear

elasticity predicts that, for a 2-D dislocation in a 3-D homogeneous elastic medium,

the magnitude of the stress Green’s function (T ) decays as T � r�3. Based upon this,
one might expect p ¼ 3 is a good choice of interaction exponent (or perhaps p ¼ 2 for
the 2-D case). However as mentioned by KLEIN et al. (2000), microcracks, fault

gouge, and pore-fluids may mask the r�3 interaction, resulting in effectively longer-
range static stress interactions. In addition, crack propagation theory predicts 1=

ffiffi
r

p

dynamic stress concentrations at the rupture front of propagating cracks. MORA and

PLACE (2002) report that correlation evolution can occur in particle-based elasto-

dynamic systems, suggesting that p � 1 may be more appropriate for the interaction
exponent. Furthermore, for elasto-plastic cases a log r term may appear. Hence, it is
unclear on physical grounds what is the appropriate exponent for the interaction

function. For this reason, we implement the model for an arbitrary choice of

interaction exponent and then perform numerical experiments employing various

values of the interaction exponent in the range 0:2 < p < 3.

It is important to emphasise that the elastodynamic interaction range as defined

by the interaction function (or the stress Green’s function) is not equivalent to the

correlation range as defined in the CPH. The CPH proposes that correlations in some

physical property (stress, strain, strain energy, or other) evolve in the lead-up to a

large event. This evolution is characterised by an increase in the average size of

regions with correlated properties. Hence, it is often stated that the correlation range

increases as a catastrophic earthquake becomes imminent. However, the elasto-

dynamic interaction range defined by the stress Green’s function of the Crust, is not

expected to evolve in the lead-up to a large event. In our model, the interaction

exponent is held constant during any given simulation and so, undergoes no

evolution.

The results which follow testify that, even with a fixed elastodynamic interaction

range, correlation evolution may occur prior to large events. It is apparent that the

interaction exponent (p) is a tuning parameter governing the mode of dynamical
behaviour displayed by the model. Small interaction exponents (p < 1) correspond-
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ing to effectively long-range interactions, result in dynamics dominated by charac-

teristic, large earthquakes. These earthquakes are preceded by accelerating strain

energy release, associated with global evolution of strain energy correlations within

the system. Systems with intermediate-range interactions ð1 < p < 1:5Þ appear to
switch between this characteristic mode and a dynamical mode characterised by

linear energy release and no significant correlation evolution. Linear energy release

eventually dominates the dynamical behaviour of the model, as p ! 2. Implications

of these results for theoretical seismology and earthquake forecasting research are

discussed in the sections following the results.

Model Description

Basic Features of the Model

The model consists of a regular, square lattice containing N2 cells. Each cell
i ¼ 1; . . . ;N2 is assigned a variable, scalar strain energy ei which is initially set to zero.
In addition, each cell is also assigned a constant, scalar fracture energy, efi in the
range 0:1 < efi < 1:0.
The fracture energies of cells are constrained to a statistical fractal distribution

with a dimension, D ¼ 2:3. The statistical fractal is generated using a well-known
Fourier filtering technique (TURCOTTE, 1997). The value of the fractal dimension was

chosen because ‘‘fractal statistics with a fractal dimension near 2.2 are a good

approximation for many geological processes’’ (HUANG and TURCOTTE, 1988). This

is based upon detailed studies of the earth’s topography.

The strain energy of all cells is periodically increased by an amount De, known
hereafter as the strain increment. The value of the strain increment is determined

dynamically as the minimum strain energy required to fail at least one cell in the

model. Failure of a cell occurs when the strain energy of the cell equals or exceeds its

fracture energy, i.e., ei 	 efi. Strain redistribution from failed cells is described in

detail below.

An external loading mechanism of this form is often employed in automata to

simulate slow tectonic loading in the models. Use of a variable strain increment (De)
motivates the introduction of a model timescale (tl) which is proportional to the
strain increment. The model time (t‘ðnÞ) of the n-th loading increment is given by

t‘ðnÞ ¼
Xn
j¼1

KDeðjÞ :

Defined in this manner, the model time ensures a constant rate of external loading in

accord with tectonic loading of earthquake faults. Since model units are arbitrary, we

set K ¼ 1. Temporal statistics such as energy release are analysed with respect to
model time rather than the number of loading timesteps.
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Strain Redistribution

The strain energy of a failed cell is redistributed to neighbouring cells in the grid.

In classical cellular automata, the strain energy of failed cells is transferred to the 4

(or 8) nearest (or next nearest) neighbours in the grid. Redistribution of strain energy

may trigger the failure of neighbouring cells. These cells in turn, redistribute their

strain energy possibly triggering further cell failures. It is this mechanism of

cascading ruptures which results in power-law event-size statistics similar to those of

natural earthquakes.

The models examined in this paper employ a strain redistribution mechanism

which is a generalisation of the classical nearest neighbour mechanism. Unlike

classical cellular automata, the strain energy from failed cells is redistributed to all

cells within a square region (s
 s) surrounding the failed cell. This region is called the
transfer (or interaction) region. The fraction of the released strain energy transferred

to a given cell k ð¼ 1; . . . ; s2Þ is a function of the Cartesian distance of cell k from the
failed cell at ðxf ; yf Þ. To achieve this, each cell (k) within the transfer region is
assigned an interaction coefficient, Ik:

Ik ¼
r�p
k

Io
; ð1Þ

where p is the interaction exponent. If the strain energy of the failed cell is ef , then the
strain energy transferred to cell k is given by ef Ik. The normalisation constant,
Io ¼

Ps2�1
k¼1 r�p

k ensures that strain energy is conserved during strain redistribution i.e.,

Xs2�1
k¼1

Ik ¼ 1 :

The numerical experiment described in the following section consists of a parameter

space investigation in which the interaction exponent is varied in the range

0:2 < p < 3. We chose to vary the interaction exponent because, as discussed in the

Introduction, it is unclear on physical grounds what is an appropriate value for the

interaction exponent. As the exponent decreases, the rate of decay of the interaction

function decreases. In terms of strain redistribution, this translates into a greater

fraction of the released strain being transfered to larger distances in the model (as the

exponent p decreases). In other words, the effective range of elastodynamic

interactions increases, as p decreases.
In the simulations described below, only non-zero values of p are employed. The

transfer region size (s) is chosen so that the minimum strain redistributed is small

compared with the minimum cell fracture energy (0:1) in most simulations. Under

such circumstances, the finite size (and shape) of the transfer region has a negligible

impact upon strain redistribution; the interaction function determines the spatial

redistribution of strain energy.
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Cell Healing and Dissipation

In order to simulate seismic cycles, a method for healing failed cells must be

specified. During the design phase of the model, a variety of different cell healing

mechanisms were tested. These included mechanisms in which failed cells rapidly heal

and may support strain energy transferred from the rupture front, and slow-healing

mechanisms in which failed cells cannot support strain until after the rupture has

completed. Rapid healing of cells resulted in two features which the authors

considered undesirable on physical grounds. The first is that cells may fail multiple

times during a given rupture. While earthquake rupture is a complex phenomenon, it

is unlikely that a given portion of the rupture surface re-activates multiple times

during earthquake rupture.

The second undesirable feature of rapid healing mechanisms is that very small

mean energy fluctuations often result. Past research (WEATHERLEY et al., 2000;

JAUMÉ et al., 2000) has shown that CP-like behaviour is most evident in models

displaying large mean energy fluctuations. Linear energy release and no significant

global correlation evolution corresponds to models displaying very small mean

energy fluctuations. Thus, motivated by the physical grounds outlined above and a

desire to simulate critical point behaviour, we employ the following slow-healing

mechanism.

The strain energy of a failed cell is reduced to zero and all of the stored strain is

redistributed within the cell’s transfer region i.e., no bulk dissipation of strain energy

is employed in this model. Once failed, a cell cannot support strain energy until

completion of the rupture which failed that cell; cells do not fail multiple times during

a given rupture. Strain energy transferred to failed cells is dissipated from the model.

As a result, subsequent to any given rupture, the strain energy of cells within the

rupture zone is zero. This is somewhat analogous to a frictional instability in which

the stress of slipping fault patches decreases to a constant, residual level regardless of

the frictional strengths of the patches.

One possible interpretation for the dissipative healing mechanism employed, is

that the energy dissipated by failed cells represents the strain energy lost due to other

processes within the fault zone such as frictional heating, and pore-fluid depres-

surisation. Perhaps one can argue that such a mechanism is qualitatively justified on

physical grounds. The results which follow show that this dissipative healing

mechanism results in long-term, stable dynamical behaviour including global

correlation evolution consistent with the Critical Point Hypothesis.

As in many previous automata, open boundary conditions are employed. All

strain energy transferred across external boundaries is dissipated from the model.

The transfer and dissipation of strain energy across model boundaries may be

considered analogous to the loss of strain energy from a fault zone due to transport

of strain (during rupture) to another portion of the fault zone outside the model

region. While some may argue for closed boundaries, in the authors’ experience this
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often leads to highly conservative models which evolve towards a state of SOC quite

unlike the dynamics of the models described here, unless a large portion of released

strain (> 50%) is lost via bulk dissipation.

Numerical Experiment and Empirical Results

The model specified above is arbitrary in the choice of interaction exponent (p)
and transfer region size (s). In a previous study of long-range automata the transfer
region size was varied in order to characterise the change in system behaviour as the

number of cells which receive strain energy from failed cells is increased (KLEIN et al.,

2000). These simulations employed a constant interaction exponent (usually p ¼ 3) in
a model with a fast healing, bulk dissipation mechanism. Under these conditions,

increasing the transfer region size is considered equivalent to increasing the

interaction range within the system (KLEIN et al., 2000).

As discussed earlier, we wish to explore a hypothetical ‘parameter space’ of

models with differing interaction exponents (p). In this we hope to determine whether
the evolution of correlated regions of strain energy is affected by the fixed, effective

elastodynamic interaction range within the system. Thus, for each simulation we

employ a fixed transfer region size s ¼ 59 and vary the value of p.
The transfer region size is chosen so that the finite size of the region does not result

in significant truncation of the interaction function (Equation 1) for simulations

employing an interaction exponent in the range, 0:5 < p < 3. Simulations employing

interaction exponents in the range 0:2 < p < 0:5 are also considered, however these

simulations suffer some truncation by the square transfer region as the interaction

exponent, p ! 0:2. This truncation gives rise to obvious undesirable features in the

dynamical behaviour for simulations employing very small exponent values.

The same fracture energy distribution is employed for all simulations. Preliminary

studies with various fracture energy distributions and various fractal dimensions have

shown that the dynamical behaviour illustrated here, is relatively robust with respect

to the choice of fracture energy distribution and range of fracture energies.

A total of 50 simulations were performed, each with a unique interaction exponent

chosen from the set p 2 f0:2þ 0:05iki ¼ 0; 1; . . . ; 56g. In each simulation, 106 loading
timesteps were computed, resulting in a synthetic earthquake catalogue consisting of

106 events. The simulations were performed on a SGI Origin 3800 supercomputer

with 16
 400 MHz R12000 CPUs. To compute 106 loading timesteps and record all
relevent model data typically consumes one hour of computation time on a single

CPU of this supercomputer. The results presented in the following subsections often

involve considerable post-processing of the recorded model data. In particular, to

compute the correlation function of the strain energy field for only 500 timesteps

required approximately five hours of CPU time. This placed obvious restrictions upon

the depth of the investigation into strain energy correlation evolution.
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In each of the following subsections, various aspects of the models and their

dynamical behaviour are examined in detail. These serve to illustrate both the

dynamical behaviour of the model for a given interaction exponent, and the change

in dynamical behaviour as the interaction exponent is varied. A summary of the

results, some discussion, and possible implications for seismology are discussed

subsequent to the numerical results.

Rupture Properties and Event Statistics

Strain redistribution from failed cells may trigger the failure of nearby cells which

in turn, trigger failure of other cells. In this fashion, a cascading chain reaction can

result in the failure of a macroscopic portion of the model. The pattern of failed cells

for a typical large event from a simulation with p ¼ 1:2 is shown in Figure 1a along
with snapshots of the strain energy in the model immediately before (Fig. 1b) and

subsequent to (Fig. 1c) this event. The regions where the most cells failed in the event

correspond to the mostly highly strained regions prior to the event. It is also evident

that large events are capable of failing regions with a relatively low strain prior to the

events; provided these regions reside near a highly strained cluster of cells which fail

during the large event.

The size of an event in an automaton simulation is often defined as the number of

cells which fail during a single rupture cascade. This is sufficient if all cells have the

same fracture energy (i.e., in a uniform automaton). However, for automata with

heterogeneous fracture energies such as those considered here, a more appropriate

definition of the event size (E) is the sum of the strain energy redistributed from all

failed cells during the rupture cascade. The event size includes all strain energy

transferred to other cells in the model and the strain energy dissipated from the

model during the event.

Seismologists became interested in cellular automata when BAK and TANG (1989)

showed that even highly simplified automata give rise to complex dynamics resulting

in a power-law event-size distribution not unlike the empirical Gutenberg-Richter

distribution. Cumulative event-size distributions for simulations with various

interaction exponents may be compared in Figure 2a and interval event-size

distributions for simulations with p ¼ 1; 2; 3 are given in Figures 2b–d, respectively.
It is apparent that simulations with a relatively large effective interaction range

(small p) produce an overabundance of large events. This overabundance diminishes
as the interaction range decreases. From the interval distributions, it is evident that a

power-law (or Gutenberg-Richter) event-size distribution is obtained for p � 2. For
this value of p, the slope of the interval distribution is approximately 1:5, the same
value as the theoretical prediction by KLEIN et al. (2000) for their similar Burridge-

Knopoff, long-range automata. For interaction exponents p > 2, the interval event-

size distribution begins to roll-over, indicating that these simulations have an

underabundance of moderate to large events. Little study of models with p > 2 has

Vol. 159, 2002 Long-range Automaton Models of Earthquakes 2477



been performed, although cursory investigation reveals a significant qualitative

change in rupture dynamics. Such behaviour may be of interest to researchers in

fields other than seismology.

Energy Conservation and Temporal Fluctuations

Each loading timestep, three processes alter the strain energy stored by cells in the

model. These are the loading mechanism, strain redistribution during failure, and the

a)

b) c)

Figure 1

(a) Damage pattern for a large event in a simulation with p ¼ 1:2. The event (whose epicenter is denoted by
a red square) failed a total of 5896 cells, releasing 3360:7 units of strain energy. Snapshots of the strain

energy in the model (b) before and (c) after this event. The snapshots illustrate that prior to large events,

there is considerable strain energy concentrated in the regions where the most cells fail. In the snapshots,

hotter (red) colours represent the highest strain energies (� 1:0) and cooler (blue) represents the lowest
strain energies (� 0:1).
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resultant energy dissipation. The total stored strain energy (enT ) at the end of the n-th
timestep, may be expressed in terms of the total stored strain energy at the beginning

of the n-th timestep (i.e., en�1T ), the total increase in strain energy due to external

loading (enL), and the total energy dissipated (e
n
D) during the rupture. This relationship

expresses the condition for energy conservation during a given loading timestep:

enT ¼ en�1T þ enL � enD :

Since the strain energy of each cell is incremented by DeðnÞ in the nth timestep,
enL ¼ N2DeðnÞ. Also, by the definition of the mean stored strain energy enT ¼ N 2en.
Using these substitutions, the energy conservation relation may be written in terms of

the mean strain energy, the strain increment and the energy dissipated, i.e.,

en ¼ en�1 þ DeðnÞ � enD
N 2

: ð2Þ

Evidently, the mean strain energy of the system increases monotonically whilst

the energy dissipated is less than the energy increase due to external loading (i.e.,
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Figure 2

(a) Cumulative event-size statistics for simulations with a range of interaction exponents, p 2 ½0:2; 3:0�.
Arrows indicate the direction of increasing p. (b–d) Interval distributions for simulations with
p ¼ 1:0; 2:0; 3:0; respectively. Notice that simulations with a longer effective interaction range (p ¼ 1:0)
tend to display an overabundance of large events. GR statistics with a slope of approximately 1:5 are

obtained for p ¼ 2:0.
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DeðnÞ � enD
N2 > 0). However, the mean energy will drop by an amount

enD
N2 � DeðnÞ, if the

energy dissipated in an event exceeds the loading energy. It may be concluded that

the mean energy of the system should display a sawtooth behaviour, increasing

gradually while only small events occur and dropping suddenly at the occurence of a

large event.

Indicative time-series of the mean strain energy of the system are shown in

Figures 3a–c for p ¼ 0:4; 1:2; 2:0; respectively. These time-series consist of approxi-
mately 300,000 events and do not include transient behaviour due to the initial

conditions; the time-series illustrate the long-term, stable dynamical behaviour of the

model for various interaction ranges. The sawtooth mean energy evolution is

particularly evident for the curves with the largest amplitude of fluctuations (Fig. 3a).

The temporal average of the mean strain energy at each timestep also displays a

dependance upon the interaction exponent (Fig. 4a). Three regimes are apparent as

the interaction exponent increases. The first regime (p < 0:5) contains models

suffering truncation of the interaction function by the finite transfer region. The

lower e in this regime may be a reflection of the finite truncation however this is yet to
be verified. During the second regime (1=2 < p � 2), the average mean energy
remains relatively constant around e � 0:268. In the final regime (p ! 3), the average

mean energy rapidly decreases once more.
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Figure 3

(a–c) Time-series of mean energy at the end of each timestep for approximately 300; 000 timesteps of

simulations with p ¼ 0:4; 1:2; 2:0; respectively. (d) Corresponding plots of cumulative energy release from
the same simulations. For models with a longer effective interaction range, mode-switching behaviour is

clearly evident, diminishing as p ! 2:0.
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In addition, a relationship between the amplitude of mean energy fluctuations

and the interaction exponent, is clearly evident in Figures 3a–c. In an attempt to

quantify this relationship, we have computed the maximum fluctuation amplitude for

each simulation. This is achieved by recording the total energy dissipated (enD) and the
strain increment (DeðnÞ) each timestep. For all the simulations, the range of strain
increment sizes is approximately 0 < De < 10�3, after the initial 100,000 timesteps.
Recognising that the majority of the smaller events occurring in the simulations do

not dissipate an appreciable amount of energy, the range in energy dissipated per

timestep is 0 < eD � eDmaxðpÞ.
The maximum energy dissipated depends upon the maximum event size which is

dependant upon the choice of interaction exponent (see Fig. 2). We take

ðeDmaxðpÞ=N 2Þ as a measure of the maximum fluctuation amplitude for a simulation

with interaction exponent p (c.f. Equation 2). The maximum fluctuation amplitude

displays a decreasing trend when plotted versus the interaction exponent (Fig. 4b).

Mode-switching Behaviour

Time-series of cumulative energy release are given in Figure 3d. These correspond

to the mean energy time-series in Figures 3a–c. For the simulation with p ¼ 0:4, two
phases with a differing mean rate of energy release may be identified. Long, cyclic

phases with large mean energy fluctuations and a relatively lesser mean rate of energy

release are separated by relatively short intervals with a higher mean rate of energy

release. The higher rate of energy release coincides with intervals in which the model

displays relatively small mean-energy fluctuations (c.f. Fig. 3a). Such mode-switching

behaviour is evident in all simulations with sufficiently large effective interaction

range (with interaction exponents smaller than p � 1:5). However, as the interaction
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(a) Time-averaged mean energy for simulations with differing interaction exponents, p. (b) Estimates of the
maximum amplitude of mean energy fluctuations for the same simulations.
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exponent increases, mode-switching becomes less obvious and linear energy release

begins to dominate.

Accelerating Rate of Energy Release Prior to Large Events

Visual examination of cumulative energy release time-series revealed qualitative

evidence for power-law accelerating sequences. This prompted an investigation to

determine whether on average, the rate of energy release accelerates in the interval

preceding large events in the model. We performed a simplified time-to-failure

analysis of the cumulative energy release to determine the probability that a

macroscopically large event is preceded by an interval in which the rate of energy

release accelerates. We were particularly interested in whether the system-wide

(global) energy release accelerates in the lead-up to a large event.

A power-law time-to-failure relationship is fit to the cumulative energy release

in the interval preceding the 500 largest events in each of a selection of simulations.

Following the methodology of BUFE and VARNES (1993), a power-law time-to-

failure relationship of the following form is fit to energy release prior to large

events:

Xt<tf

t¼ðtf�DtÞ
EðtÞ ¼ Aþ Bðtf � tÞ�m; ðm > 0Þ ð3Þ

where tf is taken as the model time at which the large event occurs and A;B are
empirical constants. The interval (Dt) and the power-law exponent (m) are varied in
the ranges 0:1 < Dt < 0:4 and 0:1 < m < 1:0, and a goodness-of-fit parameter (C) is

computed for each choice of interval length and exponent value. A minimum interval

length of Dt ¼ 0:1 was imposed to ensure that all sequences contained at least 100
events.

The goodness-of-fit (C) is defined as the ratio of the RMS error of the power-law

fit to the RMS error of a linear fit for the same time interval. This parameter is

chosen to maintain consistancy with past researchers examining natural accelerating

seismic energy sequences (BUFE and VARNES, 1993). The fit with the smallest C is

selected as the best power-law fit to the cumulative energy release for the given event,

and the interval length, power-law exponent, and goodness-of-fit is recorded.

In the analysis, frequency histograms of the number of fits with given fit

exponents (m) and interval lengths (Dt) were examined in addition to histograms of
goodness-of-fit such as those of Figure 5. These histograms illustrate the general

trend observed in the analysis: power-law fits to energy release are obtained more

frequently in simulations with smaller values of p (i.e., with effectively longer-range
elastodynamic interactions). Linear energy release is referred for simulations with a

shorter interaction range.
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Examples of power-law fits to energy release are given in Figure 6. Correspond-

ing linear fits to these sequences are provided for comparison. Quite reasonable

power-law accelerating sequences are picked by the regression algorithm for

simulations with p ¼ 0:4 and p ¼ 1:2. Second-order fluctuations in the data are
reminiscent of log-periodic corrections proposed to exist in systems displaying

discrete scale invariance (SALEUR et al., 1996). The statistical fractal employed in

these models has the property of discrete scale invariance.

Figure 6c illustrates a typical power-law fit to long energy release sequences in a

simulation with p ¼ 2. On average, energy release is near-linear. However one might
argue there is an appearance of higher-order log-periodic fluctuations in energy

release prior to large events even for p ¼ 2. A possibility worth exploring is that large
events in models with p ¼ 2, might be predicted if a higher-order log-periodic
correction were applied to Equation (3). However this is simply conjecture at

present; confirmation would require further research outside the scope of this

investigation.

Evolution of Strain Energy Correlations

A selection of simulations were rerun and a sequence of strain energy snapshots

were recorded during the last 3000 timesteps prior to the 50 largest events in each

simulation. This sequence spans a time interval of approx. 0:2 model time units prior
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Figure 5

Frequency histograms of the number of power-law fits with a given goodness-of-fit, C for simulations with

the given interaction exponent values. For small values of p, a large fraction of fits have C < 1 indicating

good power-law fits to energy release sequences. This population is progressively replaced by

predominantly linear energy release sequences, as p ! 2.
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to each large event. A selection of such snapshot sequences are given in Figure 7.

These correspond to the fitted event sequences in Figure 6.

During the accelerating sequences, small events occuring predominantly in the

weak region (top, right) of the model redistribute strain into a broad, strong region

(left) of the model. When the mean strain energy within this broad region reaches a

sufficient level, a large event is triggered. Often the smaller events may trigger

intermediate, moderate-sized events which fail only a portion of the highly strained

region, prior to the large event. The evolution of the strain energy during such

accelerating sequences is suggestive of the evolution expected if spatial strain

correlations in the model evolve in a fashion consistent with the CPH.

This is confirmed by performing a correlation function analysis of the strain

energy field using the strain energy snapshots. The correlation function Cðr; tÞ of the
strain energy field is defined as the following:

Cðr; tÞ ¼
h eiðtÞ � eðtÞð Þ ejðtÞ � eðtÞ

� �
i

h eiðtÞ � eðtÞð Þ2i
ð4Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxj � xiÞ2 þ ðyj � yiÞ2

q
and h� � �i represent the average over all pairs of

cells a distance r apart. For the 128
 128 model employed here, the range of distance
scales is 0 � r < 182. The discrete contributions to the correlation function due to
each cell-pair are linearly interpolated onto this range to produce a correlation

function CðrÞ for each strain energy snapshot. We stress that the correlation function
so computed is the global strain energy correlation function of the system.

Correlation evolution analysis for subsets of the model region were not performed

in this investigation.

The denominator of the correlation function normalises CðrÞ to remove any
dependance upon the mean strain energy (eðtÞ). This is required because, as we have
seen, the mean energy of the system increases on average prior to large events.

Without normalisation, an apparent evolution of the correlation function may

simply reflect the mean energy evolution, without any increase in the degree of

correlations at longer range; the specific mechanism proposed by the CPH.

During the analysis, individual energy release sequences were compared with

corresponding snapshots and correlation functions. It was noticed that motion of the

zero-crossings of Cðr; tÞ was related to the progressive growth of a broad, highly
correlated region, prior to macroscopic events in the models. Space limitations

precluded an in-depth analysis of this relationship.

Figure 6

Three power-law time-to-failure fits to cumulative energy release for three sequences indicative of those

from simulations with p ¼ 0:4; 1:2; 2:0. The solid line represents the power-law fit and the dashed line is the
best-fit linear approximation to the cumulative energy release data.

b
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Figure 8 attempts to illustrate the relative amount of correlation evolution which

occurs in simulations with differing elastodynamic interaction ranges (differing p).
The curve for each p value is obtained by first computing the mean correlation
function immediately prior to the 50 largest events, and also 0:2 model time units

Figure 7

A sequence of four strain energy snapshots corresponding to the power-law fits in Figure 6. The first

column is from a simulation with p ¼ 0:4, the second column is obtained for p ¼ 1:2, and the third is from
a simulation with p ¼ 2:0. The colour scale is the same as Figure 1.

2486 Dion Weatherley et al. Pure appl. geophys.,



prior to these events. The mean correlation function from the earlier time is

subtracted from the mean correlation function immediately prior to failure to give a

mean change in correlations in the interval leading up to the largest 50 events.

It is quite evident in Figure 8 that there is evolution in the range 0:2 < p < 2 and

the amplitude of the mean correlation change increases as the effective interaction

range increases (i.e., as p ! 0). On the other hand, a small effective interaction range

(p � 2) results in little or no global correlation evolution prior to the largest 50
events. It is apparent from these results that correlation evolution consistent with the

CPH accompanies accelerating energy release sequences prior to large events in

models with effectively long-range elastodynamic interactions (p � 1). However,
linear energy release sequences are accompanied by no significant global correlation

evolution (2 � p < 3).

Discussion

The conceptual design of this model makes it difficult to claim that these models

are a good representation of the physics occurring within the plane of a natural fault.

However, the behaviour of these models may be somewhat analogous to natural

earthquake faults, if the constitutive friction law governing fault rupture results in
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The mean change in correlations at each scale r in the lead-up to a large event, for various values of the
interaction exponent. Global evolution of strain energy correlations occur prior to large events in

simulations with longer-range elastodynamic interactions (p � 1). However little or no, correlation
evolution precedes large events as p ! 2.
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small events which predominantly move strain energy around within the fault region

and large events which remove a considerable fraction of the stored strain energy

from the region. With these characteristics, natural earthquake faults may display

behaviour not too dissimilar to the behaviour described above.

The implications for prediction of large events in these models should be obvious:

large events may only be forecast reliably when the system resides in the accelerating

mode. In this case, a forecast of the time of occurrence of a large event may be made

by fitting the cumulative energy release to a power-law time-to-failure relationship,

or by periodically computing the strain energy correlation function, or both. On the

other hand, large events occurring during the linear mode appear to display no

systematic, global precursory behaviour upon which to base a forecast. The

phenomenon of mode-switching indicates that, within any given simulation, both

predictable and unpredictable events occur.

Similar mode-switching behaviour has been identified in other earthquake

analogue models including a 3-D regional lithospheric model consisting of an upper

brittle zone with a damage rheology, over a Maxwell viscoelastic substrate (BEN-

ZION et al., 1999). In agreement with the results here, one mode was characterised by

Gutenberg-Richter scaling, while the other mode was charaterised by a characteristic

earthquake distribution. According to BEN-ZION et al., ‘‘the mode-switching

phenomenon may also exist in responses of other systems with many degrees of

freedom and nonlinear dynamics.’’

The stimulus which prompts a system with long-range interactions to switch from

one stable mode to the other is unknown. However, it is thought that heterogeneity

in the strain energy field is involved. In this model, accelerating energy release and

correlation evolution appears to occur when the strain energy field is relatively

smooth at small scales. Conversely, large small-scale heterogeneity in the strain

energy field promotes linear energy release. Further research is planned to measure

the degree of small-scale strain heterogeneity as a simulation approaches a switch

between one type of behaviour and the other. It is hoped that the evolution of strain

heterogeneity in the system may herald the transition between the different dynamical

modes.

Conclusions

The model described in this paper displays two distinctly different stable

dynamical modes. The first mode is characterised by small mean energy fluctuations,

linear energy release, and a lack of global correlation evolution. The second mode is

characterised by large mean energy fluctuations, and large events are preceded by

accelerating energy release associated with evolution of the strain energy correlation

function. It is apparent from the results presented that the dynamical behaviour of

the model undergoes a transition from one stable mode to another, as the interaction
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range is varied. A small interaction range (p 	 1:5) results in dynamics dominated by
the first, linear mode whilst models with larger interaction ranges (p < 1:5) appear to

mode-switch between the accelerating mode and the linear energy release mode. It is

apparent that global correlation evolution consistent with the CPH occurs when the

model resides in the second mode, suggesting that forecasts of macroscopic events are

feasible under these circumstances.

Evidence for accelerating seismic moment release prior to a number of natural

earthquakes has been reported, as has a few events which were not preceded by any

acceleration in the rate of seismic moment release (JAUMÉ, 2000). These observations

suggest that dynamical behaviour similar to that of the model, may be occurring

within the earth’s crust. In this case, earthquake prediction may be feasible only for

some large earthquakes but not for others. Further research with models such as

these may help to identify observable consequences of being in one mode or another,

so that the dynamics and stress state of the earth’s crust may be inferred for a given

region, and ‘‘predictable’’ earthquakes may be forecast reliably.
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