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Abstract 

Response number Rn (ft) , proposed in [3, 4], is an important independent dimensionless number for the 
dynamic response of structures [2], In this paper, the response number is applied to the dynamic plastic 
response of the well-known Parkes' problem, i.e., beams struck by concentrated mass. 
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List of symbols 

Dn Johnson's damage number 
G mass of projectile 
Η thickness 
I0 impulse per unit area 
L characteristic dimension of a structure 
m mass per unit length of beam 
A/ mass of projectile 
M0 σ0Η / 4 , fully plastic bending 

moment 
η positive real number 
Rn response number for η = 2 
Rn («) response number for a given η 
t time 
V0 initial impact velocity 
w f final permanent transverse 

displacement 
wm final permanent transverse 

displacement for mid-span of beam 
wt, Wy final permanent transverse 

displacement for beam tip 
X position in span for beam 
a mLI Μ, mass ratio 

ß αφ 

φ x/L 

ν L/H 

Ρ density 

σ 0 yield stress 

1. Introduction 

Many engineering structures are composed of 
the basic structural elements, such as beams, 
plates, and shells. Until now, there have been a 
large number of theoretical and experimental 
studies on the dynamic plastic behaviour of these 
basic elements. In order to compare results 
presented in the studies on deformed structures 
with similar geometries, boundary conditions, and 
loading, it seems necessary to normalize all 
variables into dimensionless forms. A general 
dimensional analysis for structural mechanics has 
been discussed by Jones in [1], where important 
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physical quantities in the dynamic inelastic 
response are considered in developing a 
complete set of dimensionless numbers using 
Buckingham Π theorem. The dimensionless 
numbers obtained from dimensional analysis 
are useful for scaling purpose and for 
organizing experimental model tests and 
numerical calculations to avoid any 
unnecessary repetition of the results in 
dimensionless space [2], 

Recently, a new dimensionless number, 
response number, 

ρσ0Η' 

Γ V 

\H j ( 1 ) 

has been suggested by Zhao [3,4] for dynamic 
plastic response of structures made of rigid, 

perfectly plastic material. Here, 70 is the 

impulse per unit area of the impact loading, ρ 

is the material density, V0 is the impact 

velocity, σ0 is the yield stress of the material, 

L is the half length of beams or plates and 
Η is the thickness of beams or plates. When 

η = 2, Rn (2) is abbreviated as Rn. For 

impulsive loading, the response number can be 
expressed as 

pV0
2 
fLλ 

σ 0 U J I <HJ (2) 

where Dn is Johnson's damage number [5] 

D. = pvl 
(3) 

for assessing the behaviour of various metal 

structures subjected to dynamic loading. Johnson's 
damage number is a basic dimensionless similarity 
parameter in material dynamics. 

The response number R„{n) is an important 

independent dimensionless number [2] and might 
be used extensively for the dynamic plastic 

response of structure. Now R„(n) has been used 

for the dynamic plastic response of structural 
members in [2], structural bifurcation buckling in 
[4], plates in [6], and shells in [7] under uniformly 
distributed loading. 

Concentrated impact is one of the important 
loading types in structural impact dynamics. Can 

R„{n) also be used for the dynamic plastic 

response of beams subjected to concentrated 
impact loading? In the presented paper, 
application of response number will be made for 
Parkes' problems [8,9], i.e., rigid, perfectly plastic 
beams subjected to mass impact. 

2. Parkes' beams of mass impact 

2.1 Impact of a mass on a fully clamped beam 

In Ref. [8], Parkes has studied the dynamic 
plastic response of a built-in beam, which has 
length 2L, thickness Η and unit breadth, with a 
transversely moving mass striking at any position 
in the span. 

When struck at the mid-span by a mass Μ 

traveling with an initial velocity V0 as illustrated 

in Figure 1 (a), the mid-span of the beam travels 

with a velocity V0 at the instant of impact, and 

the remainder of the beam is stationary. Therefore, 
to maintain dynamic equilibrium, a disturbance 
propagates away from the mid-span, while the 
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striker is assumed to remain in contact with 
the beam. In fact two distinct phases of motion 
occur. 

A plastic hinge develops under the impact 
point at t = 0 and two plastic hinges 
propagate the disturbance away from the mid-
span towards the supports and into the 
undeformed portions of motion, as indicated in 
Figure 1 (b). The plastic hinges remain 
stationary at the supports and the mid-span 
during the final phase of motion, as indicated 
in Figure 1 (c), until the beam and striker 
come to rest, when all the initial kinetic energy 

of the striking mass MF0
2 / 2 is dissipated 

plastically. 

The final permanent transverse 
displacement profile for the problem in Figure 
1 (a) is obtained as follow [1] 

0 Μ 

Κ 

(a) 

(b) 

w / = 
M% 2x,2 

α - β 

24mM0 l ( l + aXl + £ ) 
+ 2 In 

f ι Λ 

1 + a 

l + ß 

(4) 

where m is mass per unit length of beam, Μ is 

the projectile mass, Μϋ-σ0Η214 is the full 

plastic bending moment, a = mL / Μ, 

β = mx/M and 0 < β < a . 

When ΜI mL» 1, the final permanent 
transverse displacement is 

wf =MVtL{\-xlL)l%M, ο • (5) 

Therefore, for the mid-span, we have 

w_=w f x=0 

M V l L 

8 M , 
( 6 ) 

Y r . 

X 

L 

(a) 

X 

W 

\ 

w 

ξ i 

(b) 

(c) (c) 

Figure 1 Impact of a mass on a fully clamped beam F i g u r e 2 i m p a c t of a mass on a cantilever beam 
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When Μ / mL «1, the final permanent 
transverse displacement is 

M 2 V 2 L X ( m L I M Λ 

In 
12 m M n \ + m x / M 

(7) 

and for the mid-span, 

ι M 2 V 2 L 
w_ - w 

f i x = 0 12 m M n 

I n { m L I M ) . ( 8 ) 

2.2 Impact of a mass on a cantilever beam 

The dynamic response of a cantilever beam 
subjected to large dynamic loads, which 
produce an inelastic material behaviour, has 
been examined theoretically by many authors 
using rigid plastic methods of analysis. In 
particular, Parkes [9] studied the behaviour of 
a cantilever beam with length L which was 
struck at the tip by a mass G traveling with a 

velocity V0, as shown in Figure 2 (a). 

When a mass G strikes the tip of the 
cantilever beam, a disturbance develops 
immediately underneath the mass which 
propagates by means of a plastic hinge into the 
undeformed region of the beam, as shown in 
Figure 2 (b). The traveling plastic hinge 
eventually reaches the base of the cantilever at 
the end of the first phase of motion. The 
residual kinetic energy in the beam and mass 
is then dissipated at the plastic hinge which 
remains stationary at the support throughout a 
second phase of motion, as illustrated in 
Figure 2 (c). 

The final permanent transverse 
displacement profile for the problem 
illustrated in Figure 2 is expressed as [1] 

G V 0
2 L 

12Mn 

1 - x / L 2 , 
· + — In 

(! + «)(! + /?) a 

(9) 

where a - m L / ( 2 G ) , β = mx / (2G) , 

G = M I 2 . 

At the beam tip, we have the expression as 

w. = w A 
' J l x =0 

_ o v 0
2 l 

12Mn 

1 2 , /I \ 
1 + a a v y 

(10) 

For one special case of heavy strikers (that is 
G I m L » 1, or a—>0), the final permanent 
transverse displacement profile can be expressed 
as 

G V ? L , , 

f 4 M n
y ' 

and 

(ID 

W, -- WA ' J li=0 
O V p L 

4 M n 

(12 ) 

For another special case of light strikers 
( G / m L < < 1, or a » l ) , the final permanent 
transverse displacement profile is 

w f = 
G 2 V 0

2 , f m l J l G Λ 

In 
\ + m x / 2 G 3mM, 0 V 

(13) 

At the tip of beam, there is 

ι G 2 V 2 KJ
 ' 0 1 

w. = W f \ —In α . / lx=o 3 m M 
(14) 

2.3 The recasted results on Parkes' problems 
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With the response number Rn(η), we can w f _ R„ 

make the following new forms for equations in 
the above section 2.1 and 2.2. 

Noticing m = pH and Μ0=σ0Η2/ 4 , 

equation (4) can be rewritten as 

w. 
α - β 

6a2 [(1+«)(1 + /?) 
+ 21n 

\+β 

(15) 

then we have the final dimensionless 
permanent transverse deformation profile 

α - β 

Η 6a2 [ ( l + a ) ( l + /?) 
+ 2ln 

f ι . λ 1 + a 

Equation (5) can be expressed as 

w f = ^ - ( l - x / L ) , 
2 a 

and then in dimensionless form 

w, R 
- ^ = -^(1 - x / L ) . 
Η 2a 

Equation (6) can be rewritten as 

I R n H 

m / U 2a 

and then in dimensionless form 

wm R m η 

Η ~ 2a 

For equation (7), we have 
RH 

(16) 

(17) 

(19) 

(20) 

" 7 = 3α2 
-In 

' α ^ 

1 Λ-αφ 
(21) 

then in dimensionless form 

Η 3α2 
In 

a 

1 + αφ 
(22) 

where φ = χ/Σ. 

For equation (8), it can be reformulated as 

w m = M - \ n a , (23) 
3 a 

and then in dimensionless form 

w R 
-= - = — V i n a . (24) 
Η 3 a 2 

It is demonstrated by equations (20) to (24) that 
the dimensionless mid-span final deflection is 
determined by Zhao's response number and mass 
ratio. 

In the same manner, equations (9) to (14) also 
can be reformulated as following new forms. 

For equation (9), it can be expressed as 

w/ = 
RH 

6 a 

1 -φ 
+ —In 

(1 + a )(1 +αφ) a 

1 + a 

1 +αφ 

(25) 

(18) hence, 

Η 6a 

\ - φ 
+ —In 

(l + a ) ( l + αφί) a 

1 + a 

1 + a<p 

(26) 

The equation (10) can be reformulated as 

w. =M>, ' J l*=o 
RM 
6 a 

1 + — l n ( l + a ) 
1 +a a 

and in dimensionless form 

= 
Η 6 a 

.
 1 +— 1η(ΐ + α ) 

(1 + α ) α V
 ' 

(27) 

( 2 8 ) 
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For equation (11), it can be expressed as 

RH 
w , 

2 a 
(29) 

then equation (12) can be recasted into 

R H 
wt -

2 a 

and in dimensionless form as follows 

Η 2 a 
For equation (13), we can recasted it into 

/ - Λ 

(30) 

(31) 

wf = R J L 

3 a 2 
In 

a 

1 + αφ ν* 1 " r ; 

and then in dimensionless form 

ί -. \ 
w r Κ , 
Η 3α 2 

a 

1 Λ-αφ 
(33) 

The mode solution of the final permanent 
transverse displacement of the tip of cantilever 
beam is given as 

V 2 L ( G + mL/ 3 ) 

2 M n 

(36) 

where Μ 0 = σ 0 Η 2 / 4 and m - p H 

Consequently, with the response number Rn and 

the mass ratio a , we can rewrite the equation (36) 
as 

(32) w f = ^ - ( 3 + 2 a ) , 

and then in dimensionless form 

( 3 7 ) 

w ι 
- f = - R . ( 3 + 2 a ) . 0 8 ) 

Equation (14) now can be expressed as 

R_H 
w. = ^ h i a , 

3a 

then we have 

W , Rn , 
— = — ^ r l n a . 
Η 3 α 2 

(34) 

(35) 

It is also demonstrated that the 
dimensionless tip final deflection is 
determined by the Zhao's response number 
and mass ratio. 

Compared with the expressions in section 
2.1 and 2.2, the expressions in section 2.3 are 
more concise and it can be found that in the 
aforementioned two cases, with the response 

number Rn, they have the same forms to 

describe the dynamic plastic response of beam 
under mass impact. 

3. Impact of a mass on a long beam 

For a long beam, when considering transverse 
shear effects, the following expression has been 
presented in Ref. [2] 

w '/ _ G pV0
2 L 

Η mL ση Η 

2pV0
2L2 

1 + - — — 
+ 3 mLH 

" 2 G L 
+ 3 mLH 

v 2 

3σ0Η 
f G1 2 

1 -
/ . 3 

( LG Λ 
-1\ 

1 - 1 + — 
[ m L ) 2 V KHmL ) y 

(39) 

where G is the striker mass. With the response 

number R„(n), slenderness ration r\ = L / H , 

and mass ration a = mL / G , the above equation 
can be easily recast as 
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wf = 3 ( 3 α + 4;;) 2η(2α + Αη) 
Η (3α + 2η)2 α^α + ΐη)2^" 

where 

ρΚ-
σ 0 \Η ) 

(40) 

(41) 

Equation (40) is composed of two parts. The 

first part involves the Rn ( l ) , which is related 

to the transverse shear effect, while the second 

part involves the R^, which is related to the 

bending effect. It must be pointed out that the 
expression (40) can be reformulated more 
concisely as 

w f 
Η 

Ä„(l)f3o + V 
3a +2η a 

(42) 

4. Discussion and concluding remarks 

It has been shown that, with the Zhao's 

response number Rn (rt) or Rn and some 

other dimensionless numbers, such as a , η 
or φ , the aforementioned results on dynamic 
plastic response of beam subjected to a mass 
impact can be reformulated into new and more 
concise expressions, which are more 
physically meaningful and independent of 
dimensional units. Zhao's response number 
takes account of the geometrical influence of 
the structures on the dynamic response in 
addition to the inertia of the applied dynamic 
loading and the resistance ability of the 
material to the deformation due to the loading. 

Including those expressions presented in 

Ref. [2, 3, 4, 6, 7], it has been demonstrated that 
the response number is an important 
dimensionless number extensively utilized for 
dynamic plastic response of structures made of 
rigid-perfectly plastic materials. Actually, it should 
be pointed out that Zhao's response number can be 
used to study the elastic, plastic and dynamic 
plastic problems, and this dimensionless number 
would have a more extensive utilization for 
structural dynamics. 
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