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Abstract

Strain energy density expressions are obtained from a field model that can qualitatively exhibit how the electrical and

mechanical disturbances would affect the crack growth behavior in ferroelectric ceramics. Simplification is achieved by

considering only three material constants to account for elastic, piezoelectric and dielectric effects. Cross interaction of

electric field (or displacement) with mechanical stress (or strain) is identified with the piezoelectric effect; it occurs only

when the pole is aligned normal to the crack. Switching of the pole axis by 90� and 180� is examined for possible

connection with domain switching. Opposing crack growth behavior can be obtained when the specification of me-

chanical stress r1 and electric field E1 or ðr1;E1Þ is replaced by strain �1 and electric displacement D1 or ð�1;D1Þ.
Mixed conditions ðr1;D1Þ and ð�1;E1Þ are also considered. In general, crack growth is found to be larger when

compared to that without the application of electric disturbances. This includes both the electric field and displace-

ment. For the eight possible boundary conditions, crack growth retardation is identified only with ðE1
y ; r1

y Þ for negative
E1
y and ðD1

y ; �1y Þ for positive D1
y while the mechanical conditions r1

y or �1y are not changed. Suitable combina-

tions of the elastic, piezoelectric and dielectric material constants could also be made to suppress crack growth.

� 2002 Published by Elsevier Science Ltd.

1. Introduction

Ferroelectric materials such as barium titanate
retain their polarization even after an electric field
has been withdrawn. Dipoles aligned with the field
are thus formed in the material microstructure.

Parallel orientation of dipoles in the opposite di-
rection can also occur by reversing the electric field
until a threshold referred to as the coercive strength
is reached. This forms a complete hysteresis loop
such that the enclosed area would be propor-
tional to the energy dissipated per unit volume in a
full field cycle. The dissipated energy would accu-
mulate and increase at the expense of the stored
energy required to maintain continuity of the ma-
terial. Discontinuities in the form of cracks could
occur at all scales from domains to devices when
sufficient number of full field cycles are applied.
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Since miniaturized devices are the rule in modern
electronic industry rather than the exception, mi-
croscopic defects or geometric irregularities could
often act as the primary crack initiators. They can
no longer be overlooked and need to be regulated
in the manufacturing process.

A feasible way to control microdefects requires
a knowledge of the conditions under which cer-
tain defects are harmful while others are not or
may even be beneficial. This depends solely on
the operational environment that changes for each
application. Reliance on simple test results alone
could be inadequate. Effective analytical solutions
are still most expedient for determining the critical
parameters that control failure. Too much em-
phases cannot be placed on the judicious combi-
nation of field solution with the appropriate failure
criterion that decides on the outcome. Such a re-
quirement will be demonstrated in this work for
the crack initiation behavior of the class of PZT
piezoceramics.

The classical energy release rate criterion and
those based on letting the crack extension vanish in
the limit assume that all energy are converted to the
creation of new fracture surface instantaneously at
the same size and time scale. In order to describe
fracture damage at different scale levels in a single
formulation, it is necessary to consider the multi-
scale behavior characterized by defect initiation,
growth with increasing or decreasing speed fol-
lowed by unstable propagation or arrest. Each
stage could vary to reflect how the same material
microstructure might react differently when the
macroscopic loading and/or boundary conditions
are changed. These considerations emphasize the
need to know material behavior under test condi-
tions that may not be the same as that under service.
At least two tests are necessary. Fracture behavior
study of piezoelectric materials [1–3] should involve
the specification of stress accompanied by electric
field and strain accompanied by electric displace-
ment or the equivalent that can be easily simulated
in tests. Not to mention in addition are the effects of
pole alignment relative to defect orientation. Op-
posing behavior of crack growth can result when
the direction of electric field is reversed with refer-
ence to poling. In practice, a mix of the two fore-
going boundary conditions may prevail.

By tradition, far more emphases have been
centered on refining the field solution while failure
criterion has been selected mostly by a hit-and-run
process. Preference has depended on how well the
analytical results agree with test data. The chal-
lenge is to test the same criterion for different field
solutions under different conditions. One of the
objectives of this work is to demonstrate that the
phenomenon of crack growth enhancement and
retardation can be explained by combining a field
solution with the appropriate fracture criterion
while the oversimplified criterion may lead to dis-
agreement with test data [4,5] and results that
contradict physics [1,6] such as negative energy
release rate.

The energy density function plays a funda-
mental role in the development of theories, not
only in mechanics but also in physics. It is positive
definite and has less likely of a chance to encounter
controversy. The rapid decay character of energy
density dW =dV or energy per unit volume next to
a defect can best describe the multiscale feature of
material damage. Fig. 1(a)–(c) inclusive illustrate
this feature for the evolution of cracking at the
micro-, meso- and macroscale, respectively. Near a
crack-like defect, mechanics predicts that dW =dV
rises rapidly without bound according to 1=r
where r is the distance from a sharp line defect.
Suppose that the linear dimensions less than 0.1,
0.1–10 lm and larger than 10 lm are assigned to
distinguish the respective length scales of micro,
meso and macro. Let r stand for a segment of
crack extension. The definition of scale length
would then require

rmicro < rmeso < rmacro ð1Þ
It followed that

dW
dV

� �micro

c

>
dW
dV

� �meso

c

>
dW
dV

� �macro

c

ð2Þ

where ðdW =dV Þc corresponds to the critical energy
density at fracture under unaxial loading. Note
that dW =dV represents the area under the true
stress and true strain curve. If ðdW =dV Þmacro

is in
MPa then ðdW =dV Þmicro

becomes GPa, a three
order of magnitude increase. Although there are
no available strength data at the micro- and meso-
scale to compare with those at the macroscale, the
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curves in Fig. 1(a)–(c) implies that micocracking is
likely to occur prior to meso- and macrocracking.
These implications are inherently embedded in
the decay behavior of dW =dV . The shaded areas
under the curves in Fig. 1 are obtainable from the
relation S ¼ rðdW =dV Þ. They could be interpreted
as the energy released by crack extension at the
different scale levels:

Smicro < Smeso < Smacro ð3Þ
The form dW =dV ¼ S=r applies to all length scale.
This is one of the reasons why the energy den-
sity criterion [7–9] could explain the crack growth
behavior of piezoceramics caused by microstruc-
ture change due to different orientation of poling
whereas the energy release rate criterion could not.
To be emphasized is that S=r is not necessarily re-
stricted to the asymptotic representation of dW =
dV unless the additional limit condition r ! 0
is imposed. The equivalence of rðdW =dV Þ and S
arises directly from the fact that the latter is simply
the area under the dW =dV versus r curve. The
dW =dV curve in Fig. 1(b) could coincide with that
in Fig. 1(a) if the microdamage is not sufficient to
alter the stored energy at the mesoscale. The same
applies to the curves in Fig. 1(b) and (c). Differ-
ence in the dW =dV curves at different scales would
signify energy dissipated to cause microstructure
change.

2. Electroelastic field model

Piezoelastic field equations can be greatly sim-
plified for two-dimensional problems where the
x-component displacement can be assumed to van-

ish such that only the y-component displacement
is used. Such a model has been proposed in [5]
for solving crack problems. That is

ux ¼ 0; uy ¼ vðx; yÞ ð4Þ
would yield only two nontrivial strain components

�x ¼ 0; �y ¼
ov
oy

; 2�xy ¼
ov
ox

ð5Þ

The electric potential /ðx; yÞ gives the electric field
components:

Ex ¼ � o/
ox

; Ey ¼ � o/
oy

ð6Þ

Simplification of the transversely isotropic con-
stitutive relations can be made by considering only
three constants to describe the elastic, piezoelectric
and dielectric properties. The stress and electric
displacement components rij and Di can then be
obtained, the forms of which would depend on
whether the pole is directed normal or parallel to
the crack as illustrated in Fig. 2(a) and (b), re-
spectively. Note that poling is in the three di-
rection. It coincides with the y-axis in Fig. 2(a) and
x-axis in Fig. 2(b).

2.1. Poling normal to crack

Referring to Fig. 2(a), the constitutive relations
can be written in matrix form as

rx

ry

rxy

Dx

Dy

2
66664

3
77775 ¼

m 0 0 0 e
0 m 0 0 �e
0 0 m �e 0
e 0 e e 0
�e e 0 0 e

2
66664

3
77775

�x
�y
2�xy
Ex

Ey

2
66664

3
77775 ð7Þ

Fig. 1. Energy density elevation near defect at micro-, meso- and macroscale.
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in which m, e, and e are, respectively, the elastic,
piezoelectric and dielectric constant. It follows
from Eq. (7) and the use of Eqs. (5) and (6) that

rx ¼ �e
o/
oy

; ry ¼
o

oy
ðmvþ e/Þ;

rxy ¼
o

ox
ðmvþ e/Þ

ð8Þ

and

Dx ¼
o

ox
ðev� e/Þ; Dy ¼

o

oy
ðev� e/Þ ð9Þ

To satisfy the equilibrium equations:

orxy

ox
þ ory

oy
¼ 0;

oDx

ox
þ oDy

oy
¼ 0 ð10Þ

the unknowns vðx; yÞ and /ðx; yÞ must be deter-
minable from the Laplace equations

r2vðx; yÞ ¼ 0; r2/ðx; yÞ ¼ 0 ð11Þ
For crack problems, the solution can be best

stated in the complex plane z ¼ xþ iy such that
the singular character of the central crack is ex-
pressed by the branch cut ðz2 � a2Þ1=2. A solution
of Eq. (11) can thus be written as

v ¼ Im½XðzÞ
; / ¼ Im½UðzÞ
 ð12Þ

For a crack of length 2a centered along the x-axis,
XðzÞ and UðzÞ are given by

XðzÞ ¼ A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � a2

p
; UðzÞ ¼ B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � a2

p
ð13Þ

with A and B being complex constants unless rxy

and Dx vanish at infinity. Then A and B are real.
The constant and linear terms in Eq. (13) can be
ignored since they will not affect the distribution of
the crack front stress and electric field.

In view of Eqs. (6), (8), (9) and (12), a complex
representation of the stress, electric displacement
and field components can be made:

ry þ irxy ¼ mX0ðzÞ þ eU0ðzÞ
Dy þ iDx ¼ eX0ðzÞ � eU0ðzÞ
Ey þ iEx ¼ �U0ðzÞ

ð14Þ

Once XðzÞ and UðzÞ are known, the crack problem
is solved.

Imposed on the crack surface jxj < a are the
traction free and impermeable electric boundary
conditions:

ry ¼ rxy ¼ 0 and Dy ¼ 0 for jxj < a ð15Þ

In this simplified model, rxy ¼ 0 along the crack is
not satisfied.

2.2. Poling parallel to crack

Suppose that poling is switched 90� such that it
is parallel to the crack as illustrated in Fig. 2(b).
The x- and y-axis will now coincide with 3 and 1,
respectively. A simplified version of the constitu-
tive equations in matrix form is given by

Fig. 2. Boundary conditions and poling with reference to crack.
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ry

rx

rxy

Dy

Dx

2
66664

3
77775 ¼

m 0 0 0 e
0 m 0 0 �e
0 0 m �e 0
e 0 e e 0
�e e 0 0 e

2
66664

3
77775

�y
�x
2�xy
Ey

Ex

2
66664

3
77775 ð16Þ

Making use of Eqs. (5) and (6), the stresses can be
found from Eq. (16) as

rx ¼ �e
ov
oy

; ry ¼ m
ov
oy

� e
o/
ox

;

rxy ¼ m
ov
ox

þ e
o/
oy

ð17Þ

In the same way, the electric displacement com-
ponents are also obtained:

Dx ¼ e
ov
oy

� e
o/
ox

; Dy ¼ e
ov
ox

� e
o/
oy

ð18Þ

Satisfaction of Eq. (10) requires that vðx; yÞ and
/ðx; yÞ to satisfy the Laplace equations in Eq. (11).
Hence, two complex functions can be introduced
to represent

v ¼ Im½KðzÞ
; / ¼ Im½WðzÞ
 ð19Þ
For the crack problem in Fig. 2(b), KðzÞ and WðzÞ
are of the forms

KðzÞ ¼ C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � a2

p
þ Fz;

WðzÞ ¼ D
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � a2

p
þ Gz

ð20Þ

in which C;D; . . . ;G are complex constants unless
shown otherwise.

A complex representation of the stress, electric
displacement and field components in terms of
KðzÞ and WðzÞ can be written as

ry þ irxy ¼ mK0ðzÞ � eW0ðzÞ
Dx � iDy ¼ �½eK0ðzÞ þ eW0ðzÞ

Ex � iEy ¼ �W0ðzÞ

ð21Þ

The conditions ry ¼ Dy ¼ 0 at jxj < a in Eq. (15)
can be satisfied by letting

mC2 � eD2 ¼ 0; mF1 � eG1 ¼ 0 ð22Þ
and

eC1 þ eD1 ¼ 0; F2 þ G2 ¼ 0 ð23Þ
in which Cj;Dj; . . . ;Gj for j ¼ 1 and 2 correspond,
respectively, to the real and imaginary parts of
C;D . . . ;G in Eq. (20). Imposing the conditions

rxy ¼ 0; Ex ¼ 0 for jzj ¼ 1 ð24Þ
it is further required that

mF2 � eG2 ¼ 0; D1 þ G1 ¼ 0 ð25Þ
after making use of the first of Eq. (22). The sec-
ond of Eq. (23) and first of Eq. (24) yield
F2 ¼ G2 ¼ 0. Eqs. (22), (23) and (25) can thus be
used to express the remaining quantities of Cj;
Dj; . . . ;Gj in terms of two real constants M and N
as follows:

C ¼ 1

emþ e2
ðeM þ ieNÞ; F ¼ Me

mðemþ e2Þ

D ¼ 1

emþ e2
ð�eM þ imNÞ; G ¼ Me

emþ e2

ð26Þ

The determination of M and N can be made from
the boundary conditions at infinity.

2.3. Specification of conditions at infinity

A variety of boundary conditions can be spec-
ified at infinity in piezoelasticity. They include the
combinations of ðr1

y ;E
1
y Þ, ð�1y ;D1

y Þ, ðr1
y ;D

1
y Þ and

ð�1y ;E1
y Þ. For each case, the poling direction can

be aligned normal or parallel to the crack as in-
dicated in Fig. 2(a) and (b). This would give eight
possible cases as summarized in Table 1. In view
of the first of Eqs. (8) in this model, a transverse
constraint r1

y ¼ eE1
y prevails for Case I since E1

y
is one of the primary boundary conditions to
be investigated. No transverse constraint exists
for the other cases. Cases I–IV referred to as

Table 1

Classification of boundary conditions

Case no. Poling refer-

ence to crack

Boundary

conditions

Transverse

constraint

Natural boundary conditions

I Normal ðr1
y ;E1

y Þ r1
x ¼ eE1

y

II Parallel ðr1
y ;E1

y Þ r1
x ¼ 0

III Normal ð�1y ;D1
y Þ �1x ¼ 0

IV Parallel ð�1y ;D1
y Þ �1x ¼ 0

Mixed boundary conditions

V Normal ðr1
y ;D1

y Þ r1
x ¼ 0

VI Parallel ðr1
y ;D1

y Þ r1
x ¼ 0

VII Normal ð�1y ;E1
y Þ �1x ¼ 0

VIII Parallel ð�1y ;E1
y Þ �1x ¼ 0
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the natural boundary conditions and V–VIII the
mixed boundary conditions. A knowledge of how
each one of the eight cases would affect failure by
cracking of piezoceramics is useful for design
considerations.

3. Criterion for crack initiation and growth

The observation that crack growth would be
enhanced if the electric field is applied in the poling
direction was first made in [10,11]. Retardation
was also found when the poling direction opposes
that of the electric field. An assessment of this
phenomenon was made in [12,13] by solving the
exact piezoelastic field equations and applying the
energy density criterion. When the results of fail-
ure analysis [4,5] disagrees with those found by
tests, there exists the possibilities that the field
solution or the failure criterion is at fault. It is also
possible that both the field solution and failure
criterion are incorrect. To be shown is that the
simplified version of the field solution [5] can ex-
plain crack growth enhancement and retardation
if the energy release rate criterion is replaced by
the energy density criterion that has the capability
to treat multiscale crack extension behavior.

3.1. Necessity of scaling damage size and time

Material tends to separate along a path where
volume change is the largest while yielding tends to
favor shape change. These two mechanisms of
energy dissipation never occur at the same location
and time when they are carefully observed in situ.
Postmortem examination of fracture corresponds
to the terminal time frame of the broken material
which may contain evolutionary traces of per-
manent deformation occurred at different size
and time scales. Zone of microplasticity are often
found inside the macroplastic enclaves. For ana-
lytical model intended to cover the multiscale and
evolutionary character of fracture, greater preci-
sion in terminology is needed to describe plasticity
reflected by nonlinearity and material damage at
microscale. Otherwise, the same concept may be
expressed by different descriptors.

3.2. Hierarchical character of damage

The increment of energy DW stored in an in-
crement of volume DV expressed as a ratio DW =
DV becomes increasingly high as it approaches a
geometric defect. This is because the local stress
and strain can be many times greater than those
averaged globally. More specifically, the stress
ratio r‘=rg would scale according to ðq=aÞk where
q and a represent the local and global length pa-
rameter. Here, r‘ and q could be microscopic
quantities while rg and a could be macroscopic.
The exponent k is in general complex with jkj < 1
depending on the local geometry [14] and material
inhomogeneity. A defect is thus said to enhance
failure initiation because the nearest element ac-
quires a state of hydrostatic tension where volume
change is largest. This has been traditionally re-
ferred to as ‘‘notch tip embrittlement’’. Material
nonhomogeneity and anisotropy could also ag-
gravate the situation.

The choice to a micro-, meso- or macroelement
for analysis is arbitrary. Distinction, however,
must be made for those quantities such as stress,
strain, and energy density that are scale sensitive.
That is microstress cannot be equated to macro-
stress while the total energy W and force do not
depend on scale. A discussion of scaling effects
connected with the specific surface energy in frac-
ture mechanics can be found in [15,16].

As mentioned earlier, crack initiation and
growth criterion cannot be chosen arbitrarily, par-
ticularly for piezoelectric materials where cracking
may involve multiscale considerations. The energy
density criterion [7–9] can best serve this purpose
for it reflects the hierarchical character of material
damage. It can seek out the location of damage
initiation by focusing attention on a unit volume
of micro-, meso- or macroelement such that the
thresholds for each scale range follow the condi-
tions stated in Eq. (2). Microcracking would thus
precede that at the mesoscale followed by macro-
cracking. Their locations can be determined from
the stationary values of DW =DV where the relative
minima and maxima would correspond, respec-
tively, to large and small change in volume DV .
It follows that large DV renders ðDW =DV Þmin

and small DV renders ðDW =DV Þmax. Among many
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of the minima and maxima, there exists one
maximum of ðDW =DV Þmin and one maximum of
ðDW =DV Þmax. Their locations are assumed to co-
incide with the sites of fracture and yield initiation
in the energy density criterion [7–9].

3.3. Variable crack growth steps

A crack can be modelled to grow in steps as a
combination of increasing segments r1 < r2 < � � �
or decreasing segments r1 > r2 > � � �. The size of
each segment is dictated by the energy released.
This is shown graphically in Fig. 3(a) for S1 <
S2 < � � � and in Fig. 3(b) for S1 > S2 > � � � assum-
ing that growth occurs at a critical energy density
ðdW =dV Þc which can vary for each step accord-
ing to the resistance change of the local mate-
rial. Stated mathematically, the variable growth
condition can be written for constant ðdW =dV Þc
as

dW
dV

� �
c

¼ S1
r1

¼ S2
r2

¼ � � � ¼ Sj
rj

¼ � � � ¼ Sc
rc

or
S0
r0
ð27Þ

Under constant stress, a crack would eventually
reach Sc that triggers the onset of unstable frac-
ture. Constant strain would lead to crack arrest at
S0. The corresponding ligaments are rc and r0. Eq.
(27) can be applied at the microscale, mesoscale or
macroscale by observing the conditions defined in
Eqs. (1)–(3) inclusive. It will be used to determine
how crack steps would alter when the direction of
electric field or displacement is changed with ref-
erence to that of poling. Particular attention will
also be given to the ways with which the applied
mechanical stress and strain would interact with
the external electric field and displacement.

3.4. Energy density function

Application of the foregoing concepts requires
a knowledge of the energy density function. For
this model, dW =dV takes the form

dW
dV

¼ 1

2
ðry�y þ rxy�xyÞ þ

1

2
ðDxEx þ DyEyÞ ð28Þ

It is not difficult to express dW =dV in terms of A
and B in Eq. (13) and M and N in Eq. (26) for
problems where poling is normal and parallel to
the crack, respectively. Without going into the
details of algebra, the following expressions are
found:

Fig. 3. Variable crack growth segment: (a) increasing segment

size, (b) decreasing segment size.
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S ¼ r
dW
dV

¼ a
4
ðmA2 þ eB2Þ ð29Þ

for poling normal to the crack and

S ¼ r
dW
dV

¼ 1

4

1

emþ e2
ðeM2 þ mN 2Þ ð30Þ

for poling parallel to the crack. In Eqs. (29) and
(30), a denotes the half crack length and r the ra-
dial distance measured from the crack tip. Here, S
is understood to be minimum because the crack
initiation path is known to take place in a self-
similar manner.

4. Dependency of crack growth on boundary condi-

tions and poling

A crack has been known to extend longer when
a positive electric field E1

yðþÞ is applied while r1
y

is maintained. A shorter crack extension results
for a negative electric field E1

yð�Þ. This phenome-
non [10,11] has been referred to as crack growth
enhancement and retardation as illustrated in Fig.
4(a). The reverse phenomenon was also found to
occur if strain �1y and electric displacement D1

y are
applied. That is a positive electric displacement
D1

yðþÞ would lead to a shorter crack extension and
D1

yð�Þ to a longer crack extension, Fig. 4(b). The
assessment involves the application of Eq. (27):

S�
j

r�j
¼

S0
j

r0j
¼

Sþ
j

rþj
; j ¼ 1; 2 ð31Þ

where the superscripts �, 0 and þ refer, respec-
tively, to the negative, zero and positive electric
field or displacement state. Using the zero state as
a base reference, Eq. (31) may be written for the
conditions in Fig. 4(a) as

S�
j > S0

j ; r�j > r0j and Sþ
j < S0

j ; rþj < r0j ð32Þ

It is, therefore, necessary to find the S expressions
for those cases in Table 1.

4.1. Crack normal to poling

Consider Cases I, III, V and VII in Table 1
where the crack is normal to the pole direction.
The constants A and B for these situations are

evaluated and outlined in Table 2. Defined are the
parameters

pr ¼ E1
y =r1

y ; q� ¼ D1
y =�

1
y ;

p� ¼ E1
y =�1y ; qr ¼ D1

y =r
1
y

ð33Þ

Substituting the expressions A and B of Table 2
into Eq. (29), there results four expressions of S:

• Case I:

S ¼
aðr1

y Þ
2

4m
½1þ 2epr þ ðe2 þ emÞp2r
 ð34Þ

Fig. 4. Crack growth enhancement and retardation with elec-

tromechanical coupling: (a) stress applied, (b) strain applied.

Table 2

Constants in S factor for crack normal to poling

Case no. Constants

A B

I ðr1
y þ eE1

y Þ=m �E1
y

III �1y ðe�1y � D1
y Þe

V ðer1
y þ eD1

y Þ=
ðe2 þ emÞ

ðer1
y � mD1

y Þ=
ðe2 þ emÞ

VII �1y �E1
y

8 G.C. Sih / Theoretical and Applied Fracture Mechanics 38 (2002) 1–14



• Case III:

S ¼
að�1y Þ

2

4e
½ðe2 þ emÞ � 2eq� þ q2� 
 ð35Þ

• Case V:

S ¼
aðr1

y Þ
2

4ðe2 þ emÞ ½e þ mq2r
 ð36Þ

• Case VII:

S ¼
að�1y Þ

2

4
½mþ ep2� 
 ð37Þ

Note that interaction of r1
y and E1

y occurs in
Eq. (34) and of �1y and D1

y occurs in Eq. (35).
The sign of pr in Eq. (34) is opposite to that of q� in
Eq. (35). Crack growth enhancement and retar-
dation would thus be reversed when the condition
of ðr1

y ;E
1
y Þ is replaced by ð�1y ;D1

y Þ. This holds
only when poling is normal to the crack. Eqs. (36)
and (37) show that crack growth enhancement
and retardation behavior do not occur for Cases
V and VII where the boundary conditions are
mixed.

4.2. Crack parallel to poling

Cases II, IV, VI and VIII in Table 3 refer to the
situations when the crack is parallel to the pole.
Calculations of the energy density factor S involve
finding M and N in Eq. (30). The results can be
found in Table 3. Similarly, M and N in Table 3
can be inserted into Eq. (30) to yield

• Case II:

S ¼
aðr1

y Þ
2

4

e
e2 þ em



þ e2 þ em

m
p2r

�
ð38Þ

• Case IV:

S ¼
mað�1y Þ

2

4ðe2 þ emÞ ½me þ q2� 
 ð39Þ

• Case VI:

S ¼
aðr1

y Þ
2

4ðe2 þ emÞ ½e þ mq2r
 ð40Þ

• Case VIII:

S ¼
að�1y Þ

2

4

em2

e2 þ em



þ e2 þ em

m
p2�

�
ð41Þ

Recall that prq�, etc. are defined in Eq. (33).

5. Discussion of results

Numerical calculations will be made for S in
Eqs. (34)–(37) and S in Eqs. (38)–(41) for the PZT-
4 piezoelectric material whose transverse isotropic
material properties are given in Table 4. The av-
erage value of m ¼ 6:93� 1010 N/m2, e ¼ 13:64
C/m2 and e ¼ 5:74� 10�9 CNm2 will be used for
this simplified field model.

5.1. Behavior of energy density factors

Plotted in Fig. 5 are the normalized energy
density factor S=½ðr1

y Þ
2a=m
 against the parameter

pr ¼ E1
y =r1

y for Cases I and II. The curve for Case
I decreases to a minimum at pr � 0:025 Vm/N; it
then rises across pr ¼ 0 into the positive region of
E1
y =r1

y . This implies that the same state of energy
density could exist for two different combination
of E1

y and r1
y as a ratio. The interactions of E1

y
and r1

y quantified as a ratio may not be uniquely
defined by S. The two portions of the curve for
Case II are symmetric about pr ¼ 0: one for pos-
itive pr and one for negative pr. Displayed in Fig. 6
are the variations of the normalized quantity
S=mð�1y Þ

2a with q� ¼ D1
y =�

1
y . The valley of the

curve for Case III is shifted to the positive side of
q�. Symmetry about q� ¼ 0 is again seen for the
curve of Case IV. These characteristics will be re-
flected by the crack growth behavior based on Eqs.
(31) and (32) described in Fig. 4(a) and (b). Refer
to Table 5 for the numerical values of the nor-
malized energy density factor S for Cases I–IV.

Table 3

Constants in S factor for crack parallel to poling

Case no. Constants

M N

II r1
y ðe2 þ emÞE1

y =m
IV m�1y D1

y

VI r1
y D1

y

VIII m�1y ðe2 þ emÞE1
y =m
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Numerical results of Eqs. (36) and (40) are
obtained and shown graphically in Fig. 7. Cases V
and VI are identical. This means that the poling
direction has no effect on the energy density factor
S. Similarly, Eqs. (37) and (41) can be plotted
graphically in Fig. 8 for Cases VII and VIII. The
curves are similar in trend. Cross product terms of
D1

y and r1
y or E1

y and �1y do not appear in Eqs.

(36), (37), (40) and (41). This behavior holds for
Cases V–VIII when poling is parallel to the crack.
Numerical values of the curves in Figs. 7 and 8 are
given in Table 6.

5.2. Normalized crack growth segments

As referred to earlier, r0 would stand for the
zero field state corresponding to the absence of

Fig. 6. Normalized energy density factor versus electric dis-

placement to strain ratio for Cases III and IV.

Table 4

Material properties of PZT-4 piezoceramic

Elastic constants

� 1010 (N/m2)

Piezoelectric constants (C/m2) Dielectric permittivities

� 10�9 (C/Vm)

c11 c13 c33 c44 e31 e33 e15 e11 e33

13.9 7.43 11.3 2.56 �6.98 13.84 13.44 6.00 5.47

Fig. 5. Normalized energy density factor versus electric field to

stress ratio for Cases I and II.

Table 5

Normalized energy density factor for Cases I–IV

pr

(Vm/N)

S=½aðr1
y Þ2=m
 q�

(C/m2)

S=½amðe1y Þ2


Case I Case II Case

III

Case

IV

�0.06 0.3659 0.6954 �50 2.7976 1.2414

�0.04 0.2106 0.4037 �30 1.4480 0.5559

�0.03 0.1767 0.3016 �10 0.6015 0.2131

�0.024 0.1703 0.2543 0 0.3670 0.1703

�0.02 0.1719 0.2286 10 0.2583 0.2131

0.0 0.25 0.1703 14 0.2501 0.2543

0.02 0.4447 0.2286 20 0.2754 0.3417

0.04 0.7562 0.4037 30 0.4184 0.5559

0.06 1.1843 0.6954 50 1.0816 1.2414

Fig. 7. Normalized energy density factor versus electric dis-

placement to stress ratio for Cases V and VI.
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electric field and displacement. It will be different
for each case and used as a normalization factor
for the crack growth segment as r=r0. Crack growth
enhancement correspond to r=r0 > 1 and retarda-
tion to r=r0 < 1.

Applying Eq. (31) to the data of Fig. 5, the
normalized crack growth segments r=r0 can be
found. They are plotted against pr ¼ E1

y =r1
y . For

Case I in Fig. 9, r=r0 < 1 (retardation) corresponds
to negative electric field and r=r0 > 1 (enhance-
ment) to positive electric field. This agrees with the
experimental observation in [10,11] and the ana-
lytical predictions [12,13] in which the exact field
solutions of piezoelasticity was obtained. The re-
sults in Fig. 9 show that the approximate field
solution of [5] could predict the correct crack
growth behavior for Case I if the energy density

criterion is used instead of that based on the
energy release rate. The objection of a negative
energy release rate can thus be removed. This ap-
plies also to the work in [6]. Crack growth is al-
ways enhanced for Case II regardless of the sign of
the applied electric field E1

y . A symmetric r=r0

versus pr curve is thus obtained. Fig. 10 shows the
results for Cases III and IV. Specification of
D1

y =�
1
y yields the opposite behavior of crack

growth as compared with that of applying E1
y =r1

y
in Fig. 9. Note that r=r0 > 1 and r=r0 < 1 now
refer to negative and positive external disturbance
where electric displacement D1

y is applied. This is
exhibited by the curve for Case III. Case IV again
yields crack growth enhancement for both positive
and negative q�. Summarized in Table 7 are the
numerical values of r=r0 for Cases I–IV.

Fig. 8. Normalized energy density factor versus electric field to

strain ratio for Cases VII and VIII.

Table 6

Normalized energy density factor for Cases V–VIII

qr � 1010 (C/N) S=½aðr1
y Þ2=m
 p� � 10�9 (V/m) S=½amðe1y Þ

2=m


Case V Case VI Case VII Case VIII

�8.0 0.3603 0.3603 �6.0 0.9948 1.2638

�6.0 0.2772 0.2772 �4.0 0.5810 0.6563

�4.0 0.2178 0.2178 �2.0 0.3328 0.2918

�2.0 0.1822 0.1822 0.0 0.25 0.1703

0.0 0.1703 0.1703 2.0 0.3328 0.2918

2.0 0.1822 0.1822 4.0 0.5810 0.6563

4.0 0.2178 0.2178 6.0 0.9948 1.2638

6.0 0.2772 0.2772

8.0 0.3603 0.3603

Fig. 9. Normalized crack growth segment versus electric field

to stress ratio for Cases I and II.
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Results of r=r0 for Cases V–VIII are displayed
in Figs. 11 and 12. All the curves are normalized

with their vertices at r=r0 ¼ 1:0 and p� ¼ 0 or
q� ¼ 0. The mixed boundary conditions as defined

Fig. 10. Normalized crack growth segment versus electric dis-

placement to strain ratio for Cases III and IV.

Table 7

Normalized crack growth segment for Cases I–IV

pr

(Vm/N)

r=r0 q�
(C/m2)

r=r0

Case I Case II Case

III

Case

IV

�0.06 1.4637 4.0839 �50 7.6223 7.2903

�0.04 0.8424 2.3706 �30 3.9451 3.2645

�0.03 0.7067 1.7710 �10 1.6389 1.2516

�0.024 0.6814 1.4934 0 1.0 1.0

�0.02 0.6878 1.3427 10 0.7038 1.2516

0.0 1.0 1.0 14 0.6814 1.4932

0.02 1.779 1.3427 20 0.7505 2.0065

0.04 3.0248 2.3706 30 1.1398 3.2645

0.06 4.7373 4.0839 50 2.9469 7.2903

Fig. 11. Normalized crack growth segment versus electric dis-

placement to stress ratio for Cases V and VI.

Fig. 12. Normalized crack growth segment versus electric field

to strain ratio for Cases VII and VIII.

Table 8

Normalized crack growth segment for Cases V–VIII

qr � 1010 (C/N) r=r0 p� � 10�9 (V/m) r=r0

Case V Case VI Case VII Case VIII

�8.0 2.1160 2.1160 �6.0 3.9792 7.4214

�6.0 1.6277 1.6277 �4.0 2.3241 3.8540

�4.0 1.2790 1.2790 �2.0 1.3310 1.7135

�2.0 1.0697 1.0697 0.0 1.0 1.0

0.0 1.0 1.0 2.0 1.3310 1.7135

2.0 1.0697 1.0697 4.0 2.3241 3.8540

4.0 1.2790 1.2790 6.0 3.9792 7.4214

6.0 1.6277 1.6277

8.0 2.1160 2.1160
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in Table 1 are undesirable. They all tend to en-
hance crack growth for positive and negative
electric disturbances. Table 8 gives the numerical
results of r=r0; they refer to Cases V–VIII.

6. Concluding remarks

Effective analytical solutions are obtained from
a simplified field model to explain the basic crack-
ing behavior of piezoceramics that would have
otherwise required voluminous numerical data for
solving the exact but complicated field equations
to sort out the underlying physical implications.
Electric disturbances are shown to enhance crack
growth for majority of the boundary conditions.
This is undesirable. Retardation of crack growth
are identified with two electromechanical loadings
with poling aligned normal to the crack. They in-
volve the application of ðr1;E1Þ for negative E1

and ð�1;D1Þ for positive D1.
The above interpretations follow from the qua-

dratic form of S in Eq. (34) for Case I and Eq. (35)
for Case II. Note from Fig. 5 that two negative
states of ðr1;E1Þ could prevail for r=r0 < 1 under
the same S. In other words, electromechanical
coupling effects could yield the same energy den-
sity state even though the mechanical stress and
electric field for the two situations are different.
The same can be said for Case III in Fig. 6. Here,
two positive states of ð�1;D1Þ are found for
r=r0 < 1 with the same S. For the other cases, S
acquires a canonical form. This means that all the
S curves are symmetrical about pr ¼ p� ¼ qr ¼
q� ¼ 0. The same S can correspond to only one
positive or one negative state of pr, p�; . . . ; q�. This
is reminiscent of applying the S criterion to
crack initiation under uniaxial tension and com-
pression where the same S applies to �r1 since
S � ð� r1Þ2. Crack initiation behavior for the
two loadings is distinguished from the roots of the
characteristic equation of S expressed in terms of
the crack initiation angles: one for r1 and one for
�r1. This can be best illustrated under mixed
mode when the crack is inclined to the external
mechanical and/or electrical load. This should not
differ for piezoelasticity. A discussion of this can
be found in [13].

Specific numerical results are made available for
PZT-4 only. However, the method of approach
applies in general to poled barium-titanate (Ba-
TiO3) and lead-zirconate-titanate. These materi-
als exhibit macroscopic piezoelectricity when they
are poled. To reiterate, it is the electromechanical
coupling effect that contributes to the enhance-
ment and retardation of crack growth [17]. The
cross product terms r1E1 in Eq. (34) and �1D1 in
Eq. (35) are responsible; they are multiplied by the
piezoelastic constant e. The sign of E1 and D1

would dictate whether an increase in e would en-
hance or retard crack growth. The dimensionless
parameter e=

ffiffiffiffiffiffi
em

p
gives an estimate of the elec-

tromechanical coupling strength ranging from 0.1
to 1.0. The lower and upper limit apply, respec-
tively, to the PZT-6 and PZT-4 or -5 group of
piezoceramics. For PZT-4, m � 1011 N/m2, e � 10
C/m2 and e � 10�9 C/Vm2. This gives e=

ffiffiffiffiffiffi
em

p
¼ 1:0

for PZT-4. The PZT-6 group is not as desirable for
suppressing crack growth because e is one third
lower while e and m are the same as those for PZT-
4. It follows that e=

ffiffiffiffiffiffi
em

p
¼ 0:33 applies to PZT-6

whose electromechanical coupling capability is less
by a factor of 3.

An in-depth understanding of the hierarchical
character of crack tip damage may require a re-
fined field model that could assess cracking at the
micro-, meso-, and macroscale. Energy dissipated
at the different scale levels needs to be identified
with the physical mechanisms. To this end, the
distribution of dilatational energy density in rela-
tion to that caused by distortion has been used in
[19,20]. Crack bifurcation was discovered to initi-
ate at distances of the order of r=a � 10�6. This
microbranching phenomenon associated with di-
latation differs from that assumed in the classical
theory of dislocation where shear is taken to be the
cause of branching. As r=a increases to the order
of r=a � 10�1 the zones of dominant dilatation
would fold into a single path along the line of
Mode I symmetry where the crack grows. This
dual-scale feature was predicted in a single for-
mulation from the energy density criterion. Lin-
ear piezoelasticity and a sharp crack configuration
were used for a homogeneous medium. Finite
crack front radius and inhomogeneity material are
expected to yield multiscale characteristics.
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In two dimensions, at least two space variable
are required to locate the site of failure initiation.
Stationary values of the energy density function
need to be determined using both r and h as the
cylindrical polar coordinates. There is no concep-
tual difficulty to apply continuum mechanics at the
different scales because the theory addresses only
relative scale effects, say the local and global. The
former and latter could represent the micro- and
macroscale, respectively. The relation ðr‘=rgÞ ¼
ðq=4aÞ1=2 for example applies to a macrocrack of
length 2a with q being the microsize local radius.
The crack tip microstress can thus be scaled to the
remote macrostress by using the factor ðq=4aÞ1=2.
Appropriate adjustment of the material parame-
ters in continuum theories, however, should be
made prior to developing scaling relations. Refer
to [18–20] for implications associated with using
continuum mechanics in contrast to theories that
assume atoms as the basic material constituents.
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