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Abstract

Cracking of ceramics with tetragonal perovskite grain structure is known to appear at different sites and scale level.

The multiscale character of damage depends on the combined effects of electromechanical coupling, prevailing physical

parameters and boundary conditions. These detail features are exhibited by application of the energy density criterion

with judicious use of the mode I asymptotic and full field solution in the range of r=a ¼ 10�4 to 10�2 where r and a are,

respectively, the distance to the crack tip and half crack length. Very close to the stationary crack tip, bifurcation is

predicted resembling the dislocation emission behavior invoked in the molecular dynamics model. At the macroscopic

scale, crack growth is predicted to occur straight ahead with two yield zones to the sides. A multiscale feature of crack

tip damage is provided for the first time. Numerical values of the relative distances and bifurcation angles are reported

for the PZT-4 ceramic subjected to different electric field to applied stress ratio and boundary conditions that consist of

the specification of electric field/mechanical stress, electric displacement/mechanical strain, and mixed conditions. To be

emphasized is that the multiscale character of damage in piezoceramics does not appear in general. It occurs only for

specific combinations of the external and internal field parameters, elastic/piezoelectric/dielectric constants and specified

boundary conditions.

� 2002 Published by Elsevier Science Ltd.

1. Introduction

When stress is applied to a ferroelectric material
such as barium titanate BaTiO3, a change in po-
larization may occur. This results in a small volt-

age across the specimen accompanied by a small
deformation. The effect is known as ‘‘piezoelec-
tricity’’. The same behavior prevails when a fer-
roelectric material is subjected to an external
electric field such that alignment of the dipole
moments of several domain would occur and po-
larization is said to have taken place. The con-
version of mechanical strain into electricity is
utilized in devices known as transducers; they may
include strain gages, microphones, sona detectors,
phonograph pickups, etc. The inverse mechanism
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where an electric field could change the dimensions
of a ferroelectric material is called ‘‘electrostric-
tion’’. It has equally wide applications.
Ferroceramics BaTiO3, PbZrTiO6, etc. and the

alike, however, can crack prematurely under ser-
vice conditions. A particular concern over the years
has been the crack growth behavior in these ma-
terials that are affected by orientations of poling
with reference to the applied electric field and/or
mechanical stress. Experiments [1–3] have consis-
tently showed that such effects can be significant.
Up to now, attempts made to explain many of the
observed experimental phenomena have not been
completely successful. Problems associated with
cracking of piezoceramics are multifaceted, par-
ticularly when the influence of mechanical imper-
fections is interwoven with other parameters.
Among the outstanding areas related to cracking
of piezoelectric materials are:

• Non-linearity: Multiscale character of damage
caused by electrical–mechanical disturbances
may involve energy dissipation at the different
scale levels ahead of the crack. The electron
structure of the piezoelectric material is affected
by the elastic/piezoelectric/dielectric constants.
Status quo: Non-linear Dugdale models as-

suming mechanical and electrical yielding [4]
have been used to explain the crack growth
behavior in [1–3]. Quantitative assessments of
yielding along a line ahead of the crack are
given by using the superposition of linear piezo-
electric solutions. Other non-linear models have
also been proposed [5–10]. They are concerned
with microstructure changes caused by domain
switching.

• Boundary conditions: Stress/electric field or strain/
electric displacement field boundary conditions
could alter the transfer of mechanical and elec-
trical energy to the crack tip region in ways that
are not always apparent.
Status quo: Stress intensity and electric dis-

placement field factors, energy release rates and
path independent integrals have been derived
using different boundary conditions [11,12]. No
conclusive explanations have been offered for
the difference in solutions. Strain/electric dis-
placement field conditions have not been ana-

lyzed previously. Moreover, it was not obvious
why the crack tip energy release rates would de-
crease to zero and become negative when the ap-
plied electric field is increase monotonically.

• Fracture criteria: Those failure criteria that are
inherently based on taking the limit to ap-
proach the crack tip may contain restrictions
that are not apparent at first sight. Asymptotic
field solution may leave out certain aspects of
the multiscale behavior.
Status quo: Up to now, the energy release rate

concept has been used exclusively to examine
the fracture behavior of ferroelectric materials
[11–15]. The conclusions, however, are not con-
sistent; they tend to vary with application. Only
recently that the energy density criterion has
been applied [16–23] to offer a different ap-
proach for modeling the multiscale crack initia-
tion problem.

• Asymptotic approximation: The general notion
is that the asymptotic field solution would coin-
cide with the full field solution in the limit as the
crack tip is approached. Since the limiting pro-
cess used in continuum mechanics makes no ref-
erence to any specific distances, it could be
problematic when quantifying size scale that
may vary from 10�8 to 10�2 cm. Inexactness
of the asymptotic solution does not always de-
crease with distance to the crack. The deviation
could be non-monotonic. That is the error
could reach a maximum at a certain finite dis-
tance near the crack. This distance can vary
from problem to problem depending on the ge-
ometry, loading and material.
Status quo: For an elastic, isotropic and ho-

mogeneous medium, it has been known that
for r=a6 0:1, the asymptotic crack solution
would coincide with the full field solution. This
result, however, may not hold for non-homoge-
neous and anisotropic materials and/or more
complex boundary conditions. Discrepancies be-
tween the asymptotic and full field solution can
differ from 10% to 90% in piezoelasticity; it is
dictated by the nature of electromechanical cou-
pling and boundary conditions.

• Microstructure transformation: The occurrence
or absence of microstructure transformation in
piezoceramics is by no means obvious. Even
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when the remote external loadings may not
reach yield and/or coercive force level, the state
of affairs at the crack tip could be severely ele-
vated to cause domain switching. Each specific
situation should be evaluated rather than taken
for granted. Moreover, microstructure transfor-
mation is inherently a non-equilibrium process
[24,25] where the system inhomogeneity alters
with time. There exists no local states that could
represent the system, as a while.
Status quo: Polarization and depolarization

of ferroelectric materials in connection with do-
main switching have been quantified in [7–10]
for tetragonal perovskite type of structure using
continuum mechanics. An energy density crite-
rion was adopted to determine the thresholds
of polarization switching. It is not clear that
the critical energy density states referred to the
crystal lattice could also apply to grains at the
mesoscale. Depending on the temperature, po-
larization other than tetragonal such as the
rhombohedral type could also take place.

In what follows, attempts are made to identify
the potential variable that could affect the multi-
scale cracking behavior in piezoelectric materials.
The PZT-4 ceramic will be used to provide nu-
merical results for illustration. Special emphases
are given to the ways with which asymptotic and
full field solution could affect the outcome re-
gardless of the fracture criterion. Moreover, the
influence of boundary conditions should not be
underestimated; they could alter the qualitative
features of cracking in ceramics. It is felt that the
implications of linear piezoelasticity should be un-
derstood in more depth prior to invoking non-
linearity that could in itself introduce additional
uncertainties.

2. Plane strain crack problem in piezoelasticity

The constitutive relations for piezoelasticity
show that the stresses rij are linear functions of
the strain eij and electric field components Ei. The
electric displacements Di are also linear in the
strains electric field components. That is

rij ¼ Cijklckl � ekijEk; Di ¼ eiklckl þ eikEk ð1Þ

in which Cijkl, eijk and eij are, respectively, the elas-
tic, piezoelectric and dielectric constants. This,
however, does not imply that the electromechanical
effects could be separated because rij and cij depend
implicitly on Ei and/or Di and vice versa. Their in-
terdependence has been discussed in [19,20].

2.1. Poling along x3-axis

The governing equations for piezoelasticity can
be simplified if the axis of material symmetry co-
incides with those for the crack geometry. For
plane deformation, let x3 be along the poling di-
rection and x1 be directed along the crack plane as
shown in Fig. 1. For the case of plane extension,
expressions in Eq. (1) can be simplified as

r11
r33
r31
D1

D3

2
66664

3
77775 ¼

c11 c13 0 0 e31
c13 c33 0 0 e33
0 0 c44 e15 0
0 0 e15 �e11 0
e31 e33 0 0 �e33

2
66664

3
77775

c11
c33
c31
�E1
�E3

2
66664

3
77775
ð2Þ

For the PZT-4 ceramics under plane strain, the
physical constants in Eq. (2) can be found in Table
1. The inverse of Eq. (2) become

Fig. 1. Cracked piezoelectric medium under in-plane applied

mechanical and electrical load.
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c11
c33
c31
�E1
�E3

2
66664

3
77775 ¼

a11 a13 0 0 b31
a13 a33 0 0 b33
0 0 a44 b15 0
0 0 b15 �d11 0
b31 b33 0 0 �d33

2
66664

3
77775

r11
r33
r31
D1

D3

2
66664

3
77775
ð3Þ

The corresponding constants a11, a13; . . . ; etc. in
Eq. (3) can be determined directly from those in
Table 1.

2.2. Local elevation of energy density

The positive definiteness character of the energy
density function dW =dV is fundamental to the
formulation of theories in mechanics and physics.
In the theory of linear piezoelasticity, dW =dV ac-
quires the form

dW =dV ¼ 1

2
rijcij þ

1

2
DiEi ð4Þ

In the limit r ! 0 (Fig. 1), the electromechanical
energy stored in a unit volume of material inten-
sifies in accordance with the relation

dW =dV ¼ S
r

for r ! 0 ð5Þ

Referring to Fig. 2, S represents the area rðdW =
dV Þ which is independent of the angle h defined in
Fig. 1. A small but finite distance ro � r is ex-
cluded from the analysis for otherwise the energy
density would become unbounded at the crack tip.
Such a requirement is in fact necessitated mathe-
matically for the existence of the asymptotic ex-
pansion given in Eq. (5).
For the problem at hand, it has been shown in

[19,20] that S can be expressed in terms of three
intensity factors. That is

S ¼ B11K2
I þ B22K2

II þ B44K2
D þ 2B12KIKII

þ 2B14KIKD þ 2B24KIIKE ð6Þ

in which

KI ¼ r1
33

ffiffiffiffiffiffi
pa

p
; KII ¼ r1

31

ffiffiffiffiffiffi
pa

p
; KE ¼ E1

3

ffiffiffiffiffiffi
pa

p

ð7Þ
The quantities Bij in Eq. (6) depend on the material
constants in Table 1 and they vary with the angle
h. When D1

3 is applied, KE would be replaced by
KD and Bij by Aij in Eq. (6). The details can be
found in [19,20].
The four different choices of specifying r1

33 or c133
and E1

3 or D1
3 with or without r1

11 or c111 will
be considered. These combinations referred to as
boundary conditions could affect the fracture ini-
tiation behavior in different ways. The outcome is
case specific.

3. Boundary conditions and energy density factors

For mode I crack extension, symmetry across
the x1-axis requires that both r1

31 and KII in Eq. (7)
would vanish. Each of the four pairs (r1

33, E
1
3 ),

(c133, D
1
3 ), (r

1
33, D

1
3 ), and (c

1
33, E

1
3 ) can be specified

independently at a given time while the others
would be treated as dependent quantities. They
will be referred to as Problems I–IV.

Table 1

Material constants for PZT-4

Elastic constants 
 1010 (N/m2) Piezoelectric constants (C/m2) Dielectric permittivities 
 10�9 (C/Vm)

c11 c13 c33 c44 e31 e33 e15 e11 e33
13.9 7.43 11.3 2.56 �6.98 13.84 13.44 6.00 5.47

Fig. 2. Energy density decay near crack tip.
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3.1. Problem I––(pr ¼ E1
3 =r

1
33)

For KII ¼ 0, Eq. (6) reduces to

S ¼ K2
I ½B11 þ B44p2r þ 2B14pr� ð8Þ

Once r1
33 and E1

3 are specified, r1
11 and D1

3 would
be fixed according to

r1
11 ¼ krr

1
33; D1

3 ¼ 1

d33
½E1
3 þ b31r1

11 þ b33r1
33�

ð9Þ
Note that kr is a scalar that determines the biaxi-
ality of the normal stresses at infinity while the
material constants b31, b33, and d33 can be found
from those in Table 1 for PZT-4.

3.2. Problem II––(qc ¼ D1
3 =c

1
33)

It is also possible to specify D1
3 and c133 such

that S could become

S ¼ K2
c ðC11 þ 2C14qc þ C44q2cÞ ð10Þ

The strain and electric displacement intensity fac-
tors Kc and KD take the forms

Kc ¼ c133
ffiffiffiffiffiffi
pa

p
; KD ¼ D1

3

ffiffiffiffiffiffi
pa

p
ð11Þ

Now that D1
3 and c133 are chosen, r1

11 and r1
33 are

no longer independent, i.e.,

c111 ¼ kcc
1
33;

r1
33 ¼ c13kc

�
þ c33 þ

e33ðe31kc þ e33Þ
e33

	
c133 �

e33
e33

D1
3

ð12Þ

This would be equivalent to the second funda-
mental boundary value problem in elasticity.
The constants C11, C14 and C44 in Eq. (10) are

given by

C11 ¼ A11 c13kc

�
þ c33 þ

e33ðe31kc þ e33Þ
e33

	2

C14 ¼ A14



� A11

e33
e33

�
c13kc

�
þ c33 þ

e33ðe31kc þ e33Þ
e33

	

C44 ¼ A11
e233
e233

þ A44 � 2A14
e33
e33

ð13Þ

The quantities Aij are related to Bij in Eq. (8) as

B11 ¼ A11 þ 2A14ðb33 þ krb31Þ=d33
þ A44½ðb33 þ krb31Þ=d33�2;

B14 ¼ A14=d33 þ A44ðb33 þ krb31Þ=d233;
B44 ¼ A44d233:

ð14Þ

3.3. Problem III––(qr ¼ D1
3 =r

1
33)

The mixed boundary value problems in piezo-
elasticity would involved specifying D1

3 and r1
33

and E1
3 and c133. For Problem III, there prevails

S ¼ K2
I ½A11 þ A44q2r þ 2A14qr� ð15Þ

in which KI has already been defined by the first of
Eqs. (7). The remote strain c133 and electric field E1

3

are no longer independent:

c133 ¼ a13r1
33; E1

3 ¼ d33D1
3 � ðb31kr þ b33Þr1

33

ð16Þ

3.4. Problem IV––(pc ¼ E1
3 =c

1
33)

The final combination involves the specification
of E1

3 and c133 with S given by

S ¼ K2
c ½D11 þ 2D14pc þ D44p2c � ð17Þ

in which Kc can be found in Eq. (11) and Dij are
given by

D11 ¼ A11ðc13kc þ c33Þ2 þ A44ðe13kc þ e33Þ2

þ 2A14ðc13kc þ c33Þðe13kc þ e33Þ
D44 ¼ A11e233 þ A44e233 � 2A14e33e33
D14 ¼ A44ðe13kc þ e33Þe33 � A11ðc13kc þ c33Þe33

þ A14½ðc13kc þ c33Þe33 � ðe13kc þ e33Þe33�
ð18Þ

The electric displacement D1
3 and stress r1

33 are no
longer independent since they are now

r1
33 ¼ ðkcc13 þ c33Þc133 � e33E1

3 ;

D1
3 ¼ ðkce31 þ e33Þc133 � e33E1

3

ð19Þ

in which kc is defined by the first of Eqs. (12). This
completes a brief description of Problem IV.
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4. Asymptotic solution

At the damage sites, the material microstructure
is known to be highly inhomogeneous and aniso-
tropic, the details of which are not always critical if
attention is focused at the macroscopic scale where
the bulk properties could provide sufficient infor-
mation. As the scale level of observation is re-
duced, however, the microscopic entities may no
longer be negligible. Cracking of PZT ceramics
tends to cover a wide range of size scale in contrast
to isotropic and homogeneous materials where
damage is highly localized. Whether the asymp-
totic solution would be adequate for describing the
multiscale character of crack growth is a concern
of this study.

4.1. Energy density criterion

The energy density fracture criterion [26,27] has
been widely used for studying crack growth be-
havior in isotropic and elastoplastic materials. The
practice is to analyze damage initiation sites at a
fixed distance from the crack tip. This implies that
the treatment is concerned with a single angular
space variable for determining the stationary val-
ues of S. The procedure involves finding the rela-
tive minimum of S or Smin where dilatation would
dominate. Such a location is assumed to corre-
spond with damage initiation while the relative
maximum of S or Smax would correspond to dam-
age at a lower scale. An analogy would be elastic
damage for Smin in contrast to plastic damage for
Smax. Mathematically, there could be many minima
and maxima of Smin and Smax. The maximum of
Smin and maximum of Smax denoted as (Smaxmin , S

max
max)

would first reach the respective thresholds for
cracking and yielding at the macroscopic scale.
The same criterion holds for other scales except
that different terminologies would be used. Mi-
croscopically speaking, the description could in-
volve dislocations and submicroscopic defects that
have not yet been completely understood.
To be emphasized is that the energy density

fracture criterion remains valid regardless of the
size and geometry of the imperfections that trig-
gers damage initiation. They could be inhomo-
geneities involving dislocations, microdefects or

macrocracks. The corresponding stresses and/or
strains associated with the assumed type of defects
are independent of the choice of failure criterion.
The state of affairs near a dislocation would ob-
viously differ from those for a line crack configu-
ration. More specifically, the form of Eq. (5) for
a micro- or macro-crack would not hold for a
dislocation where dW =dV would no longer be
inversely proportional to the distance r. Unless
otherwise stated, the asymptotic form of Eq. (5) is
taken to be valid in this work.

4.2. Numerical values of Smin

Referring to the crack configuration in Fig. 1,
the maximum of minimum S denoted by Smaxmin will
be normalized to So. It will be written as S
 ¼
Smaxmin =So where So for Problems I–IV will be defined
accordingly.

Problem I. For the PZT-4 material, the maximum
of minimum S are found numerically. This gives
the values of ho in B11, B14, and B44 at which S
becomes Smaxmin for different pr ¼ E1

3 =r
1
3 . The vari-

ations of S
 with pr are displayed in Fig. 3 by
curves for different kr. All curves suffer a discon-
tinuity. For kr ¼ 0, no Smin occurred from pr ¼
�0:03 to �0.024 Vm/N. The normalization factor
So represents S in Eq. (8) for pr ¼ kr ¼ 0 at

Fig. 3. Normalized energy density factor verus electric field to

stress ratio for Problem I.
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ho ¼ 0�; it is numerically equal to So ¼ 4:837

10�12ðr1

33Þ
2
m/Pa. There is no apparent reason to

explain for the broken segments of the curves in
Fig. 3. Other intervals of pr within which no Smin
were found for kr 6¼ 0 can be found in Table 2.

Aside from the peculiarities of the results in
Table 2, bifurcation is predicted for certain com-
binations of pr and kr. These results can be found
in Table 3 for increasing kr and decreasing pr. This
is not expected because bifurcation is normally
related to a moving crack with speed approaching
the terminal velocity.
For most situations, Table 3 shows that crack

initiation is predicted to occur along the line
ho ¼ 0� as expected for mode I crack extension.

Problem II. When D1
3 and c133 are specified, Eq.

(10) will be used to compute S while So ¼ 7:714

1010ðc133Þ

2
Pam corresponds to S for qc ¼ kc ¼ 0

and ho ¼ 0�. Plotted in Fig. 4 are curves for kc ¼ 0,
�0.45 and �0.90 as the ratio qc is varied from �40
to 100 C/m2. The trend for S
 is seen to decrease

and then increase as qc is increased. Each of the
five curves is discontinuous in the interval from
�15 to 0 C/m2. The corresponding intervals of qc

for which Smin do not exist are given in Table 4.
Reported in Table 5 are the predicted angles of
crack growth initiation. The bifurcation angles
�ho are seen to increase with increasing kc and qc

Table 2

Discontinuous intervals of pr for Smin as kr varies for Problem I

Biaxial stress factor kr ¼ r1
11=r

1
33

�0.90 �0.45 0 0.45 0.90

[�0.045, �0.040] [�0.037, �0.032] [�0.029, �0.024] [�0.021, �0.015] [�0.013, �0.008]

Fig. 4. Normalized energy density factor verus electric dis-

placement to strain ratio for Problem II.

Table 3

Predicted S
 on crack initiation angles for Problem I

Biaxial stress factor kr ¼ r1
11=r

1
33

pr 
 10�3
(Vm/N)

�0.90 �0.45 0 0.45 0.90

S
 ho (deg.) S
 ho (deg.) S
 ho (deg.) S
 ho (deg.) S
 ho (deg.)

�90 1.66 �73.3 2.05 �72.3 2.50 �71.8 3.01 �71.6 3.57 �71.6
�70 0.95 �80.2 1.19 �76.3 1.49 �74.1 1.85 �72.8 2.67 �72.1
�50 0.56 �112.6 0.69 �92.2 0.85 �83.0 1.06 �78.0 1.33 �75.0
�40 – – 0.53 �123.9 0.65 �95.5 0.80 �84.8 1.0 �79.0
�30 0.77 0 0.73 0 0.50 �142.3 0.62 �99.8 0.76 �86.9
�25 0.83 0 0.75 0 – – 0.55 �117.6 0.67 �93.8
�20 0.91 0 0.79 0 0.73 0 – – 0.59 �105.3
�10 1.16 0 0.95 0 0.81 0 0.74 0 – –

0 1.51 0 1.22 0 1.0 0 0.84 0 0.75 0

10 1.97 0 1.60 0 1.29 0 1.05 0 0.88 0
..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

60 5.81 0 5.02 0 4.30 0 3.64 0 3.05 0
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stopping short at qc ¼ 0 where no stationary val-
ues of S were found. This strange character will be
further examined in relation to the approximate
nature of Eq. (5). Note that branching is inter-
rupted when qc becomes positive. The interruption
occurs within an interval that tends to become
larger as D1

3 =c
1
33 or qc is increased. The solutions

for ho ¼ 0� at kc ¼ 0:90 extended from qc ¼ 10 to
60 C/m2 in contrast to those for kc ¼ �0:90 cor-
respond to qc ¼ 10 to 20 C/m2. Trends of the data
for qc ¼ �30 to �10 C/m2 and 20–50 C/m2 in
Table 5 are similar to those shown; they are not
included to save space.

Problem III. Calculation of S
 for Problem III
involves a knowledge of Aij in Eq. (15) which are
related to Bij in Eq. (14). Again So ¼ 3:52

108ðD1

3 Þ
2
in S
 corresponds to qr ¼ 0 and ho ¼ 0�.

Fig. 5 for kr ¼ 0 shows that S
 would decrease
when qr increases until qr ¼ �5
 10�11 C/N; a
discontinuity appears where Smin ceases to exist.
Stationary values of S appear again for qr > 0 as
shown in Table 6 and the curve in Fig. 5. Table
6 summarize the values of qr and S
 for which
bifurcation occurs. They correspond to those for
a single crack branch.

Problem IV. The curves in Fig. 6 for Problem IV
have the same trend as those in Fig. 4 for Prob-
lem II where the biaxial strain factor kc is varied.
For different kc, there exists two discontinuous
intervals of pc within which Smin could not be
found. A more detailed account of this peculiar
feature can be seen from the numerical results
in Table 7. In the majority of cases, the asymptotic

Table 4

Discontinuous intervals of qc for Smin as kc varies for Problem II

Biaxial strain factor kc ¼ c111=c
1
33

�0.90 �0.45 0.0 0.45 0.90

[�6:0; 0] [�7.5, 0] [�9.0, 0.5] [�10.5, 0.5] [�12.5, 0.5]
[30:0; 40:0] [38.0, 43.0] [46.0, 52.0] [54.0, 61.0] [61.5, 70.0]

Table 5

Predicted S
 on crack initiation angles for Problem II

Biaxial strain factor kc ¼ c111=c
1
33

qc

(C/m2)

�0.90 �0.45 0.0 0.45 0.90

S
 ho (deg.) S
 ho (deg.) S
 ho (deg.) S
 ho (deg.) S
 ho (deg.)

�50 2.40 �86.7 2.80 �89.4 3.25 �92.0 3.73 �94.6 4.25 �97.1
�40 1.78 �89.3 2.14 �92.5 2.54 �95.8 2.97 �98.8 3.44 �101.8
..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

0 – – – – – – – – – –

10 0.26 0 0.46 0 0.71 0 1.02 0 1.40 0
..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

60 1.11 �72.4 1.05 �77.2 1.03 �92.8 – – 1.25 0

70 1.59 �71.7 1.48 �73.3 1.42 �78.8 1.40 �93.5 – –

Fig. 5. Normalized energy density factor verus electric dis-

placement to strain ratio for Problem II for kr ¼ 0.
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solution predicts crack to initiate along the line of
local symmetry, ho ¼ 0�. Those data in Table 8
that do not reveal any new trends have been de-
leted.

5. Full field solution

Even though the electrical and mechanical ef-
fects are coupled in piezoelasticity, the four types
of boundary conditions referred to as Problems
I–IV involved the specification of only three in-
dependent quantities (r1

33, r1
31, D1

3 ) for the as-
ymptotic solutions discussed earlier. The other
quantities such as r1

11; c
1
11; . . . ;D

1
1 ;E

1
1 , etc. are not

independent. A description of the full field solution

Table 6

Predicted crack initiation angles with kr ¼ 0 for Problem III

qr 
 10�11 (C/N) �80 �60 �40 �20 �10 0 10 20 40 60 80

S
 4.67 2.94 1.72 0.99 0.77 – 1.06 1.26 2.08 3.47 5.42

ho (deg.) �71.6 �72.2 �75.7 �89.4 �113.2 – 0 0 0 0 0

Table 8

Discontinuous intervals of pc 
 1010 (V/m) for Smin as kr varies for Problem IV

Biaxial strain factor kr ¼ r1
11=r

1
33

�1.0 �0.5 0 0.5 1.0

[�0:48;�0:37]
[0:14; 0:21]

[�0.45, �0.31]
[0.36, 0.45]

[�0.42, �0.24]
[0.58, 0.70]

[�0.39, �0.18]
[0.81, 0.95]

[�0.36,�0.11]
[1.03, 1.20]

Fig. 6. Normalized energy density factor verus electric field to

strain ratio for Problem IV.

Table 7

Predicted S
 on crack initiation angles for Problem IV

Biaxial strain factor kc ¼ c111=c
1
33

pc 
 10�8
(V/m)

�1.0 �0.5 0 0.5 1.0

S
 ho (deg.) S
 ho (deg.) S
 ho (deg.) S
 ho (deg.) S
 ho (deg.)

�90 1.77 �93.4 2.58 �96.0 3.53 �98.0 4.64 �99.7 5.90 �101.1
�70 1.10 �103.0 1.75 �105.1 2.55 �106.7 3.50 �107.9 4.61 �108.8
�50 0.57 �143.0 1.06 �134.4 1.71 �130.0 2.51 �127.0 3.46 �125.2
..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

0 0.32 0 0.55 0 1.0 0 1.67 0 2.56 0

10 0.39 0 0.52 0 0.88 0 1.45 0 2.22 0
..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

70 1.73 �72.1 1.41 �79.8 – – 1.383 0 1.585 0

90 2.56 �71.6 2.10 �73.8 1.80 �86.6 – – 1.85 0

120 4.15 �71.8 3.48 �71.8 2.97 �74.4 2.61 �85.5 2.28 �147.3
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would require a knowledge of five independent
mechanical and electrical components (r1

11, r1
33,

r1
31, D

1
1 , D

1
3 ) whereby the remainders c111, E

1
1 , etc.

are dependent quantities.
A restriction of the asymptotic solutions given

by Eqs. (8), (10), (15) and (17) is that S is only a
function of h. Note that dW =dV in Eq. (5) is
proportional to 1=r regardless of the boundary
conditions. The crack initiation behavior predicted
from the energy density factor Smaxmin applies only
within a region close to the crack tip. Such a
mathematical constraint may or may not con-
fide with the physics of piezoelectricity where the
electromechanical interaction of crack initiation
may extend beyond the local region limited by the
asymptotic expansion in Eq. (5). More specifically,
the higher order term in r for dW =dV may come
into play. This is reminiscence of the earlier dis-
cussions concerned with the crack initiation path
emanating from a narrow elliptical cavity [28–30].
Contrary to physical intuition, a noticeable ‘‘wig-
gle’’ was found in the crack profile close to the
cavity boundary that is detectable by experiments.
Such details would have escaped the attention of
the investigators if the phenomenon was not first
predicted by application of the full solution of
dW =dV . It is in this spirit that the full solution of
dW =dV will be applied in an attempt to show that
the peculiarities associated with Smin are caused by
the approximate nature of the asymptotic solution
and not by the energy density criterion. Each of
the five boundary conditions will again be dis-
cussed to illustrate that the results in piezo-
electricity are case specific. Generalization from
limited examples and/or experimental data may
not hold.

5.1. Energy density function in two dimensions

General application of the asymptotic solution
in general is based on the assumption that there
exists a region in which damage is localized. The
distance of this region from the crack tip is for
small r such that Eq. (5) for dW =dV is valid. No
attempts were made to address the change in r for
different boundary conditions and material mi-
crostructures. On physical grounds, inhomogene-

ity and anisotropy would prevail ahead of the
crack. This would give rise to a field of non-uni-
form energy states, the amplitude of which would
oscillate as a function of the space variables. A
multitude of peaks and valleys could be found;
they are expressible mathematically as the max-
ima and minima of the energy density functions
dW =dV . These locations are associated with dam-
age by distortion and dilatation at a given scale
[26,27]. Referred to a system of local polar cylin-
drical coordinates ðr; hÞ as shown in Fig. 1, the full
field solution for dW =dV can be computed and
plotted as a function of r and h. There will be a
unique pair ½ðdW =dV Þmaxmin ; ðdW =dV Þmaxmax� that would
coincide with the behavior of damage initiation at
two different scale levels; one of which respond
linearily while the other non-linearily. A common
example would be elastic fracture and plastic
fracture. Such an interpretation can be applied to
any two scale levels: atomic/micro, micro/meso,
meso/macro and so on. The inhomogeneous char-
acter of damage must necessarily involve the
specification of a distance, say r with reference to
the half crack length a. In a specific problem, this
would involve finding the stationary values of
dW =dV with r=a fixed and then vary h from �p to
p. This would yield the predicted sites of damage
initiation. The accuracy would depend on the
chosen scale and depicted mesh size that would in
turn depend on the prevailing boundary condi-
tions and material parameters.

5.2. Location dependent damage

To reiterate is that predictions based on the
energy density factor S in Eq. (5) could be referred
to as being location independent, i.e., it does not
specify the distance from which damage initiates.
It only refers to the limit r approaching zero, i.e.,
the crack tip. As before, four boundary conditions
will be considered. Each of them will specify the
parameters pr, qc, qr and pc that stand for E1

3 =r
1
33,

D1
3 =c

1
33, D1

3 =r
1
33 and E1

3 =c
1
33, respectively. The

corresponding dW =dV will be normalized to their
values at infinity that would vary with p and q such
that kr ¼ r1

11=r
1
33 ¼ 0 and kc ¼ c111=c

1
33 ¼ 0. They
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are denoted as ðdW =dV Þ1I ; . . . ; ðdW =dV Þ1IV and
given by

• Problem I:

ðdW =dV Þ1I ¼ ðr1
33Þ

2

2
a33

(
þ ðpr þ b33Þ2

d33

)
ð20Þ

• Problem II:

ðdW =dV Þ1II ¼
c233
2

ð1� b33qcÞ2

a33

"
þ d33q2c

#
ð21Þ

• Problem III:

ðdW =dV Þ1III ¼
r233
2

ð1� b33qeÞ2

a33

"
þ d33q2r

#
ð22Þ

• Problem IV:

ðdW =dV Þ1IV ¼ c233
2
ðc33þ 233 p2cÞ ð23Þ

In what follows, dW =dV will be normalized in
terms of ðdW =dV Þ1I , ðdW =dV Þ1II , etc. that are
stated, respectively, in Eqs. (20) and (21), etc. The
notation ðdW =dV Þ
 ¼ ðdW =dV Þ=ðdW =dV Þ1j with
j ¼ I, II, etc will be used. To avoid a lengthy
mathematical disposition, presentation will be di-
rected to those situations where the peculiarities of
the asymptotic solution would not arise if the full
field solution were used in conjunction with the
energy density criterion. When electromechanical
effects are present, damage ahead of a crack be-
comes location dependent. It is then necessary to
address crack initiation behavior by two space
variable even for mode I loading.

5.3. Specification of electric field and remote stress

Let pr ¼ E1
3 =r

1
33 be specified as in Problem I

stated by Eq. (20) where the biaxial stress factor
kr ¼ r1

11=r
1
33 can take different values. Recall from

the results in Table 2 and Fig. 3 that the S
 against
pr curves contain discontinuous intervals within
which no stationary values of the energy density
factor S could be found. The first reaction would
be to cast doubt on the validity of the S-criterion
which in retrospect would not have led to a better
understanding of the problem. Instead, the dis-
continuous intervals of pr become non-existent
when the full solution dW =dV is used for different
ratios of r=a that was not considered in the treat-
ment of S. That is the form of Eq. (5) excluded the
potential damage initiation sites that might have
fallen outside the local region of asymptotic ex-
pansion. This is precisely what has happened when
the full field solution of dW =dV is used. Minima of
dW =dV were found for all values of pr and kr in
Table 2. The relative distance r=a was required to
address the precise location of damage initiated
due to dilatation. Keep in mind that relative
minimum of dW =dV or ðdW =dV Þmin corresponds
to location where volume change attains a minu-
mum or dilatation is dominant. A more com-
plete description of the damage initiation behavior
can be obtained from the numerical values of
ðdW =dV Þmin for a range of r=a, say 10�1, 10�2, 10�3
and 10�4. They are given in Tables 9–12 inclusive.
The column deleted contain data that are not so
different from those shown.

Table 9

Predicted ðdW =dV Þ
 on crack initiation angles at r=a ¼ 10�1 for Problem I

Biaxial stress factor kr ¼ r1
11=r

1
33

pr 
 10�3
(Vm/N)

�0.90 �0.45 0 0.45 0.90

dW =dVð Þ

ð
10Þ

ho
(deg.)

dW =dVð Þ

ð
10Þ

ho
(deg.)

dW =dVð Þ

ð
10Þ

ho
(deg.)

dW =dVð Þ

ð
10Þ

ho
(deg.)

dW =dVð Þ

ð
10Þ

ho
(deg.)

�90 0.36 0.0 0.40 �109.8 0.48 �100.7 0.56 �95.0 0.67 �92.1
�70 0.33 �131.5 0.43 0.0 0.50 �108.2 0.61 �95.5 0.75 �89.4
�50 0.30 0.0 0.41 0.0 0.59 0.0 0.69 �106.9 0.86 �89.6
..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

0 0.96 0.0 0.73 0.0 0.58 0.0 0.50 0.0 0.51 0.0
..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

60 0.78 0.0 0.67 0.0 0.57 0.0 0.49 0.0 0.42 0.0
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Dilatation dominant: To reiterate, tabulated will
be the maximum of ðdW =dV Þmin or ðdW =dV Þmaxmin . In
normalized form, it is written as ðdW =dV Þ
. Its

location is given by r=a and ho. The dominant
mode of energy release would be ‘‘dilatation’’ in
contrast to ‘‘distortion’’ where dW =dV attains a

Table 10

Predicted ðdW =dV Þ
 on crack initiation angles at r=a ¼ 10�2 for Problem I

Biaxial stress factor kr ¼ r1
11=r

1
33

pr 
 10�3
(Vm/N)

�0.90 �0.45 0 0.45 0.90

dW =dVð Þ

ð
10Þ

ho
(deg.)

dW =dVð Þ

ð
10Þ

ho
(deg.)

dW =dVð Þ

ð
10Þ

ho
(deg.)

dW =dVð Þ

ð
10Þ

ho
(deg.)

dW =dVð Þ

ð
10Þ

ho
(deg.)

�90 0.32 �76.5 0.39 �74.3 0.47 �73.6 0.56 �73.4 0.67 �73.5
�70 0.34 0.0 0.40 �82.2 0.50 �76.5 0.61 �74.4 0.75 �73.6
�50 0.39 0.0 0.49 0.0 0.56 �93.7 0.70 �81.3 0.87 �76.6
..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

0 0.95 0.0 0.76 0.0 0.63 0.0 0.54 0.0 0.51 0.0
..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

60 0.71 0.0 0.61 0.0 0.52 0.0 0.45 0.0 0.38 0.0

Table 11

Predicted ðdW =dV Þ
 on crack initiation angles at r=a ¼ 10�3 for Problem I

Biaxial stress factor kr ¼ r1
11=r

1
33

pr 
 10�3
(Vm/N)

�0.90 �0.45 0 0.45 0.90

dW =dVð Þ

ð
103Þ

ho
(deg.)

dW =dVð Þ

ð
103Þ

ho
(deg.)

dW =dVð Þ

ð
103Þ

ho
(deg.)

dW =dVð Þ

ð
103Þ

ho
(deg.)

dW =dVð Þ

ð
103Þ

ho (deg.)

�90 0.31 �73.6 0.38 �72.5 0.47 �72.0 0.56 �71.8 0.67 �71.8
�70 0.31 �82.8 0.39 �77.2 0.49 �74.4 0.61 �73.0 0.75 �72.2
�50 0.47 0.0 0.45 �99.0 0.56 �85.2 0.70 �78.6 0.87 �75.3
..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

0 1.03 0.0 0.83 0.0 0.68 0.0 0.58 0.0 0.52 0.0
..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

60 0.71 0.0 0.61 0.0 0.53 0.0 0.45 0.0 0.38 0.0

Table 12

Predicted ðdW =dV Þ
 on crack initiation angles at r=a ¼ 10�4 for Problem I

Biaxial stress factor kr ¼ r1
11=r

1
33

pr 
 10�3
(Vm/N)

�0.90 �0.45 0 0.45 0.90

dW =dVð Þ

ð
104Þ

ho
(deg.)

dW =dVð Þ

ð
104Þ

ho
(deg.)

dW =dVð Þ

ð
104Þ

ho
(deg.)

dW =dVð Þ

ð
104Þ

ho
(deg.)

dW =dVð Þ

ð
104Þ

ho
(deg.)

�90 0.31 �73.4 0.38 �72.3 0.47 �71.8 0.56 �71.6 0.67 �71.7
�70 0.31 �80.8 0.39 �76.5 0.49 �74.1 0.61 �72.7 0.75 �72.1
�50 0.36 �118.2 0.45 �94.0 0.56 �83.6 0.70 �78.1 0.87 �75.1
..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

0 1.06 0.0 0.85 0.0 0.70 0.0 0.59 0.0 0.53 0.0
..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

60 0.71 0.0 0.62 0.0 0.53 0.0 0.45 0.0 0.38 0.0
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relative maximum because the change of volume is
the smallest. Referring to Table 9 for r=a ¼ 10�1,
pr is increased from �90 to 60 Vm/N and kr is
increased from �0.90 to 0.90. The predicted angles
of crack initiation is ho while values of ðdW =dV Þ

are also tabulated. Of significance is that the re-
gions dominated by dilatation and distortion are
sorted out automatically from the stationary values
of dW =dV . No a priori knowledge of the location
of crack and/or yielding initiation is required.

Energy density variations: Energy density is
generally known to intensify with increasing mag-
nitude of applied mechanical stress. Such a trend
cannot be carried over directly to the presence of
electric field since the poling direction could either
elevate or lower the crack tip energy density. The
degree of biaxiality controlled by the factor kr also
interacts with the electric field. Note from the re-
sults in Tables 9–12 that ðdW =dV Þ
 would increase
in general as pr and kr are increased. At kr ¼ 0:90,
ðdW =dV Þ
 decreases for increasing pr (nega-
tive). When the electric field becomes positive,
ðdW =dV Þ
 would increase for increasing pr (posi-
tive). Hence, the applied electric field could either
elevate or lower the crack front energy density field
depending on whether the electric field is negative
or positive. This can be easily seen from the data in
Tables 12 and 13 for kr ¼ 0:90.

Bifurcation: Displayed in Figs. 7 and 8 are
constant ðdW =dV Þ
 contours around the crack tips
at r=a ¼ 0 for kr ¼ 0 and pr ¼ �25
 10�3 and
25
 10�3 Vm/N, respectively. The contours are
symmetric about x-axis; their amplitude tends to
increase as the distance to the crack tip is de-
creased while the shape will not lean forward as
much. Increase in transversely applied tension
tends to reduce the crack opening distance. This
encourages bifurcation when the electric field op-
poses poling, i.e., negative pr. Refer to the results

in Table 9 for r=a ¼ 10�1. Such a situation in-
volves retardation of crack growth [19,20]. The
branching angles increase with ðdW =dV Þ
 until the
electric field becomes positive and a single branch
crack path ho ¼ 0� is predicted. Testing of a

Table 13

Variations of ðdW =dV Þ=ðr1
33Þ

2
and ðS=rÞ=ðr1

33Þ
2
for Problem I with pr ¼ 50
 10�3 Vm/N and kr ¼ 0:90

Normalized distance r=a

0.002 0.008 0.01 0.012 0.02 0.1 0.5 1.0

ðdW =dV Þ=ðr1
33Þ

2 
 10�10 58.1 14.5 11.6 9.74 5.90 1.29 0.390 0.230

ðS=rÞr1
33Þ

2 
 10�10 58.3 14.6 11.6 9.73 5.80 1.17 0.287 0.117

Fig. 7. Normalized energy density function verus distance with

pr ¼ �25
 10�3 Vm/N and kr ¼ 0 for Problem I.

Fig. 8. Normalized energy density function verus distance with

pr ¼ 25
 10�3 Vm/N and kr ¼ 0 for Problem I.
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stationary crack due to dilatation in isotropic
elasticity is being predicted for the first time. It is
seen from the results in Tables 9–12 that bifurca-
tion seems to be associated with the decrease in
ðdW =dV Þ
 as kr is increased from 0 to 0.90 while
the applied electric field is negative. As soon as pr

becomes positive, bifurcation ceases to occur and
the crack is predicted to initiate straight ahead at
ho ¼ 0�.

Multiscaling: It appears that when both elec-
trical and mechanical disturbances are present as
in a piezoelectric material, damage tends to depend
on the distance from the crack expressed by the
ratio r=a such that the size effect is reflected only in
a relative sense. The actual distance r is not spec-
ified unless the crack size is known. While r=a ¼
10�4 is small, the crack size a could still be large
enough to give a value of r greater than that cor-
responding to r=a ¼ 10�3 where a is sufficiently
small. This implies that unless the crack scale size
such as microscopic, mesoscopic or macroscopic is
specified, no specific information could be drawn
on the actual magnitude of r from the data in
Tables 9–12.
Nevertheless, the piezoelastic solution presented

seems to yield a local damage behavior pattern
associated with cracking modeled at the atomistic
or microscopic scale. The works in [31,32] suggest
a molecular dynamics region surrounding the
crack tip at which bifurcation is assumed to model
the emission of dislocations (refer to Fig. 9). The
physical interpretation would differ in that fork-
ing is due to dilatation rather than shear as
invoked in the dislocation model [31,32]. Fur-
thermore, the region directly ahead of the micro-
crack experiences distortion. At the higher scale
level, say macroscopic, the situation would be re-
versed. Distortion would correspond to the plastic
enclaves at both sides of the macrocrack that is

predicted to extend straight ahead along the path
where dW =dV attain a minimum. The locations of
ðdW =dV Þmin and ðdW =dV Þmax would also depend
on the scales at which the damage is being mod-
elled. Such a scenario of multiscale cracking was
presented in [33].

6. Inadequacy of asymptotic expansion for multi-

scale problems

When analyzing multiscale damage in a single
formulation, the difference between the asymptotic
and full field solution could be significant as they
may lead to different conclusions. Three typical
cases will be selected to illustrate why the full field
solution should be used when the material re-
sponse to electrical/mechanical effects depends on
r=a in piezoelasticity. With reference to Problem I
where the full field solution depends on prð¼ E1

3 =
r1
33Þ and krð¼ r1

11=r
1
33Þ, Tables 13–15 show that the

distance dependent character of the full solution
dW =dV in addition to the electrical/mechanical
boundary conditions for Problem I. For each of
the three cases in Tables 13–15, the asymptotic

Fig. 9. Multiscale character near crack tip at micro- and

macro-scale.

Table 14

Variations of ðdW =dV Þ=ðr1
33Þ

2
and ðS=rÞ=ðr1

33Þ
2
for Problem I with pr ¼ �50
 10�3 Vm/N and kr ¼ 0

Normalized distance r=a

0.002 0.01 0.1 0.2 0.3 0.4 0.50 1.0

ðdW =dV Þ=ðr1
33Þ 
 10�10 25.2 4.74 0.432 0.230 0.168 0.139 0.122 0.0927

ðS=rÞ=ðr1
33Þ

2 
 10�10 26.8 5.36 0.536 0.268 0.178 0.134 0.107 0.0536
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solution S=r in Eq. (5) is also plotted to show how
it differs with the full field solution dW =dV as a
function of the normalized distance r=a. As it
should, the two solutions would converge as r ! 0
and diverge as r increases. Displayed in Fig. 10 are
the results for pr ¼ 50
 10�3 Vm/N and kr ¼ 0:90
where the S=r and dW =dV curves would inter-
sect at a relatively small ratio of r=a ¼ 0:01 and
ðdW =dV Þ=ðr1

33Þ
2 ¼ 0:116
 10�8 MPa. The in-

exactness of S=r therefore depends on the rela-
tive distance r=a. When pr is changed to �50

10�3 Vm/N and the biaxial stress factor kr is re-
duced to zero, Fig. 11 shows that the intersection
would occur for larger values of r=a ¼ 0:37 and
lower dW =dV =ðr1

33Þ
2
of 0:146
 10�10 MPa. The

discrepancies between S=r and dW =dV are sensi-
tive to changes in pr and kr. This again reinforces
the need to use the full field solution such that
damage along the line of prospective crack exten-
sion would be included. For the third case in Table
15 and Fig. 12, the curves would not intersect but
they do diverge for large r=a.

Worthy of mentioning is also the monotonic
behavior of the dW =dV and S=r curves in Figs. 10–
12. No stationary values are predicted in terms
of the variable r. According to the interpretation
of the energy density criterion, there is no damage

Fig. 10. Comparison of asymptotic and full field solution for

pr ¼ 50
 10�3 Vm/N and kr ¼ 0:90.
Fig. 11. Comparison of asymptotic and full field solution for

pr ¼ �50
 10�3 Vm/N and kr ¼ 0.

Table 15

Variations of ðdW =dV Þ=ðr1
33Þ

2
and ðS=rÞ=ðr1

33Þ
2
for Problem I with pr ¼ 0 and kr ¼ 1:8

Normalized distance r=a

0.002 0.01 0.1 0.2 0.4 0.6 0.8 1.0

ðdW =dV Þ=ðr1
33Þ

2 
 10�10 19.2 4.02 0.517 0.312 0.207 0.173 0.156 0.146

ðS=rÞ=ðr1
33Þ

2 
 10�10 18.6 3.72 0.372 0.186 0.093 0.062 0.0465 0.0372

Fig. 12. Comparison of asymptotic and full field solution for

pr ¼ 0 and kr ¼ 1:8.
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preference in terms of the distance from the crack
tips because the boundaries extend to infinity.
Hence, both S=r and dW =dV tend to decay mono-
tonically with r=a.
In general, however, dW =dV is a function of

both r and h for two-dimensional problems, Many
maxima and minima of dW =dV could be found.
Yield and fracture initiation sites are unique. They
correspond to the maximum of ðdW =dV Þmax for
the onset of yielding and ðdW =dV Þmin for the onset
of fracturing. Some examples for isotropic elastic
materials can be found in [27].

7. Influence of boundary conditions on scaling

Molecular dynamics simulations [34,35] have
shown that the length and time scales at the atomic
level are significantly different than those at the
continuum level although no direct relationships
have been established. While the ab initio damage
of solids is presently taken at the atomic level, it is
not clear how the events at 10�8 cm in lineal di-
mension are related to those at 10�2 or 10�3 cm in
lineal dimension. In practical terms, it is important
to know the conditions under which atomistic ef-
fects would influence the macroscopic behavior.
Even more relevant is how this process could be
modeled with consistency in a numerical analysis
that may involve the sliding of atomic planes
[31,32] over each other or the breaking of cohesive
bonds [36] between the atoms. At present, the
atomic damage mechanisms are anticipated inde-
pendent of the macroscopic failure criteria. One of
such assumptions that has been taken for granted is
the relation between edge dislocations with a mode
II macrocrack behavior. More recent results based
on molecular dynamics [37,38] show that they are
very different, particularly for moving cracks.
Too much emphases cannot be placed on relat-

ing the atomic (or microscopic) and macroscopic
behavior should such connections prevail. Indeed
the results in Tables 9–12 inclusive for r=a ¼ 10�1

to 10�4 suggest that such possibilities do exist and
they depend on the boundary conditions identified
with Problems I–IV by Eqs. (8)–(19) inclusive. In
this respect, continuum mechanics could serve a
useful purpose. It does not address scaling. Hence,

it can be applied to the atomic as well as the
macroscopic scale and can provide an indication
of how boundary conditions could affect the end
results. Recall the two different crack tip behavior
in Fig. 9. They do not always appear as a rule but
depend on the biaxial stress and strain factors in
addition to the relative amplitudes of the applied
electric field, electric displacement, mechanical
stress and strain. Hence, no conclusions could be
drawn from the results for one specific set of
boundary conditions. To this end, bifurcation data
for Problems II–IV will also be examined using the
full field solution and the energy density criterion.
Keep in mind that dW =dV or ðdW =dV Þ
 from the
crack tip may not follow 1=r; it may be some
function of r.

7.1. Electric displacement and mechanical strain

Suppose that D1
3 and c133 are specified as a ratio

via qc following the conditions specified in Eqs.
(10)–(14). In order to exhibit the bifurcation fea-
ture the range of qc (C/m

2) is selected from �50 to
70. The values of ðdW =dV Þ
 for different r=a from
10�1 to 10�4 and biaxial strain factor kc can be
found in Tables 16–19.
Unlike the case for Problem I and results in

Tables 9–12, Table 16 for r=a ¼ 10�1 shows that
bifurcation appears only for kc ¼ �0:90 and qc ¼
�50 and �40 C/m2 and large values of positive qc.
Otherwise, crack growth is predicted to occur
straight ahead. This situation changes for r=a <
10�2 where bifurcation occurs for all kc as shown in
Tables 18 and 19 when qc equals to �50 and �40
C/m2. As qc becomes positive, bifurcation does not
occur until it passes beyond 50 C/m2 as kc becomes
larger than �0.45. This behavior is also very dif-
ferent from that for Problem I where the biaxial
stress factor is specified instead of the biaxial strain
factor.

7.2. Electric displacement and mechanical stress

Now, if mechanical stress r1
33 is specified with

the electric displacement E1
3 via kr further differ-

ence in bifurcation will be found. Refer to the
data in Tables 20–23 as r=a is varied from 10�1

to 10�4, respectively for Problem III. Note that
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bifurcation now occurs at large almost for all
values of qr and kr except when qr ¼ 0 and 10

10�11 C/N. The specification of both E1

3 and r1
33

seems to favor crack forking in piezoelectric ce-
ramic materials, a prediction that deserves exper-
imental validation.

Table 18

Predicted ðdW =dV Þ
 on crack initiation angles at r=a ¼ 10�3 for Problem II

Biaxial strain factor kc ¼ c111=c
1
33

qc

(C/m2)

�0.90 �0.45 0 0.45 0.90

dW =dVð Þ

ð
103Þ

ho
(deg.)

dW =dVð Þ

ð
103Þ

ho
(deg.)

dW =dVð Þ

ð
103Þ

ho
(deg.)

dW =dVð Þ

ð
103Þ

ho
(deg.)

dW =dVð Þ

ð
103Þ

ho
(deg.)

�50 0.43 �91.8 0.50 �94.5 0.58 �97.0 0.67 �99.4 0.76 �101.6
�40 0.42 �95.7 0.51 �98.8 0.60 �101.7 0.71 �104.3 0.82 �106.9
..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

0 0.40 0.0 0.67 0.0 1.00 0.0 1.39 0.0 1.85 0.0

10 0.32 0.0 0.58 0.0 0.92 0.0 1.34 0.0 1.85 0.0
..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

60 0.34 �72.7 0.32 �77.8 0.32 �93.3 – – – –

70 0.36 �71.8 0.33 �73.6 0.32 �79.6 0.31 �94.0 – –

Table 17

Predicted ðdW =dV Þ
 on crack initiation angles at r=a ¼ 10�2 for Problem II

Biaxial strain factor kc ¼ c111=c
1
33

qc

(C/m2)

�0.90 �0.45 0 0.45 0.90

dW =dVð Þ

ð
102Þ

ho
(deg.)

dW =dVð Þ

ð
102Þ

ho
(deg.)

dW =dVð Þ

ð
102Þ

ho
(deg.)

dW =dVð Þ

ð
102Þ

ho
(deg.)

dW =dVð Þ

ð
102Þ

ho
(deg.)

�50 0.47 0.0 0.56 0.0 0.67 0.0 0.65 �112.6 0.74 �113.3
�40 0.46 0.0 0.57 0.0 0.70 0.0 0.85 0.0 0.79 �118.8
..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

0 0.33 0.0 0.58 0.0 0.91 0.0 1.32 0.0 1.80 0.0

10 0.27 0.0 0.52 0.0 0.86 0.0 1.31 0.0 1.85 0.0
..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

60 0.34 �75.0 0.32 �81.5 0.32 �97.5 – – – –

70 0.36 �73.8 0.33 �76.6 0.32 �84.0 0.32 �98.2 – –

Table 16

Predicted ðdW =dV Þ
 on crack initiation angles at r=a ¼ 10�1 for Problem II

Biaxial strain factor kc ¼ c111=c
1
33

qc

(C/m2)

�0.90 �0.45 0 0.45 0.90

dW =dVð Þ

ð
101Þ

ho
(deg.)

dW =dVð Þ

ð
101Þ

ho
(deg.)

dW =dVð Þ

ð
101Þ

ho
(deg.)

dW =dVð Þ

ð
101Þ

ho
(deg.)

dW =dVð Þ

ð
101Þ

ho
(deg.)

�50 0.40 �135.2 0.48 0.0 0.57 0.0 0.69 0.0 0.83 0.0

�40 0.39 �136.7 0.48 0.0 0.60 0.0 0.75 0.0 0.92 0.0
..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

0 0.25 0.0 0.46 0.0 0.79 0.0 1.24 0.0 1.82 0.0

10 0.22 0.0 0.43 0.0 0.79 0.0 1.31 0.0 1.99 0.0
..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

60 0.34 �101.2 0.33 �113.5 0.33 �133.0 – – – –

70 0.36 �101.2 0.35 �109.5 0.34 �118.7 0.35 �134.8 – –
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7.3. Electric field and mechanical strain

This combination is similar to that Problem II
in which the electric displacement is now replaced

by electric field. The bifurcation behavior for
Problem IV is also similar. That is the data in
Tables 24–27 possess the same trend as that in
Tables 16–19. For the most part, crack is predicted

Table 19

Predicted ðdW =dV Þ
 on crack initiation angles at r=a ¼ 10�4 for Problem II

Biaxial strain factor kc ¼ c111=c
1
33

qc

(C/m2)

�0.90 �0.45 0 0.45 0.90

dW =dVð Þ

ð
104Þ

ho
(deg.)

dW =dVð Þ

ð
104Þ

ho
(deg.)

dW =dVð Þ

ð
104Þ

ho
(deg.)

dW =dVð Þ

ð
104Þ

ho
(deg.)

dW =dVð Þ

ð
104Þ

ho
(deg.)

�50 0.43 �88.0 0.50 �90.8 0.58 �93.4 0.67 �96.0 0.76 �98.4
�40 0.43 �91.0 0.51 �94.3 0.61 �97.5 0.71 �100.5 0.82 �103.3
..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

0 0.43 0.0 0.70 0.0 1.03 0.0 1.42 0.0 1.87 0.0

10 0.34 0.0 0.60 0.0 0.94 0.0 1.36 0.0 1.86 0.0
..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

60 0.34 �72.6 0.32 �77.4 0.32 �92.9 – – 0.38 0.0

70 0.36 �71.7 0.33 �73.4 0.32 �79.0 0.31 �93.6 – –

Table 20

Predicted ðdW =dV Þ
 on crack initiation angles at r=a ¼ 10�1 for Problem III

Biaxial stress factor kr ¼ r1
11=r

1
33

qr 
 10�11
(C/N)

�0.90 �0.45 0.0 0.45 0.90

dW =dVð Þ

ð
10Þ

ho
(deg.)

dW =dVð Þ

ð
10Þ

ho
(deg.)

dW =dVð Þ

ð
10Þ

ho
(deg.)

dW =dVð Þ

ð
10Þ

ho
(deg.)

dW =dVð Þ

ð
10Þ

ho
(deg.)

�80 0.42 �125.6 0.42 �125.5 0.42 �125.4 0.42 �125.3 0.42 �125.2
..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

�10 0.47 �106.9 0.46 �103.7 0.46 �100.5 0.45 �97.5 0.45 �94.8
0 0.49 0.0 0.52 0.0 0.58 0.0 0.69 0.0 0.84 0.0

10 0.57 0.0 0.57 0.0 0.57 0.0 0.58 0.0 0.59 0.0

100 0.40 �147.9 0.40 �148.0 0.40 �148.0 0.40 �148.1 0.40 �148.1

Table 21

Predicted ðdW =dV Þ
 on crack initiation angles at r=a ¼ 10�2 for Problem III

Biaxial stress factor kr ¼ r1
11=r

1
33

qr 
 10�11
(C/N)

�0.90 �0.45 0.0 0.45 0.90

dW =dVð Þ

ð
102Þ

ho
(deg.)

dW =dVð Þ

ð
102Þ

ho
(deg.)

dW =dVð Þ

ð
102Þ

ho
(deg.)

dW =dVð Þ

ð
102Þ

ho
(deg.)

dW =dVð Þ

ð
102Þ

ho
(deg.)

�80 0.44 �93.7 0.44 �93.6 0.44 �93.6 0.44 �93.6 0.44 �93.6
..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

�10 0.45 �74.6 0.45 �74.5 0.45 �74.4 0.45 �74.3 0.45 �74.2
0 0.65 0.0 0.69 0.0 0.74 0.0 0.79 0.0 0.84 0.0

10 0.51 0.0 0.52 0.0 0.52 0.0 0.52 0.0 0.53 0.0
..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

100 0.44 �111.4 0.44 �111.4 0.44 �111.4 0.44 �111.4 0.44 111.3
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to extend straight ahead with ho ¼ 0 for pc in the
middle range. For small pc, say �90
 10�8 V/m,
bifurcation seems to depend on the biaxial factor

kc. As pc becomes positive and increases, crack
forking is predicted regardless of the biaxial strain
factor kc. The interdependency of crack initiation

Table 22

Predicted ðdW =dV Þ
 on crack initiation angles at r=a ¼ 10�3 for Problem III

Biaxial stress factor kr ¼ r1
11=r

1
33

qr 
 10�11
(C/N)

�0.90 �0.45 0.0 0.45 0.90

dW =dVð Þ

ð
103Þ

ho
(deg.)

dW =dVð Þ

ð
103Þ

ho
(deg.)

dW =dVð Þ

ð
103Þ

ho
(deg.)

dW =dVð Þ

ð
103Þ

ho
(deg.)

dW =dVð Þ

ð
103Þ

ho
(deg.)

�80 0.44 �89.8 0.44 �89.8 0.44 �89.8 0.44 �89.8 0.44 �89.8
..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

�10 0.45 �72.2 0.45 �72.2 0.45 �72.2 0.45 �72.2 0.45 �72.2
0 0.80 0.0 0.82 0.0 0.83 0.0 0.85 0.0 0.87 0.0

10 0.52 0.0 0.52 0.0 0.52 0.0 0.52 0.0 0.52 0.0
..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

100 0.44 �106.4 0.44 �106.4 0.44 �106.4 0.44 �106.4 0.44 �106.4

Table 23

Predicted ðdW =dV Þ
 on crack initiation angles at r=a ¼ 10�4 for Problem III

Biaxial stress factor kr ¼ r1
11=r

1
33

qr 
 10�11
(C/N)

�0.90 �0.45 0.0 0.45 0.90

dW =dVð Þ

ð
104Þ

ho
(deg.)

dW =dVð Þ

ð
104Þ

ho
(deg.)

dW =dVð Þ

ð
104Þ

ho
(deg.)

dW =dVð Þ

ð
104Þ

ho
(deg.)

dW =dVð Þ

ð
104Þ

ho
(deg.)

�80 0.44 �89.4 0.44 �89.4 0.44 �89.4 0.44 �89.4 0.44 �89.4
..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

�10 0.45 �72.1 0.45 �72.1 0.45 �72.1 0.45 �72.1 0.45 �72.1
0 0.86 0.0 0.87 0.0 0.87 0.0 0.88 0.0 0.88 0.0

10 0.52 0.0 0.52 0.0 0.52 0.0 0.52 0.0 0.52 0.0
..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

100 0.44 �105.8 0.44 �105.8 0.44 �105.8 0.44 �105.8 0.44 �105.8

Table 24

Predicted ðdW =dV Þ
 on crack initiation angles at r=a ¼ 10�1 for Problem IV

Biaxial strain factor kc ¼ c111=c
1
33

pc 
 10�8
(V/m)

�1.0 �0.5 0 0.5 1.0

dW =dVð Þ

ð
101Þ

ho
(deg.)

dW =dVð Þ

ð
101Þ

ho
(deg.)

dW =dVð Þ

ð
101Þ

ho
(deg.)

dW =dVð Þ

ð
101Þ

ho
(deg.)

dW =dVð Þ

ð
101Þ

ho
(deg.)

�90 0.28 �138.7 0.41 0.0 0.61 0.0 0.86 0.0 1.17 0.0
..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

�20 0.17 0.0 0.37 0.0 0.80 0.0 1.45 0.0 2.32 0.0

�10 0.21 0.0 0.38 0.0 0.80 0.0 1.47 0.0 2.40 0.0

0 0.28 0.0 0.39 0.0 0.77 0.0 1.41 0.0 2.31 0.0

10 0.37 0.0 0.41 0.0 0.70 0.0 1.25 0.0 – –
..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

120 0.46 �102.6 0.40 �108.0 0.35 �114.9 0.32 �126.7 – –
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Table 25

Predicted ðdW =dV Þ
 on crack initiation angles at r=a ¼ 10�2 for Problem IV

Biaxial strain factor kc ¼ c111=c
1
33

pc 
 10�8
(V/m)

�1.0 �0.5 0 0.5 1.0

dW =dVð Þ

ð
102Þ

ho
(deg.)

dW =dVð Þ

ð
102Þ

ho
(deg.)

dW =dVð Þ

ð
102Þ

ho
(deg.)

dW =dVð Þ

ð
102Þ

ho
(deg.)

dW =dVð Þ

ð
102Þ

ho
(deg.)

�90 0.33 0.0 0.50 0.0 0.72 0.0 0.98 0.0 1.00 117.6
..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

�20 0.19 0.0 0.47 0.0 0.91 0.0 1.53 0.0 2.31 0.0

�10 0.21 0.0 0.45 0.0 0.88 0.0 1.51 0.0 2.32 0.0

0 0.25 0.0 0.43 0.0 0.80 0.0 1.38 0.0 2.16 0.0

10 0.32 0.0 0.41 0.0 0.69 0.0 1.17 0.0 1.84 0.0
..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

120 0.45 �73.6 0.38 �74.1 0.33 �78.7 0.29 �91.2 – –

Table 26

Predicted ðdW =dV Þ
 on crack initiation angles at r=a ¼ 10�3 for Problem IV

Biaxial strain factor kc ¼ c111=c
1
33

pc 
 10�8
(V/m)

�1.0 �0.5 0 0.5 1.0

dW =dVð Þ

ð
103Þ

ho
(deg.)

dW =dVð Þ

ð
103Þ

ho
(deg.)

dW =dVð Þ

ð
103Þ

ho
(deg.)

dW =dVð Þ

ð
103Þ

ho
(deg.)

dW =dVð Þ

ð
103Þ

ho
(deg.)

�90 0.31 �102.4 0.45 �103.7 0.61 �104.6 0.81 �105.3 1.03 �106.0
..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

�20 0.24 0.0 0.53 0.0 0.99 0.0 1.61 0.0 – –

�10 0.24 0.0 0.50 0.0 0.94 0.0 1.57 0.0 2.37 0.0

0 0.27 0.0 0.46 0.0 0.84 0.0 1.42 0.0 2.18 0.0

10 0.32 0.0 0.43 0.0 0.71 0.0 1.18 0.0 1.83 0.0
..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

120 0.45 �71.8 0.38 �72.0 0.32 �74.9 0.28 �86.3 – –

Table 27

Predicted ðdW =dV Þ
 on crack initiation angles at r=a ¼ 10�4 for Problem IV

Biaxial strain factor kc ¼ c111=c
1
33

pc 
 10�8
(V/m)

�1.0 �0.5 0 0.5 1.0

dW =dVð Þ

ð
104Þ

ho
(deg.)

dW =dVð Þ

ð
104Þ

ho
(deg.)

dW =dVð Þ

ð
104Þ

ho
(deg.)

dW =dVð Þ

ð
104Þ

ho
(deg.)

dW =dVð Þ

ð
104Þ

ho
(deg.)

�90 0.31 �95.8 0.45 �98.2 0.62 �100.0 0.81 �101.4 1.03 �102.6
..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

�20 0.25 0.0 0.56 0.0 1.02 0.0 1.64 0.0 – –

�10 0.25 0.0 0.52 0.0 0.97 0.0 1.59 0.0 2.39 0.0

0 0.27 0.0 0.47 0.0 0.86 0.0 1.43 0.0 2.19 0.0

10 0.32 0.0 0.43 0.0 0.72 0.0 1.19 0.0 1.83 0.0
..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

120 0.45 �71.8 0.38 �71.8 0.32 �74.6 0.28 �85.6 0.25 �147.9
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conditions with boundary conditions is not unex-
pected. However, the predicted branching for sta-
tionary cracks is new.

8. Conclusions

Atomistic simulation of crack tip behavior has
motivated this work. Piezoelasticity solution has
led to two different crack tip stress field charac-
teristics when the relative length parameter r=a is
varied in conjunction with the electrical/mechani-
cal boundary conditions. This finding was not
expected even though the material characteristics
ahead of the crack are altered for the tetragonal
perovskite structure ceramics when the electric
field direction is changed with reference to that of
poling. More specifically, the local stresses and
displacements were expected to be more dependent
on the distance from the crack tip for piezoce-
ramics. The dual stress and/or strain field charac-
teristic may not be limited to piezoelasticity. That
is local damage owing to dilatation and distortion
is distant dependent. This multiscale feature of
crack front damage is subject to additional inves-
tigation.
For small values of r=a and appropriate

boundary conditions, the energy density criterion
predicted two planes off to the crack along which
dilatation dominates in contrast to distortion di-
rectly ahead of the crack. More specifically, bi-
furcation is predicted for a mode I stationary
crack. For large values of r=a, straight ahead
cracking is predicted that coincides with the dom-
inant phases of dilatation. Distortional dominant
planes are off to the sides where the prospective
plastic enclaves would be developed. These results
tend to suggest two different mechanisms of dam-
age initiation when the scale size of r is changed in
relation to crack length. There is also the impli-
cation that the dominant mode of damage for
crack bifurcation is dilatation and not distortion
or shear as assumed in dislocation mechanics
where two slip planes off to the sides of a mode I
crack are assumed.
Recent findings from molecular dynamics on

dislocations [37,38] have suggested a closer look at
previous models that have regarded piled-up dis-

locations as continuous sheets of dislocations with
infinitesimal Burgers vectors. Tensile and in-plane
shear cracks were assumed to be deducible math-
ematically from dislocations using the traction-free
conditions. Although the results appear plausible,
it is difficult to justify the scale difference of sev-
eral orders of magnitude. Different mechanisms
of damage at the atomic scale may lead to simi-
lar macrocrack configurations. Uniqueness of this
process may be invoked mathematically but it may
prove to be impossible to show physically. There
does not appear to be the sufficient conditions to
model atomistic damage near the crack tip.
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