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Torsional Impact Response of a
Penny-Shaped Interface Crack in
Bonded Materials With a Graded
Material Interlayer
In this paper, the dynamic response of a penny-shaped interface crack in bonded di
lar homogeneous half-spaces is studied. It is assumed that the two materials are b
together with such a inhomogeneous interlayer that makes the elastic modulus
direction perpendicular to the crack surface is continuous throughout the space.
crack surfaces are assumed to be subjected to torsional impact loading. Laplace
Hankel integral transforms are applied combining with a dislocation density functio
reduce the mixed boundary value problem into a singular integral equation with a
eralized Cauchy kernel in Laplace domain. By solving the singular integral equa
numerically and using a numerical Laplace inversion technique, the dynamic stres
tensity factors are obtained. The influences of material properties and interlayer thick
on the dynamic stress intensity factor are investigated.@DOI: 10.1115/1.1459066#
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1 Introduction
Interface crack problems of composite structures have been

important topic of fracture mechanics in recent decades. There
a large number of solutions in the technical literature for isotrop
orthotropic, and anisotropic bonded materials containing interf
cracks. Some typical studies that should be mentioned are tha
asymptotic analysis of the elastic fields~Williams @1#!, the stan-
dard interface crack solutions~Erdogan @2#, Rice and Sih@3#,
Willis @4# and Qu and Bassani@5#!, the crack-tip contact mode
~Comninou @6# Achenbach et al.@7# and Rice@8#!, the elastic-
plastic analysis~Shih and Asaro@9#! and so on. Hutchinson an
Suo @10# once gave an extensive overview on the static beha
of interface cracks. On the other hand, there are also a numb
papers devoted to the dynamic fracture mechanics of inter
cracks. Sih and Chen@11# studied several dynamic responses
composite materials with interface cracks, such as antiplane s
of interface rectangular cracks in layered orthotropic dissim
materials, orthotropic layered composite debonded over a pe
shaped region subjected to sudden shear, diffraction of ti
harmonic waves by interface cracks in dissimilar media. Takei
co-workers@12# and Li and Tai@13# considered the elastodynam
response of a composite with an interface crack under antip
shear loading. Ueda and co-workers@14# reported the torsiona
impact response of a penny-shaped crack on a bimaterial in
face. Beyond these, considerable experimental works on the
namics of interface cracks~Lambros and Rosakis@15# and Singh,
Lambros, and Rosakis@16#! and numerical simulations of dy
namic interfacial crack growth~Xu and Needleman@17# and
Needleman and Rosakis@18#! were also carried out. Rosakis an
Ravichandran@19# recently made a rather comprehensive revi
on dynamic failure mechanics.

The researches mentioned above usually assumed that the
similar materials were bonded directly~bimaterials! or with a thin
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homogeneous layer which properties different from that of bon
materials. However, recent studies have indicated that in m
cases an inhomogeneous interlayer exists between the bonde
terials~Subramanian and Crasto@20#!. This kind of interlayer may
be developed as a result of certain processing techniques~Lugsc-
heider@21# and Shiau et al.@22#! or results from intentional grad
ing of the material composition~Kurihara et al.@23# and Jager
et al. @24#!. For the static problems of fracture mechanics ab
the inhomogeneous interlayer, there have been many theore
studies~Delale and Erdogan@25#, Ozturk and Erdogan@26#, Wang
et al. @27# and Fildis and Yahsi@28#!. In their studies, two kind of
inhomogeneous interlayer models have been proposed. On
them is the exponential function model and another is a so-ca
generalized interlayer model, which is a power function. The
models have physical background and make the problem of s
oscillatory singularity~Williams @1#! overcome. However, as fo
dynamic fracture mechanic of interface cracks, there are few s
ies considered the effect of an inhomogeneous interlayer.

In this paper, we examine the torsional impact response o
penny-shaped interface crack in a layered composite. Altho
this problem is rather a theoretical problem, it also has the e
neering background, such as the sudden appearance of a p
shaped interface crack in a component under torsional load
The main difference between our present paper and litera
~Ueda, Shindo, and Astumi@14#! is that a graded material inter
layer is introduced. Our main objective is to investigate whet
the graded material interlayer is helpful in reducing the dynam
stress intensity factor of an interface crack in a bonded mate
and how the material inhomogeneity and interlayer thickness
fluence the dynamic stress intensity factor. The methods use
our paper are the Laplace and Hankel integral transforms and
singular integral equation technique.

2 Formulation of the Problem
As shown in Fig. 1, consider two dissimilar half-spac

~Material-1 and Material-3! to be bonded with an inhomogeneou
interlayer, which denoted as Material-2. The material propertie
Material-1 and Material-3 are constant and denoted asr1 ,m1 and
r3 ,m3 respectively, wherer is the mass density andm is the shear
modulus.

As we have known, there are two material parameters invol
in the dynamic torsional problems. They are the shear modulum
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and the mass densityr. For the inhomogeneous interlayer, due
the mathematical complexity introduced by the inertia term, i
necessary to assume that the shear modulus and the mass d
can vary independently. Such an idealization can offer consi
able simplifications to the analysis. After compared the sev
models for expressing the variation of the shear modulus, suc
the exponential formm(z)5m1 exp(az) ~Delale and Erdogan
@25#!, and the power formm2(z)5m1(11az)k ~Wang et al.@27#!,
we found that the variations

m25m1~11az!2, (1)

r25~r11r3!/2, (2)

are mathematically tractable, and still physically representa
enough. In Eq.~1!, the parametera can be determined by th
continuity condition of the shear modulusm2(0)5m1 and
m2(h)5m3 , that isa5(Am3 /m121)/h.

Assume a penny-shaped crack of diameter 2a is located at the
interface of Material-1 and Material-2 and subjected to a torsio
impact loadingP(r ). For the present problem, in the cylindric
polar coordinates (r ,u,z), only the displacement (uu) i
5wi(r ,z,t) nonvanishes, where subscriptsi 51,2,3 refer to mate-
rials 1, 2, and 3, and wheret is the time. The nonvanishing stres
componentstuz andt ru are as follows:

~tuz! i5m i

]wi

]z
, ~t ru!5m i S ]wi

]r
2

wi

r D , i 51,2,3. (3)

The governing equation of motion gives

]2wi

]r 2 1
1

r

]wi

]r
2

wi

r 2 1
]2wi

]z2 5
r i

m i

]2wi

]t2 , i 51,3 (4)

]2w2

]r 2 1
1

r

]w2

]r
2

w2

r 2 1
]2w2

]z2 1
m28~z!

m2~z!

]w2

]z
5

r2

m2~z!

]2w2

]t2

(5)

wherem28(z) is the derivative ofm2(z) with respect toz.
The boundary conditions are given as follows:

~tuz!1~r ,02,t !5~tuz!2~r ,01,t !5P~r !H~ t !, 0<r ,a, (6)

w1~r ,02,t !5w2~r ,01,t !, r>a, (7)

where H(t) is the Heaviside unit step function. The continui
conditions of the displacement and the shear stress acros
interfaces give

~tuz!1~r ,02,t !5~tuz!2~r ,01,t !, r>a, (8)

Fig. 1 A penny-shaped crack on the interface of a graded
material interlayer and a homogeneous material
304 Õ Vol. 69, MAY 2002
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w2~r ,h2,t !5w3~r ,h1,t !, 0<r ,`, (9)

~tuz!2~r ,h2,t !5~tuz!3~r ,h1,t !, 0<r ,`. (10)

Note that the standard Laplace transform onf (t) is

f * ~p!5E
0

`

f ~ t !e2ptdt (11)

whose inversion is

f ~ t !5
1

2p i EBr
f * ~p!eptdp (12)

and Br denotes the Bromwich path of integration. Applying t
transform~11! to Eqs.~4! and~5! results in the transformed equa
tions

]2wi*

]r 2 1
1

r

]wi*

]r
2

wi*

r 2 1
]2wi*

]z2 5
r i p

2

m i
wi* , i 51,3 (13)

]2w2*

]r 2 1
1

r

]w2*

]r
2

w2*

r 2 1
]2w2*

]z2 1
m28~z!

m2~z!

]w2*

]z
5

r2p2

m2~z!
w2* .

(14)

Moreover, introducing the pair of Hankel transforms of the fi
order,

Vi~s,z,p!5E
0

`

wi* ~r ,z,p!J1~sr!rdr , (15)

wi* ~r ,z,p!5E
0

`

Vi~s,z,p!J1~sr!sds, (16)

whereJ1( ) is the Bessel function of the first kind, then applyin
Eq. ~15! to the Eqs.~13! and ~14! yields

]2Vi~s,z,p!

]z2 2Fs21
r i p

2

m i
GVi~s,z,p!50, i 51,3 (17)

]2V2~s,z,p!

]z2 1
2a

11az

]V2~s,z,p!

]z

2Fs21
r2p2

m1~11az!2GV2~s,z,p!50. (18)

Considering the displacement conditions thatw1 andw2 vanish
at uzu→`, the solutions of Eqs.~17! and~18! can be expressed a

V1~s,z,p!5A1~s,p!exp~g1z! (19)

V3~s,z,p!5A4~s,p!exp~2g3z! (20)

V2~s,z,p!5A2~s,p!~11az!21/2I bF ~11az!
s

uauG
1A3~s,p!~11az!21/2KbF ~11az!

s

uauG , (21)

where

g15As21
r1p2

m1
, g35As21

r3p2

m3
, b5A1

4
1

r2p2

m1a2

(22)

andI b( ), Kb( ) are the modified Bessel function of the first kin
and the second kind, respectively.

From Eq.~16!, we can obtain the displacements in the Lapla
domain. Subsequently, the shear stresses in the Laplace trans
domaintuz* and t ru* can be obtained from Eq.~3!. Then the un-
known functionsA1 , A2 , A3 , A4 can be determined from the
boundary and the continuity conditions.
Transactions of the ASME
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3 Derivation of the Singular Integral Equation
In Laplace domain, the boundary conditions become

~tuz* !1~r ,02,p!5~tuz* !2~r ,01,p!5
P~r !

p
, 0<r ,a, (23)

w1* ~r ,02,p!5w2* ~r ,01,p!, r>a, (24)

and the continuity conditions across the interfaces become

~tuz* !1~r ,02,p!5~tuz* !2~r ,01,p!, r>a, (25)

w2* ~r ,h2,p!5w3* ~r ,h1,p!, 0<r ,`, (26)

~tuz* !2~r ,h2,p!5~tuz* !3~r ,h1,p!, 0<r ,`. (27)

To reduce the mixed boundary conditions~23! and~24! into an
integral equation, we first define the following dislocation dens
function on the interface of Material-1 and Material-2:

g~r ,p!5
1

r

]

]r
@rw2* ~r ,01,p!2rw1* ~r ,02,p!#. (28)

From the continuity conditions and the dislocation density fu
tion, we can obtain

~tuz* !2~r ,0,p!5m2~0!E
0

a

R~u,r ,p!g~u,p!udu (29)

where

R~u,r ,p!5E
0

`

D~s,p!J1~sr!J0~su!sds (30)

and

D~s,p!5
d21~sd321d42!2d22~sd311d41!

~d112d21!~sd321d42!2~sd311d41!~d122d22!
.

(31)

The coefficientsdi j in Eq. ~31! are as follows:

d115sIbS s

uau D , d125sKbS s

uau D ,

d2152S 1

2
1b DaI bS s

uau D I b21S s

uau D sa

uau
,

d2252S 1

2
1b DaKbS s

uau D2Kb21S s

uau D sa

uau
, (32)

d315~11ah!21/2I bS ~11ah!
s

uau D ,

d325~11ah!21/2KbS ~11ah!
s

uau D ,

d4152S 1

2
1b Da~11ah!23/2I bS ~11ah!

s

uau D
1~11ah!21/2I b21S ~11ah!

s

uau D sa

uau
,

d4252S 1

2
1b Da~11ah!23/2KbS ~11ah!

s

uau D
2~11ah!21/2Kb21S ~11ah!

s

uau D sa

uau
.

Note that

l5 lim
s→`

D~s,p!52
1
2 . (33)

R(u,r ,p) can be further expressed as
Journal of Applied Mechanics
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R~u,r ,p!5Rn~u,r ,p!1Rs~u,r ,p! (34)

where

Rn~u,r ,p!5E
0

`

@D~s,p!2l#J1~sr!J0~su!sds, (35)

Rs~u,r ,p!5lE
0

`

J1~sr!J0~su!sds

52
l

p F 1

u~u2r !
1

2u2r 12rM ~u,r !

u~u22r 2! G , (36)

and

M ~u,r !5H u

r
ES u

r D , u,r ,

u2

r 2 ES r

uD2
u22r 2

r 2 KS r

uD , u.r .

(37)

E( ) and K( ) are complete elliptic integrals of the second a
first kind, respectively. From the boundary condition~23!, we ob-
tain a singular integral equation with a generalized Cauchy ker

E
0

aF2
l

p

1

u2r
1R0~u,r ,p!Gg~u,p!du5

P~r !

m2~0!p
, 0,r ,a,

(38)

where

R0~u,r ,p!5uRn~u,r ,p!1
l

p

u1r 22rM ~u,r !

u22r 2 . (39)

The single-valued condition can be given from the definition
g(u,p),

E
0

a

ug~u,p!du50. (40)

4 Dynamic Stress Intensity Factor
Normalized the interval by the following transformation o

variables:

u5
a

2
~11j!, r 5

a

2
~11h!. (41)

The integral Eqs.~38! and ~40! can be rewritten as

E
21

1 F2
l

p

1

j2h
1R0~j,h,p!GG~j,p!dj5

P̄~h!

m2~0!p
, (42)

E
21

1

~11j!G~j,p!dj50, (43)

where

R0~j,h,p!5
a

2
R0Fa

2
~11j!,

a

2
~11h!,pG , (44)

G~j,p!5gFa

2
~11j!,pG , (45)

P̄~h!5PFa

2
~11h!G . (46)

Considering the singularity at the crack tip, we assume tha

G~j,p!5
Ḡ~j,p!

p

1

A12j2
. (47)
MAY 2002, Vol. 69 Õ 305
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Following the numerical method developed by Erdogan for s
gular integral equations~Erdogan @29#!, expandingḠ(j,p) in
forms of Chebeshev polynomials

Ḡ~j,p!5(
n50

`

BnTn~j!, (48)

we can obtain a system of equations,

(
i 51

n F 2l

j i2h j
1pR0~j i ,h j ,p!G Ḡ~j i ,p!

n
5

P̄~h j !

m2~0!
, (49)

(
i 51

n
~11j i !

n
Ḡ~j i ,p!50, j 51,2, . . . ,n21, (50)

wherej i , h j are the roots of Chebeshev polynomial of the fi
kind and the second kind, respectively,

j i5cosS 2i 21

2n
p D , i 51,2, . . . ,n,

h j5cosS j

n
p D , j 51,2, . . . ,n21. (51)

Solving the system of linear algebraic Eqs.~49! and ~50!, the
unknown functionḠ(j,p) can be obtained.

If the mode III stress intensity factor in Laplace domain
defined by

K III* ~p!5 lim
r→a1

A2~r 2a!~tuz* !2~r ,0,p!, (52)

then by using the properties of Chebeshev polynomials, we ob

K III* ~p!5lm2~0!Aa

2

Ḡ~1,p!

p
. (53)

The dynamic stress intensity factor in time domain can be
tained by

K III ~ t !5lm2~0!Aa

2

1

2p i EBr

Ḡ~1,p!

p
eptdp. (54)

5 Results and Discussion
Suppose that the crack surface torsional loading isP(r )

52t0r /a. In this problem, the variables arem3 /m1 , h/a, and
r3 /r1 . To investigate the influences of these parameters on
dynamic stress intensity factor, we analyzed some real compo
materials, such as Al2O3 /Ni, TiC/C, SiO2 /Ni, SiC/C, and so on,
and found that the parameterm3 /m1 may vary in a wide range bu
the parameterr3 /r1 may vary in a relatively narrow range. F
nally, we chose the following combinations for the analys
m3 /m151/12,1/3,3,12;r3 /r150.5,1.0,2.0,4.0;h/a50.2,0.5,1.0,
2.0.

Solving Eqs.~49! and ~50!, and accomplishing the Laplace in
version~54! by the numerical procedure developed by Miller a
Guy @30#, the mode III dynamic stress intensity factors in differe
cases are obtained. The results of the normalized dynamic s
intensity factorK III (t)/t0Aa as a function ofc21t/a are shown in
Figs. 2–4, wherec215Am1 /r1 is the shear wave velocity in
material-1. A general feature of the curves is observed to be
the stress intensity factors rise rapidly and reach a peak,
oscillate about their static values with decreasing magnificat
This general feature has been reported for homogeneous mat
and layered composite materials.

Figure 2 shows the variations of the normalized dynamic str
intensity factor with time for various ratios of the shear modu
m3 /m1 while r3 /r151.0 andh/a51.0. It can be seen that th
K III (t) factor tends to monotonically decrease with the increas
of m3 /m1 . The differences between the peak values of curves
the static values also decrease with increasingm3 /m1 . This ten-
306 Õ Vol. 69, MAY 2002

aded 09 Jun 2010 to 159.226.231.78. Redistribution subject to ASME l
in-

st

is

tain

b-

the
site

-
is:

-
d

nt
ress

that
hen
on.
rials

ess
us

ing
nd

Fig. 2 The effect of the ratio of shear modulus on the normal-
ized dynamic stress intensity factor

Fig. 3 The effect of the interlayer thickness on the normalized
dynamic stress intensity factor
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dency is somewhat different from that of two dissimilar materi
bonded directly without an interlayer~Ueda, Shindo, and Astum
@14#!. In the latter problem the peak values ofK III (t) factor de-
crease with the increasing ofm3 /m1 , but the intersections exis
during the oscillating procedure.

Figures 3~a! and 3~b! display that theK III (t) factor is also af-
fected by the ratio of interlayer thickness to crack radiush/a. For
m3 /m1,1, the dynamic stress intensity factors decrease with
creasingh/a. The largerh/a is, the more the peak value goe
beyond its corresponding static value. This phenomenon is
picted in Fig. 3~a! for m3 /m151/3. Form3 /m1.1, the opposite
phenomenon can be observed from Fig. 3~b! for m3 /m153 that
the dynamic stress intensity factors increase with increasingh/a.

The effect of the mass density ratior3 /r1 on the variation of
the dynamic stress intensity factor is shown in Fig. 4. This eff
has not been reported before for layered composite materials.
observed that the peak value ofK III (t) factor increases when th
ratio r3 /r1 increases. This phenomenon can be observed fo
arbitrary m3 /m1 and different ratiosh/a, although these result
are not given here as the space of the paper is limited.

As explained in Section 2, in this paper we only use the fo
m2(z)5m1(11az)2 to obtain the solution. A different choice o
m2(z) may change the numerical values, but they should not l
to any change in the general trends of the results. We believ
can be verified in our future works by using numerical metho
such as the finite element method.

6 Conclusions
This paper presents the dynamic stress intensity factors f

penny-shaped interface crack in bonded dissimilar homogen
half-spaces sandwiching an inhomogeneous interlayer. It is
sumed that the shear modulus in the direction perpendicular to
crack surface is continuous throughout the space and the c
surfaces are subjected to torsional impact loading. A special m
for describing material inhomogeneity parameter is introduc
Laplace and Hankel transforms are applied to reduce the m
boundary value problem into a singular integral equation wit
generalized Cauchy kernel. The results reveal that the dyna
stress intensity factors are affected not only by the stiffness r
but also by the interlayer thickness and the mass density ratio.
observed that the influences of the stiffness ratio and the interl
thickness are stronger than the influences of the mass densit
tio.

Fig. 4 The effect of the ratio of mass density on the normal-
ized dynamic stress intensity factor
Journal of Applied Mechanics
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